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Abstract – A classification of critical behavior is provided in systems for which the renormaliza-
tion group equations are control-parameter dependent. It describes phase transitions in networks
with a recursive, hierarchical structure but appears to apply also to a wider class of systems,
such as conformal field theories. Although these transitions generally do not exhibit universality,
three distinct regimes of characteristic critical behavior can be discerned that combine an unusual
mixture of finite- and infinite-order transitions. In the spirit of Landau’s description of a phase
transition, the problem can be reduced to the local analysis of a cubic recursion equation, here,
for the renormalization group flow of some generalized coupling. Among other insights, this the-
ory explains the often-noted prevalence of the so-called inverted Berezinskii-Kosterlitz-Thouless
transitions in complex networks. As a demonstration, a one-parameter family of Ising models on
hierarchical networks is considered.

Copyright c© EPLA, 2015

Introduction. – One of the most significant results of
network science [1] is the realization that critical phenom-
ena on complex networks behave differently from those
found on a lattice geometry [2–4]. Before the advent
of complex networks, random geometries were routinely
modeled in terms of ordinary random graphs [5–7]. These
are well understood and synonymous with the mean-field
limit of ordinary lattices, often with little qualitative dif-
ference in their critical behavior [8]. Therefore, it came as
a surprise that real-world networks would exhibit a dra-
matically distinct phenomenology, with a profound im-
print of their geometry on the dynamics. What we now
call complex networks, aside from being random, possess
geometries dominated by small-world bonds and scale-
free degree distributions [9,10]. These lead to novel,
and often non-universal, scaling behaviors unknown for
lattices, that have changed our appreciation, for exam-
ple, of the risk of epidemics because scale-free networks
possess a vanishing threshold for percolation [11,12]. In
turn, the ability to conceive of synthetic phase transi-
tions through the manipulation or ab initio design of net-
work geometry is one of the promising targets for the
emerging science of meta-materials [13,14]. In particular,
the iterative structure of hierarchical networks may facil-
itate their realization in engineered devices to unlock and

control their unconventional behaviors. Work on perco-
lation [15–20], the Ising model [21–25], and the q-state
Potts model [26–28] have shown that critical behavior,
once thought to be exotic and model-specific [4], can be
categorized with the renormalization group [26] for a large
class of hierarchical networks with a hyperbolic structure.

The renormalization group (RG) [29,30] is a widely used
method in statistical physics that is by now found in most
textbooks [8,31,32]. It has allowed to categorize broad
classes of equilibrium systems into enumerable sets of uni-
versality classes, each characterized by discrete features,
such as their dimension and the symmetries adhered to
by their Hamiltonians. Such universality is made possible
through the property of scaling that is an inherent fea-
ture near critical points [33]. Scaling entails that system-
specific details on the microscopic level become irrelevant,
as the behavior over many orders in the range of the inter-
actions becomes self-similar. In this framework, analogous
behavior in a surprisingly wide set of phenomena, such as
the condensation of fluids, spontaneous magnetization of
materials, or the generation of particle masses in the early
Universe, can be described with a few effective theories —a
major intellectual accomplishment of modern physics [31].

Unlike the Euclidean arrangement of atoms in a lattice,
agents in biological or social systems may exhibit complex
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Fig. 1: (Colour on-line) Examples of hierarchical networks:
(a) non-planar Hanoi network [15,37], (b) enhanced binary
tree [17,25,38], (c) and (d) small-world versions of the Migdal-
Kadanoff RG embedded in d = 1 [15,18] (shown for its first
few recursions n = 0, . . . , 3) and d = 2 [22,27], and (e) hy-
perbolic networks. After each recursion, small-world cou-
plings access increasingly larger pools of variables, leading to
“patchiness” [15].

