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Abstract – By means of a Floquet analysis, we study the quantum dynamics of a fully connected
Lipkin-Ising ferromagnet in a periodically driven transverse field showing that thermalization
in the steady state is intimately connected to properties of the N → ∞ classical Hamiltonian
dynamics. When the dynamics is ergodic, the Floquet spectrum obeys a Wigner-Dyson statistics
and the system satisfies the eigenstate thermalization hypothesis (ETH): Independently of the
initial state, local observables relax to the T = ∞ thermal value, and Floquet states are delocalized
in the Hilbert space. On the contrary, if the classical dynamics is regular no thermalization occurs.
We further discuss the relationship between ergodicity and dynamical phase transitions, and the
relevance of our results to other fully connected periodically driven models (like the Bose-Hubbard
one), and possibilities of experimental realization in the case of two coupled BEC.

Copyright c© EPLA, 2015

Introduction. – Recent experimental advances
in ultra-cold atomic systems [1–4] and femtosecond
resolved spectroscopies [5] have made the study of
out-of-equilibrium closed many-body quantum systems
no longer a purely academic question. The key problem
in this context are the properties of the final/steady
state after the system has undergone a time-dependent
perturbation [6,7]. Depending on the nature of the
perturbation, particular aspects acquire a prominent role.
For a gentle (quasi-adiabatic) driving, the distance of the
evolved final state from the instantaneous ground state
carries precious information on the crossing of quantum
critical points [8] and on the accuracy of quantum
adiabatic computation [9] and quantum annealing proto-
cols [10–12]. In the opposite case of a sudden quench, the
focus is on the (possible) thermal properties of the steady
state. Thermalization is expected in “classically ergodic”
systems, where the Hamiltonian behaves as a random ma-
trix [13], its eigenstates obey the eigenstate thermalization
hypothesis (ETH) [6,14–16], and relaxation to the micro-
canonical ensemble, with vanishing fluctuations in the

thermodynamic limit, follows. Randomness of the eigen-
states implies a strong connection between thermalization
and delocalization in the Hilbert space [6,17–21].

Our goal is understanding the properties of the long-
time dynamics of a many-body quantum system under-
going a periodic driving. The interest in periodically
driven systems —a long-standing topic in quantum chaos
of small quantum systems [22]— has risen again vigor-
ously only quite recently, with a focus on many-body
dynamics [23–31] and its properties of stability and er-
godicity [32]. In a recent work [23] it was proposed that
a periodically driven closed quantum system might dis-
play, in the thermodynamic limit, a tendency towards a
fully coherent “periodic steady state” —a kind of diagonal
ensemble [6,16] for periodically driven systems— where
destructive interference effects average to zero for long
times the transient fluctuations induced by off-diagonal
Floquet matrix elements. This effect has been explic-
itly demonstrated on a periodically driven quantum Ising
chain, as a direct consequence of the smooth continuous
nature of the Floquet quasi-energy spectrum. A quantum
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Ising chain, being integrable, does not show thermal-
ization: The energy per site results from a GGE aver-
age [25,33–35] and stays always well below the infinite
temperature (T = ∞) value [23]. On the contrary, one
might conjecture [23,35] that when a classically ergodic
system is periodically driven, the “steady state” would
show thermalization to the T = ∞ ensemble. This is in-
deed shown in recent works [27,36] on two non-integrable
periodically kicked spin chain models, consistently with
the Floquet states obeying ETH at T = ∞ [28]. The same
phenomena are observed in ref. [26] where the case of in-
teracting hard-core bosons is considered and the Floquet
states are shown to obey ETH being random superposi-
tions of unperturbed eigenstates. Analogous conclusions
for a Bose-Hubbard chain are reported in ref. [37]. These
results call for a more detailed scrutiny of the relation
between integrability and thermalization in periodically
driven quantum many-body systems.

