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Abstract – Liouville transformations map in a rigorous manner one Schrödinger equation into
another, with a changed scattering potential. They are used here to transform quantum reflection
of an atom on an attractive Casimir-Polder well into reflection of the atom on a repulsive wall.
While the scattering properties are preserved, the corresponding semiclassical descriptions are
completely different. A quantitative evaluation of quantum reflection probabilities is deduced
from this method.
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Quantum reflection of atoms from the van der Waals
attraction to a surface has been studied theoretically since
the early days of quantum mechanics [1,2]. Though the
classical motion would be increasingly accelerated towards
the surface, the quantum matter waves are reflected back
with a probability that approaches unity at low energies,
because the potential varies more and more rapidly close
to the surface. Experiments have seen quantum reflection
for He and H atoms on liquid-helium films [3–5] and for ul-
tracold atoms or molecules on solid surfaces [6–12]. Mean-
while various fundamental aspects and applications have
been analyzed in a number of theoretical papers [13–23].

Paradoxical phenomena appear in the study of quan-
tum reflection from the Casimir-Polder (CP) interaction
with a surface. The potential is attractive, with charac-
teristic inverse power laws at both ends of the physical
domain z ∈ ]0,∞[ delimited by the material surface lo-
cated at z = 0 : V (z) � −C3/z3 at the cliff-side, close
to the surface and V (z) � −C4/z4 at the far-end, away
from it. Strikingly, the probability of reflection increases
when the energy E of the incident atom is decreased, and
increases as well when the absolute magnitude of the po-
tential is decreased. For example, the probability of quan-
tum reflection is larger for atoms falling onto silica bulk
than onto metallic or silicon bulks [24] and is even larger
for nanoporous silica [25].

In the present letter, we use Liouville transformations
to study quantum reflection (QR). In quantum mechanics,

(a)E-mail: gabriel.dufour@upmc.fr

a Liouville transformation maps in a rigorous manner
one Schrödinger equation into another, with a changed
scattering potential. In a semiclassical picture, however,
the problem can be transformed from QR of an atom
on an attractive well into a problem of reflection on
a repulsive wall. Remarkably, scattering properties are
invariant under the Liouville transformation and the
paradoxical features of the initial QR problem become
intuitive predictions of the problem of reflection on
the repulsive wall. We will also obtain a quantitative
evaluation of QR probabilities in this way.

We consider a cold atom of mass m falling with an en-
ergy E > 0 onto the CP potential V (z) created by a silica
bulk (fig. 1). The position of the surface is z = 0 and that
of the atom z ∈ ]0,∞[. For plane material surfaces, the
motion along the z-direction is decoupled from the trans-
verse motions and described by a 1D Schrödinger equation:

Ψ′′(z) + F (z)Ψ(z) = 0, F (z) ≡ 2m (E − V (z))
�2

. (1)

Throughout the letter, primes denote differentiation with
respect to the argument of the function.

In the semiclassical Wentzel-Kramers-Brillouin (WKB)
approximation, the function F (z) is seen as the square of
the de Broglie wave vector kdB associated with the classi-
cal momentum p ≡ �kdB. As the CP potential is attractive
and the incident energy positive, F is positive, so that a
classical particle undergoes an increasing acceleration to-
wards the surface. For a quantum particle, in contrast, QR
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Fig. 1: Schematic representation of a cold hydrogen atom
feeling the Casimir-Polder attractive potential V (z) as it falls
onto a silica bulk. The line with an arrow represents the initial
classical momentum of the atom with an energy E.

occurs when the variation of kdB becomes significant on a
length scale of the order of the de Broglie wavelength:

λdB ≡ 2π

kdB
=

2π√
F

. (2)