networks of mutual interactions [3,4,9]. As the dependence
on lattice dimensionality indicates, the study of critical
phenomena is inseparable from the understanding of the
geometry of the network [34]. It has been realized that
many of the networks that are engineered by some natural
or human activity themselves exhibit emergent complex
properties, exemplified by the scale-free degree distribu-
tion of the internet. While these networks, and dynamical
systems on them, may behave critical, those phenomena
were soon found to be non-universal [10,35,36], i.e., they
are intimately tied to intricate details of the specific sys-
tem. In this sense, it would seem unlikely that a sweeping
classification could be devised. Here, we will categorize
equilibrium phenomena observed on a large set of net-
works having hierarchical structure [17,22,25,35,37,38], as
those in fig. 1. Our discussion pertains, for example, to the
robustness of infinite-order transitions in distinct network
models summarized in ref. [4], or in field theory, where it
signals the loss of conformality [39]. However, it is most
closely related to the recent observation of discontinuous
(“explosive”) transitions in ordinary percolation on hier-
archical networks [18,20,28,40]. Our study shows that crit-
icality in these models is generally non-universal but falls
into three generic regimes. One of these regimes is an
infinite-order transition reminiscent of that described by
Berezinskii, Kosterlitz and Thouless (BKT) [32] but of
very different origin. Reference [27] has provided a com-
prehensive scaling theory for this regimes. We find that
it is flanked on one hand by a transition with a weaker,
algebraic divergence, similar to a second-order transition
(albeit non-universal), and, on the other, by a regime with
an even stronger essential singularity, with percolation as
a non-generic exception. Our approach also reveals the
origin of the crossover between these regimes.

Renormalization of hierarchical networks. – To
preface our discussion, consider RG for the probability κn

of an end-to-end connection in fig. 1(c) [18]. Without the
(arced) small-world bonds, recursively an infinite line is

built up with κn+1 = κ2
n, entailing percolation (κ∞ = 1)

only for κ0 = 1; any chance of missing a bond, i.e., κ0 < 1,
loses the connection (κ∞ = 0). If we now attribute a
probability p > 0 to those arcs, then κn+1 = p+(1− p)κ2

n

and we must distinguish two possibilities:

1) If line and arc bonds vary independently, with p �=
κ0 [16,41], then κ∞ = p/(1 − p) for 0 ≤ p ≤ 1

2 , while
the unstable fixed point (FP) for p < 1

2 at κ∞ = 1
only becomes stable for p > 1

2 , both irrespective of κ0.
A non-trivial FP κ∞(p) that is manipulated via an ex-
ternal parameter p but is attained independent of the
control-parameter, i.e., for any κ0 < 1, is not uncom-
mon [42], and can lead to interesting phenomena like
the crossover between two interchanging FP [43].

2) If, however, all bonds, line and arc, are equivalent
such that κn+1 = κ0 + (1 − κ0)κ2

n [15,18], then the
FP κ∞ = κ0/ (1 − κ0) explicitly depends on the
control-parameter κ0. The consequences are dra-
matic: κ∞(κ0) becomes unphysical for κ0 > 1

2 where
κ∞ = 1 is now stable, a non-trivial critical point at
κ0 = 1

2 ensues (that causes a discontinuous percola-
tion transition [18]), and small-world bonds enforce a
sub-extensive (“patchy”) order even for κ0 < 1

2 [15].

Our classification pertains to the latter case, with
control-parameter–dependent FP, κ∞(κ0). It conveniently
applies to hierarchical networks on which RG is exact and
transitions can be studied in detail. There, these regimes
are characterized by the relative strength of small-world
bonds [9]. A metric version of such networks, like the
Migdal-Kadanoff RG [44] provides textbook examples for
RG and universality [32]. But in the advent of com-
plex networks, many hierarchical designs with non-metric
(small-world or scale-free) properties, like those in fig. 1,
have been devised and studied [17,22,25,35,37,38,45].