In the present letter we address this relation by studying
a periodically driven fully connected quantum Ising ferro-
magnet: a very clear prototype model whose long-time
dynamics can be analyzed reliably up to the thermody-
namic limit. The very rich phenomenology we are going
to describe should occur also in a driven two-mode Bose-
Hubbard model, whose Hamiltonian is equivalent to a fully
connected spin system [31] and is experimentally feasible
by modulating the inter-well barrier height in a double-
well BEC realization [38]. Systems of this kind can be
mapped, for large N , onto large-S quantum spins with ef-
fective Planck’s constant h̄/N . Hence, for N = ∞ their
dynamics is that of a one-dimensional classical non-linear
Hamiltonian system H(Q,P, t) [39]. At variance with the
perfectly regular classical dynamics observed after a quan-
tum quench [39,40], we will show how rich is the periodic
driving case: we can see classically regular motion, chaos
and even full ergodicity by choosing appropriately the pa-
rameters of the driving. We will solve numerically the
Schrödinger equation at finite “large” N . In both classi-
cally ergodic and regular cases, the intensive observables
relax to a steady periodic regime: stroboscopic time fluc-
tuations vanish in the large-N limit. However, the classi-
cally ergodic cases are very different from the regular ones:
while the latter show a sensitivity to the initial state and
never thermalize, the former effectively thermalize towards
a T = ∞ ensemble. This is a consequence, as we will show,
of the Floquet states obeying ETH at T = ∞ and being
delocalized in the Hilbert space.

Model. – Here we focus on a fully connected quan-
tum Ising ferromagnet with a periodically driven trans-
verse field, the smooth-driving counterpart of the kicked
top of ref. [41]. Consider N spin-(1/2), Ŝi=1···N , and the
total spin operator Ŝ =

∑
i Ŝi. The fully connected p-spin

transverse field quantum Ising ferromagnet [42] is written
as Ĥp(t) = −(NJ/2) m̂p

z −NΓ(t) m̂x, where J is the lon-
gitudinal coupling, Γ(t) is a (time-dependent) transverse
field, and m̂x/z = 2Ŝx/z/N are rescaled magnetization

operators. Ĥp(t) commutes with Ŝ
2
, and the equilibrium

ground state is a state of maximum spin, S = Smax = N/2,
belonging to the (N + 1)-dimensional multiplet of spin

eigenstates |S = N/2,M〉. Since [Ĥp(t), Ŝ
2
] = 0, the

Schrödinger dynamics starting from an initial state |ψ0〉
with S = N/2 will always remain in that sector. If
m = 2M/N are the eigenvalues of m̂z, the multiplet of
interest has m = −1+2j/N with j = 0, · · · , N ; we denote
it as |S = N/2,M〉z → |m〉. The case p = 2 corresponds
to the Ising-anisotropic version [43] of the so-called Lipkin
model [44] (see also refs. [45,46]):

Ĥp=2(t) = −2J
N

N∑
i,j

Ŝzi Ŝ
z
j − 2Γ(t)

N∑
i

Ŝxi . (1)

When Γ is constant, Ĥp=2 has a quantum critical point
(QCP) at Γc/J = 1 separating a large-Γ quantum param-
agnet from a low-Γ ferromagnet; for p > 2 the transition is
of first order [47]. The non-equilibrium quantum dynam-
ics of these models has so far been discussed in the cases
of quantum annealing [10–12] across the QCP [42,47–49],
and of a sudden quench of Γ(t) [39,40], in the context of
dynamical phase transitions. Here we will consider its non-
equilibrium coherent dynamics under a periodic transverse
field, more specifically Γ(t) = Γ0 +A sin (ω0t). The prop-
erties of a fully connected spin chain undergoing a smooth
periodic driving have been discussed with the rotating
wave approximation in the context of non-equilibrium
phase transitions in ref. [30] and from the perspective of
many-body coherent destruction of tunneling in the limit
of high driving frequency in ref. [29]; here we take a dif-
ferent point of view and focus on the regularity/ergodicity
properties of the quantum many-body system.

To discuss its exact quantum dynamics, we have to ex-
pand the state |ψ(t)〉 on the (N+1)-dimensional basis |m〉
as |ψ(t)〉 =

∑
m ψm(t)|m〉, the Schrödinger equation reads

ih̄
∂

∂t
ψm = −N

2
Jmpψm − N

2
Γ(t)

∑
α=±1

hαmψm+α 2
N
, (2)

with h±
m =

√
1 −m2 + 2(1 ∓m)/N . The system becomes

increasingly classical for N → ∞: indeed the commutator
[m̂x, m̂y] = i(2/N)m̂z vanishes in that limit. A careful
semi-classical analysis [39,42] reveals that the expectation
values of the magnetization are effectively described, for
N = ∞, by a one-dimensional classical Hamiltonian of the
form