The Schrödinger equation (1) can be solved in full
generality by writing its solution as a linear combination
of counterpropagating WKB waves with z-dependent
coefficients and matching it to the appropriate boundary
conditions at both ends of the physical domain [13].
Matter waves can be reflected back from the cliff-side
so that the complete problem depends on the details of
the physics of the surface. In this letter, we focus our
attention on the one-way problem where the CP potential
is crossed only once and, therefore, do not discuss this
surface physics problem any longer. The numerical solu-
tion of (1) leads to reflection and transmission amplitudes
depending on the incident energy E or, equivalently, on
the parameter κ ≡

√
2mE/� which is also the asymptotic

value of de Broglie wave vector in the far-end.
In spite of its effectiveness, the numerical solution of the

QR problem leaves open questions. In particular, the di-
vergence of the potential at the cliff-side makes it difficult
to match wave functions at this boundary. The match-
ing requires a careful use of the mathematical solutions
of eq. (1) known for the V3 potential [24], at the price of
losing any physical understanding of the scattering prob-
lem. More generally, an intuitive understanding of the
dependence of QR probability on the parameters of the
problems is missing. The Liouville transformations con-
sidered in the following will give clear answers to these
questions.

The Schrödinger equation (1) is an example of a
Sturm-Liouville equation in Liouville normal form [26].
It can be submitted to transformations introduced by
Liouville [27] and often named after him (see the historical
notes at the end of Chapt. 6 in [28]). We stress at this

point that we use these transformations to relate exactly
equivalent scattering problems, with no approximation.
A similar approach has already been used to study
solvable Schrödinger equations [29], but we use it here for
a problem with no analytical solution.

Liouville transformations consist in changes of coordi-
nate z → z̃, with z̃(z) a smooth monotonously increasing
function, and associated rescalings of the wave function:

Ψ̃(z̃) =
√

z̃′(z)Ψ(z). (3)

Equation (1) for Ψ is transformed under (3) into an equiv-
alent equation for Ψ̃ with [28]

F̃ (z̃) =
F (z) − 1

2{z̃, z}
z̃′(z)2

= z′(z̃)2F (z) +
1
2
{z, z̃}. (4)

The curly braces denote the Schwarzian derivative of the
coordinate transformation:

{z̃, z} =
z̃′′′(z)
z̃′(z)

− 3
2

z̃′′(z)2

z̃′(z)2
. (5)

These transformations form a group, with the composi-
tion of z → z̃ and z̃ → ẑ being a transformation z → ẑ.
The compatibility of relations obeyed by (Ψ, F ), (Ψ̃, F̃ )
and (Ψ̂, F̂ ) is ensured by Cayley’s identity:

{ẑ, z} = (z̃′(z))2 {ẑ, z̃} + {z̃, z} . (6)

The inverse transformation, used for the second equality
in (4), is obtained by applying (6) to the case ẑ = z.

The group of transformations preserves the Wronskian
of two solutions Ψ1,Ψ2 of the Schrödinger equation, which
is a constant independent of z and skew symmetric in the
exchange of the two solutions:

W (Ψ1,Ψ2) = Ψ1(z)Ψ′
2(z) − Ψ′

1(z)Ψ2(z). (7)

In particular, when Ψ solves (1), its complex conjugate
Ψ∗ solves it as well. As the probability density current
is proportional to the Wronskian W(Ψ∗,Ψ), it is invari-
ant under the transformation. The reflection and trans-
mission amplitudes r and t are also preserved, as they
can be written in terms of Wronskians of solutions which
match incoming and outgoing WKB waves [30]. They can
be calculated equivalently after any Liouville transforma-
tion, with r̃ = r and t̃ = t. These transformations, which
do not necessarily simplify the resolution of (1), have to
be considered as gauge transformations relating equivalent
scattering problems to one another.