The central tenant of real-space RG consists of a proce-
dure whereby the partition function of the original sys-
tem is mapped recursively onto itself after tracing out
a fraction 1 − 1/b of the dynamic variables, in some
form of “blocking” together b variables. Prior couplings
�κn between them combine non-trivially to produce new,
effective couplings �κn+1 between the remaining variables
after the n-th RG-step while leaving the Hamiltonian
form-invariant. This mapping constitutes the RG-flow

�κn+1 = R (�κn), (1)

where R indicates a (typically non-linear) set of recur-
sions. In the thermodynamic limit, n ∼ logb N → ∞,
phase transitions are characterized purely by a local anal-
ysis for �κn ∼ �κn+1 ∼ �κ∞ near FP of

�κ∞ = R (�κ∞) , (2)

independent of �κ0. Here, �κ0 represents the “bare” (as
of yet unrenormalized) couplings of the original system.
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These carry the dependence on the system’s control pa-
rameter μ ∈ [0, 1]. For example, in an Ising model it may
refer to the temperature via the “activity” κ0 = μ = e−βJ

in units of J = 1, or in a percolation model it may re-
fer to the bond percolation probability, κ0 = p = 1 − μ.
Since �κ0 expresses microscopic details of a potentially large
family of conceivable systems adhering to eq. (1), the in-
sensitivity of �κ∞ on �κ0 is an expression of universality:
only certain symmetry properties of the original systems
remain preserved by R. Therefore, the linearized expan-
sion, �κn ∼ �κ∞ + �εn with small �εn for large n, near the
FP provides a full accounting of the macroscopically ob-
servable properties of any such system via the eigenvalue
problem obtained from

�εn+1 =
∂R
∂�κ

(�κ∞) �εn. (3)

The eigenvalues λ of the Jacobian ∂R
∂�κ (�κ∞) and their

eigenvectors �uλ provide the scaling exponents and scaling
fields observed in the phase transition [8].

A much richer phenomenology arises when the RG-flow
R itself becomes dependent on the control-parameter. In
that case, eq. (1) generalizes to �κn+1 = R (�κn; μ) with

�κ∞ = R (�κ∞; μ) =⇒ �κ∞ = �κ∞ (μ) , (4)

i.e., the FP �κ∞ becomes a non-trivial function of κ0 = μ.
The consequences of such behavior (for a single coupling)
are depicted in fig. 2. First, consider the case of con-
stant FP shown in fig. 2(a). Drawing constant FP as a
function of the control-parameter may seem redundant,
however, it allows to illustrate the connection to the bare
couplings κ0 = μ (green dashed line). Below (above) the
point where κ0 intersects the unstable FP, the RG-flow
evolves toward the stable FP at κ∞ = 0 (κ∞ = 1). Al-
lowing for a non-linear choice of κ0 (μ) (like, κ0 = μy for
y > 0) reflects the universality in the family of systems
obeying the same FP: no matter at which value of μc a
system’s bare coupling κ0 (μ) intersects the unstable FP,
κc = κ0 (μc) is always the same, which guarantees identi-
cal (universal) critical behavior. This scenario also applies
if the RG has parameters independent of μ [42,43]. Like
the density of long-range bonds p in our introductory ex-
ample, such a parameter merely shifts the horizontal line
κ∞(p) in fig. 2(a) up or down.

We claim that the remaining three panels in fig. 2 cap-
ture all generic features that can arise for μ-dependent
FP. Variable FP κ∞ (μ) can collide, either linearly or
in a square-root branch point (BP); any other behav-
ior (such as a higher-order BP) is exceptional. We
can devise a simple theory1 that reproduces these
generic features. It thereby demonstrates the general-
ity of this classification, not only accounting for hier-
archical networks but for any physical system described
by an RG-flow that explicitly depends on its control

1Our approach is similar in spirit to Landau’s model of a phase
transition found in many textbooks [8,31,32].
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Fig. 2: (Colour on-line) Generic plots of the fixed points (FP)
κ0,±

∞ as a function of μ (a) for conventional FP; (b), (c) for
FP with a physical branch point (BP); and (d) for FP with
BP outside the physical domain (0 ≤ μ, κ ≤ 1). In (a), the μ-
independence of FP ensures universal critical behavior wher-
ever the bare couplings κ0 (μ) (green dashed line) intersects
the unstable FP (red line); a blue dot and dashed line mark
the critical point μc, and blue arrows indicate the RG-flow from
κ0 (μ) toward the nearest stable FP (black lines). In (b), κ0 (μ)
still intersects at an unstable FP below BP, such that the RG-
flow does not pass BP, leading to quasi-conventional behavior
but with μc-dependent critical exponents. In (c), κ0 (μ) is lo-
cated above BP so that the RG-flow must pass near BP at μc,
leading to BKT-like behavior. In (d), BP drops below the phys-
ical domain and only stable FP are accessible, resulting in an
exponential divergence at the (marginally stable) intersection
μc of two FP branches.

parameter [17,22,23,25,35,37–39,45]. For example, the
networks in fig. 1 retain memory through ever longer non-
renormalizing small-world bonds entering the flow at each
level.

It is sufficient to consider the RG recursion for a single
coupling κn with some control parameter μ. We argue
that FP in a real, μ-dependent RG-flow R in eq. (4) will
exhibit BP at some point (μB, κB). Near μB we express
generically R (κ; μ) ∼ a (μ)κ + b (μ)κ2 + c (μ)κ3 because
the need for a strong-coupling solution κ0∞ = 0 prevents a
constant term and requires at least a cubic form to achieve
BP. With generically analytic coefficients at μB, we expect
to leading order(s) a (μ) ∼ a0 + a1 (μ − μB), b (μ) ∼ b0,
c (μ) ∼ c0 for μ → μB. Locating BP at (μB, κB) fixes
a0 = 1 + c0κ

2
B and b0 = −2c0κB. To orient BP correctly

requires a1/c0 < 0, and we set a1 = −c0A
2 with A > 0.

Finally, stability of the strong-coupling FP at κ0
∞ demands

c0 < 0, and we may set c0 = −1. This yields

κn+1−κn ∼ Δκ

Δn
∼ [−κ2

B + A2 (μ − μB)
]
κn+2κBκ2

n−κ3
n

(5)
as a minimal model. After extracting κ0

∞ ≡ 0, the re-
maining FP equation indeed produces by design a BP at
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Fig. 3: (Colour on-line) Plot of the eigenvalues (a) in eqs. (7)
for the RG-flow in eq. (5), here A = 1, κB = 1

2 , and (b) for the
RG-flow in ref. [23] for HN5 (at y = 0.1). At BP (μ = μB), two
conjugate eigenvalues emerge simultaneously with marginal
stability, λ± (μB) = 1, such that λ− remains unstable (> 1,
marked in red) until the lower FP branch, κ−

∞, drops below
κ0

∞, leading to an intersection of λ0 and λ− at some μ > μB .
For physical κB > 0, the critical point occurs at BP, μc = μB ,
while for unphysical κB < 0, setting κB → −κB merely swaps
λ± → λ∓ (see eq. (7)), and now λ0 (μc) = λ+ (μc) = 1 intersect
at μc > μB with marginal stability.

(μB, κB) with FP branches

κ±
∞ = κB ± A

√
μ − μB (6)

for μ > μB. Local expansion near each FP as in eq. (3)
provides the eigenvalues λ (μ) = ∂κR (κ∞; μ) depicted in
fig. 3(a),

λ0 = 1 − κ2
B + A2 (μ − μB) ,

λ± = 1 ∓ 2AκB

√
μ − μB − 2A2 (μ − μB) . (7)

Discussion of the RG-regimes. – In fig. 2, panels (b)
and (c) correspond to cases where BP at (μB, κB) is in
the physical domain (0 ≤ μ, κ ≤ 1); panel (d) represents
κB ≤ 0. Within the domain of physical κB > 0, the lower
FP branch κ−∞ (μ) is unstable near μB (λ− > 1, see fig. 3)
while κ+

∞ (μ) remains stable. Stable and unstable branches
merge at BP, where particularly interesting phenomena
arise. The decisive difference between panels (b) and (c)
is the location of BP relative to the initial κ0 (μ).