These quantum-mechanically equivalent scattering
problems may correspond to extremely different classical
descriptions. We now write a specific Liouville gauge which
maps the initial problem of QR on an attractive well into
a less counterintuitive problem of reflection on a repulsive
wall. This choice brings clear answers to the questions dis-
cussed above, and it will allow us to uncover scaling rela-
tions between the QR probabilities and the parameters of
the problem.
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This specific Liouville gauge is written in terms of the
WKB phase φ ≡

∫ z
kdB(y)dy associated with the classical

action integral S ≡ �φ. We fix the freedom associated
with the arbitrariness of the phase reference by enforcing
φ(z) → κz at z → ∞. We then choose the coordinate z
for which we get quantities identified by boldfacing:

z ≡ φ√
κ�

, F(z) ≡ E − V(z), (8)

E = κ�, V(z) = − κ�

4π2

√
λ3

dB(z)
(√

λdB(z)
)′′

.

We have defined the length scale � ≡
√

2mC4/� associated
with the far-end tail of the CP potential. It has been intro-
duced in (8) for reasons which will become clear soon, and
it leads to a dimensionless energy E and a dimensionless
potential V.

For the CP potential, the quantity V vanishes at both
ends of the physical domain z ∈ ]0,∞[, that is also at
both ends of the transformed domain z ∈ ] − ∞,∞[, so
that the situation now corresponds to a well-defined scat-
tering problem with no interaction in the asymptotic in-
put and output states. In striking contrast to the original
QR problem, the transformed problem can have classical
turning points where F = 0 or V = E.

In this case it is tempting to evaluate the transmission
probability through the barrier using the semiclas-
sical tunneling formula [31,32]: T � e−2Φ, where
Φ =

∫ z2

z1

√
V(z) − Edz is the imaginary action integral

which runs under the barrier, between the two turning
points z1 and z2. However, comparison with exact results
shows it to be a poor approximation. This fact could be
expected since Φ is not invariant under Liouville trans-
formations whereas T is. It is particularly apparent in
the present study since a Liouville transformation relates
a QR problem without turning points to a tunneling
problem where Φ can be large, yet both have the same
scattering amplitudes.

This important point is illustrated by the drawings in
fig. 2, which show the constants E and the functions V(z)
for different scattering problems. In all cases, the original
potential V is calculated for the CP interaction between
a hydrogen atom and a silica bulk [24], whereas the inci-
dent energies E are respectively equal to 0.001, 0.1 and
10 neV. With E always positive and V(z) often positive,
a logarithmic scale is used along the vertical axis, which
makes some details more apparent.

The most striking feature of these plots is the ap-
pearance of classical turning points for the not too high
energies considered here, so that QR on an attractive
well is now intuitively understood as reflection on a wall.
Other clearly visible properties are that E scales like√

E, whereas V(z) has nearly identical peak shapes for
different energies. The fact that the QR probability goes
to unity when E → 0 is now an immediate consequence
of the increasing reflection expected for a particle with a
decreasing energy E coming onto a wall with a peak V.
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Fig. 2: (Color online) The plots represent the constants E (hor-
izontal lines) and the functions V(z) (curves) calculated for
different scattering problems, corresponding to the same CP
potential V (z) between an hydrogen atom and a silica bulk and
energies E equal to 0.001, 0.1 and 10 neV (respectively blue,
green and red lines from the lowest to the highest value of E,
or from the lowest to the highest value of V in the left-hand
part of the plot). The dashed (black) curve is the universal
function V(z) calculated for a pure C4 model.

In fact, the potentials V calculated for different energies
tend to build up a universal function at large enough val-
ues of z, and this universal function has a symmetrical
shape. These two facts can be explained by looking at the
particular model V (z) = −C4/z4, which is representative
of the CP interaction in the far-end. For this simple model,
V(z) is given by parametric relations (with eu ≡ z/z0 and
z0 =

√
�/κ):

V =
5

8 cosh3(2u)
, (9)

z = z0 +
∫ u

0

√
2 cosh(2v)dv, z0 =

1√
π

Γ
(

3
4

)2

.