For the case of panel (b) (e.g., when long-range, hierar-
chical couplings are weakest [23]), μB is small and/or κB

is closer to unity (or even above). Then, κ0 (μ) merely in-
tersects the unstable branch κ−∞ (μ) at some critical point
μc > μB defined by κ−

∞ (μc) = κ0 (μc). The RG-flow (ver-
tical blue arrows in fig. 2) for 0 ≤ μ < μc advances toward
strong coupling, κ0∞, while for μc < μ ≤ 1 it flows toward
κ+

∞ (μ) (see footnote 2). Near μc, the critical dynamics of

2Note that far away from μB , κ+∞ (μ) → 1 only for some μ > μc,
reflecting the physical phenomenon of “patchiness” [15,18]: hierar-
chical, long-range couplings enforce some semblance of order between
otherwise uncorrelated (sub-extensive) patches of locally connected
degrees of freedom even in the disordered regime; full disorder is of-
ten only reached at infinite temperature, dilution, etc. (i.e., μ → 1).

the system is now determined by the local properties of the
unstable FP κ−

∞ (μc) that has been selected by the specific
system via its bare coupling κ0 (μ). As for a conventional
system in eq. (3), local analysis [8] of eq. (5) near κ−∞ (μc)
yields the diverging correlation length,

ξ ∼ |μ − μc|−ν(μc)
, μ → μc, (8)

but with a non-universal thermal exponent yt = log2 λ−

(μc) = 1/ν (μc). For μc ↘ μB , λ− becomes marginal and
the exponent diverges as ν (μc) ∼ 1/

√
μc − μB . Yet, for

μc > μB , the RG-flow never passes sufficiently near BP.
For the case of panel (c) where κ0 (μ) passes above BP

(e.g., for somewhat stronger long-range couplings [23]),
the RG-flow must pass BP which now dominates critical-
ity, i.e., μc = μB, with an infinite-order divergence charac-
terizing this regime. Well below (above) μB, the RG-flow
evolves unperturbed to κ0∞ (to κ+∞), the closest stable FP.
However, just below μB the RG-flow gets ever more im-
peded near BP before it can reach κ0

∞. Asymptotically
for μ ↗ μB near κn ∼ κB + εn with small εn at large but
intermediate n, eq. (5) provides

εn+1 − εn =
Δεn

Δn
∼ −κBA2 (μB − μ) − κBε2n. (9)

This relation exhibits a boundary layer, i.e., in the limit
μ ↗ μB the solution drastically changes behavior. With
the methods of ref. [46], we rescale εn → γεn and n → δn
to obtain a balance for δ ∼ 1/γ ∼ 1/

√
μB − μ. Accord-

ingly, the characteristic width of the boundary layer scales
with n∗ ∼ 1/

√
μB − μ, which leads to the divergence in

the correlation length characteristic of BKT,

ξ (μ) ∼ 2n∗ ∼ e
const√
µB −µ , μ ↗ μB = μc. (10)

Clearly, the physical origin of this singularity is not re-
lated to an actual BKT transition, with its formation of
delicate topological structures, that requires a rare con-
fluence of dimensionality and internal degrees of freedom
for lattice models [32]. In fact, instead of being rare, it
appears as one of three generic types of transition often
found in hierarchical networks [4].

The most unconventional behavior is depicted in
panel (d) of fig. 2, when κB < 0 and BP has dropped
below the physical regime, corresponding to the situation
when long-range couplings dominate [23]). No unstable
FP can be reached for any physical choice of κ0 (μ). The
RG-flow always advances to the closest stable FP, either
at strong coupling, κ0

∞ for 0 ≤ μ < μc, or at patchy order,
κ+∞ (μ) for μc < μ ≤ 1. Both lines of FP cross at μc(> μB),
defined by the intersection κ+

∞ (μc) = κ0
∞ ≡ 0. This condi-

tion implies that both their eigenvalues are simultaneously
equal and marginal, λ0 (μc) = λ+ (μc) = 1, as κ0

∞ must
invert its stability at the intersection, making marginal
stability inherent to any such system. In our model,
κ+

∞ (μc) = 0 in eq. (6) provides −κB = A
√

μc − μB,
hence, eqs. (7) give λ0,+ ∼ 1 ± A2 (μ − μc) for μ → μc,
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see fig. 3(a). Near κ0,+∞ (μc) = 0, the local analysis on
eq. (5) according to eq. (3) gives εn+1 ∼ λ0,+εn or εn ∼
ε0 exp

(−nA2 |μ − μc|
)

with a crossover at n∗ ∼ 1/ |μ − μc|
that is generic when λ0 and λ+ intersect linearly. Thus,
the divergence is

ξ (μ) ∼ 2n∗
= e

const
|µ−µc| , μ → μc (11)

for the correlation length. Again, the RG-flow does not
pass BP, since it is located below the physical domain.

Behavior of the order parameter. – We can ex-
tend the discussion to include the effect of further con-
trol parameters, such as an external field η0 = η =
e−βh. We find that its generic RG-flow can be expressed
asymptotically as

ηn+1 ∼ ηλh
n , λh ∼ 2 − Cκ+

∞ (μc) (12)

with some μc-dependent constant C > 0, near the critical
point μc and for sufficiently small κ+

∞ (μc). This satisfies
the physical requirements on its FP, η∞ = 0, 1; only for
h = 0 the RG-flow remains at the unstable FP, i.e., ηn ≡ 1
f. a. n, and for any h > 0 the stable strong-coupling FP
at η∞ = 0 is reached eventually. The eigenvalue near the
unstable FP satisfies λh ≤ 2 such that the magnetic ex-
ponent becomes yh = log2 λh ≤ 1, as shown in ref. [27].
There, a scaling theory is developed concerning the BKT
regime based on the exponentially divergent correlation
length in eq. (10), leading to an order-parameter (magne-
tization, fraction of sites on percolating cluster, etc.),

m ∼ ξ−1 ∼ exp
{

−const (1 − yh)
(μc − μ)−xt

}
, μ ↗ μc, (13)

when yt → 0. Of course, for yt > 0 it is [8]

m ∼ (μc − μ)β
, β =

1 − yh

yt
(14)

for small-world systems where N takes the role of Ld [27].
Our theory in eq. (5) not only explains the robustness

of the value of xt = 1
2 conjectured in ref. [27], but also

broadens the scope to a total of three generic regimes
in the divergence of ξ, as we have explained. With the
addition of eq. (12), we can account for the behavior of
the order-parameter m. For the first two regimes where
κB > 0, it is λh < 2 in eq. (12) so that 1 − yh > 0. In the
regime with the weakest distortion of the FP, see fig. 2(b),
we have shown in eq. (8) that yt = 1/ν (μc) > 0, i.e., it is
0 < β (μc) < ∞, similarly to an ordinary 2nd-order tran-
sition, except for its non-universal μc-dependence. In the
BKT-regime, see fig. 2(c), it is μc = μB and λ+ (μc) = 1
in eq. (7) such that yt = 0 and β → ∞, which leads to
eq. (13) described in ref. [27]. Finally, when κB < 0,
see fig. 2(d), it is μc > μB and κ+