This function, drawn as a dashed curve in fig. 2, reaches
its peak value 5

8 at z = z0, which lies further and further
away from the surface when the energy decreases. This
also explains why the functions plotted in fig. 2 for the full
CP potential tend to align on this universal form when the
energy decreases. The deviations appearing in the figure
correspond to values of z near the cliff-side, for which the
C4 model is indeed a poor representation as the potential
behaves as −C3/z3. In the parametric definition (9), V is
even and z− z0 odd in the parity u → −u. It follows that
the universal function V(z) is symmetrical with respect
to z0.

We come now to the discussion of the dependence of
QR on the absolute magnitude of the CP potential. To do
so we consider a hydrogen atom falling onto nanoporous
silica, which have a weaker CP interaction when the poros-
ity of silica increases [25]. Figure 3 shows the constants
E and the functions V(z) for an energy E = 0.01 neV,
and the potentials calculated for porosities η equal to 0%,
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Fig. 3: (Color online) The plots represent the constants E
(horizontal lines) and the functions V(z) (curves) calculated
for different scattering problems, corresponding to the energy
E = 0.01 neV and the CP potentials V (z) between an hydro-
gen atom and nanoporous silica with porosities η equal to 0%,
50% and 90% (respectively blue, green and red lines from the
highest to the lowest value of E, or from the lowest to the high-
est value of V in the left-hand part of the plot). The dashed
(black) curve is the same as in fig. 2.

50% and 90%. These potentials correspond to different
far-end tails, with values of C4, and therefore �, smaller
and smaller when the porosity is increased. As in fig. 2,
the transformed potentials V have nearly identical peak
shapes, which tend to align on the universal curve calcu-
lated for a pure C4 potential and shown as the dashed
curve. In contrast, the transformed energies E = κ� de-
crease proportionally to �, which immediately explains
why the QR probability increases [25].

We finally discuss the values obtained for QR probabil-
ities by comparing the exact results for the full CP poten-
tial with those obtained for the C4 model. To this aim, we
first recall the low-energy behavior of the QR probability:

R(κ) ≡ |r(κ)|2 � 1 − 4κb, κ → 0, (10)

where b is the opposite of the imaginary part of the scat-
tering length [24]. For a pure C4 model, b is known to
be equal to � [21], but this is not the case for the full CP
potential. Table 1 gives � and b for nanoporous silica with
different porosities η (η = 0% for silica bulk).

We have reported in fig. 4 the calculated QR probabil-
ities R as a function of the dimensionless parameter κb
for the scattering problems discussed above. The solid
blue curve represents the values calculated for silica bulks
in [24], while the circles correspond to the scattering
problems of fig. 3 with the same color code. The dashed
black curve corresponds to the universal function R(κb)
obtained for the pure C4 model, with b ≡ � in this
case [33]. The exact results in fig. 4 are hardly distin-
guishable from this universal function, except at large
values of κb where QR probabilities are small anyway.

Table 1: Values of � and b calculated for different porosities,
measured in atomic units a0 � 53 pm.

η (%) 0 30 50 70 90
�(a0) 321.3 282.1 244.7 192.8 111.8
b (a0) 272.7 227.8 187.5 134.0 57.0

10−3 10−2 10−1 100 101

κb
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0.4
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Fig. 4: (Color online) Quantum reflection probability R shown
as a function of the dimensionless parameter κb. The full blue
curve represents the values calculated for silica bulks in [24],
while the crosses correspond to the scattering problems of fig. 3
with the same color codes. The dashed (black) curve is the
universal function R for a pure C4 model.

In this letter, the problem of QR of an atom on a CP po-
tential well has been mapped onto an equivalent problem
of reflection on a wall through a Liouville transformation
of the Schrödinger equation. This exact transformation
relates equivalent quantum scattering problems which cor-
respond to different semiclassical pictures. It produces a
new and clear interpretation of the main features of QR
which were counterintuitive in the initial problem. It also
allows quantitative evaluation of QR probabilities from the
universal function corresponding to the pure C4 model.
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