∞ (μc) = 0. Then,
λ+ (μc) → 1 such that yt = O (μc − μ) leads to the diver-
gent correlation length in eq. (11); however, it is λh → 2 in
eq. (12) such that yt = 1− o (μc − μ). In the most generic

0 5 10 15
(μc-μ)

-1/2
0

5

10

-ln
(m
)

k=500

Fig. 4: (Colour on-line) Plot of the magnetization in the
Ising model on the hierarchical network HN5 from ref. [23]
with balance y = K/L between nearest-neighbor and long-
range couplings, K and L, (a) for y = 0.1, (b) for y = 0.4,
and (c) for y = 1, which in sequence correspond to regimes
(b) to (d) in figs. 2. The transition is (a) 2nd-order continu-
ous with β = 0.205 . . . , (b) BKT-like, and (c) again continu-
ous with β =

(
3 +

√
5
)
/4 = 1.30 . . . . Strong finite-size effects

(N ∼ 2k < ∞) remain throughout.

(analytic) case, we would expect that both, yt and yh,
have linear corrections so that β in eq. (14) remains pos-
itive for μ → μc and the transition is continuous. This is
indeed the observed phenomenology, for instance, for the
one-parameter family of Ising models [47], first studied in
ref. [23], that interpolates between κB > 0 and κB < 0.
Surprisingly, percolation models on these hierarchical net-
works appear to provide quite common exceptions to this
behavior [18,20,28,40], with β = 0, resulting in a re-
markable discontinuous (“explosive”) percolation transi-
tion [48]. In ref. [28], it was argued that such non-generic
behavior, in form of merely a 2nd-order correction in yh

throughout these models, originates with the interplay of
tree-like (hyperbolic) features superimposed on a geomet-
ric (1d-lattice) structure common to those networks.

As a demonstration for our theory, in ref. [47] we revisit
the Ising model on the Hanoi network HN5 previously con-
sidered for h = 0 in ref. [23]. There, a one-parameter fam-
ily of Ising models was conceived via the ratio between
short-range and small-world coupling strengths that in-
terpolates between all three regimes; fig. 11 in ref. [23]
corresponds to fig. 2(b)–(d) here. That system is far more
complex than our model here in that there are two cou-
plings and three fields (when h > 0, for site-, bond-, and
three-point magnetizations) to be renormalized. Yet, the
same three regimes in the divergence of the correlation
length ξ and the magnetization m ensue, as our theory
predicts. Here, we only plot the magnetization of the Ising
model on a hierarchical network, which follows 2nd-order
behavior, eq. (14), in the first regime in fig. 4(a), it has
an infinite-order transition, eq. (13), in the BKT regime
in fig. 4(b), and it becomes again continuous in the regime
of intersecting stable FP in fig. 4(c).

Conclusions. – We have introduced a simple RG-
model to categorize the regimes of synthetic critical
behaviors in hierarchical networks. The robustness of
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these regimes derives from the fact that branch points
in control-parameter–dependent RG-flows are most gener-
ically a square-root singularity. Our theory specifically
addresses the question [27] about the universality of the
BKT result in eq. (10). The full exponential singularity
in eq. (11) is even more robust, as it does not depend on
the nature of the branch point singularity but merely on
the fact that two intersecting lines of fixed points must
switch stability. This implies marginally stable eigenval-
ues at the point of intersection. Those eigenvalues invari-
ably scale linearly with the control parameter there. For
the future, it would be interesting to explore our model
prediction directly for hierarchical networks drawn from
some ensemble, instead of using exactly renormalizable
instance.

∗ ∗ ∗

This work was supported by DMR-grant No. 0812204
from the NSF. SB would like to thank T. Nogawa,

T. Hasegawa, N. Berker and P. Phillips for helpful
discussions.

REFERENCES

[1] Barabasi A.-L., Linked: How Everything Is Connected
to Everything Else and What It Means for Business,
Science, and Everyday Life (Plume Books) 2003.
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