Hp(Q,P, t) = −J

2
Qp − Γ(t)

√
1 −Q2 cos (2P ), (3)

with the identification 〈ψ(t)|m̂z |ψ(t)〉 → Q(t), and
〈ψ(t)|m̂x|ψ(t)〉 → √

1 −Q2(t) cos(2P (t)). After a sud-
den quench of Γ, energy conservation gives an integrable
Hp(Q,P ); under a periodic Γ(t), on the contrary, classi-
cal chaos in the (Q,P ) phase space can emerge [50]. In
the rest of the paper we will focus on the case p = 2,

37005-p2



Thermalization in a periodically driven fully connected quantum Ising ferromagnet

whose theoretical and experimental importance relies also
in the fact that eq. (1) describes the exact dynamics [31]
and eq. (3) with p = 2 the mean-field dynamics [51] of
two coupled-trapped Bose-Einstein Condensates under a
time-periodic modulation.

Floquet analysis. – The natural framework to study
the time evolution of a periodically driven quantum sys-
tem is the Floquet theory [52,53]. It states that there ex-
ists a basis of solutions of the Schrödinger equation which
are periodic “up to a phase factor” e−iμαt|φα(t)〉, where
|φα(t)〉 = |φα(t+ τ)〉, τ = 2π/ω0 being the period. The
Floquet quasi-energies μα and modes |φα(t)〉 are obtained
by diagonalizing the evolution operator over one period
Û(τ)|φα(0)〉 = e−iματ |φα(0)〉, with μα ∈ [−ω0/2, ω0/2]. If
we consider the stroboscopic dynamics at times tn = nτ ,
since Û(nτ) = Ûn(τ), the Schrödinger evolution is com-
pletely determined by |φα(0)〉 and μα: the state can
be written as |ψ(nτ)〉 =

∑
α e−inματRα|φα(0)〉, where

Rα = 〈φα(0)|ψ0〉. We focus on the p = 2 case, consid-
ering intensive observables like the energy-per-site

eψ0(nτ) =
1
N

〈ψ(nτ)|Ĥp=2(0)|ψ(nτ)〉. (4)

Provided the Floquet spectrum is non-degenerate (which
we have verified numerically), we can easily evaluate the
finite-N stroboscopic infinite-time average of eψ0 and the
corresponding squared fluctuations δe2ψ0

= e2ψ0
− e2ψ0

:

eψ0 = lim
n→∞

1
n

n−1∑
k=0

eψ0(kτ) =
∑
α

|Rα|2 eαα, (5)

δe2ψ0
=

∑
α�=β

|Rα|2 |Rβ |2 |eαβ |2, (6)

where eαβ = 〈φα(0)|Ĥp=2(0)|φβ(0)〉/N . We can think of
eψ0 as a “Floquet diagonal ensemble average” [6,16,35].

Results. – The phenomenology of the driven model
is quite rich, depending on Γ0, A and ω0. It will be
helpful to use the equilibrium phase diagram as a guide
(although the dynamics has no strict relation to the dif-
ferent equilibrium phases). When Γ0 < Γc = J , a classical
hyperbolic point at (Q,P ) = (0, 0) [39] makes the system
prone to chaos even with a small A [50]: the stroboscopic
Poincaré sections in fig. 1(a) show an instance of ergodic
phase space with fully developed chaos. At the quantum
level [13], the corresponding distribution of Floquet quasi-
energy spacings P (S) —with Sα = ρ(μα)(μα+1 − μα),
where ρ(ω) = 〈∑α δ(ω − μα)〉Δ is the density of quasi-
energies smoothed over a “mesoscopic” scale Δ [13,54]—
is well described by an orthogonal Wigner-Dyson distri-
bution [13] PWD(S) = π

2S exp
(−π

4S
2
)
. When Γ0 > Γc,

inside the equilibrium paramagnetic phase, on the con-
trary, the classical motion tends to be more regular, and
a larger A is needed for a substantial chaotic component
in phase space: for Γ0 = 3J , an A/J = 0.5 still shows
very regular classical motion, fig. 1(b), and a Poisson level

Γ/J
0.25 1 3

Ergodic: A = 0.45 Regular: A = 0.5

-0.6

-0.4

-0.2

 0

 0.2

P
/π

(a)

-0.6

-0.4

-0.2

 0

 0.2

-1 -0.5  0  0.5  1
P

/π
Q

(b)

Fig. 1: (Colour on-line) Top: schematic equilibrium phase di-
agram with the two representative driving cases illustrated.
(a) and (b): Poincaré sections of the classical dynamics at
stroboscopic times tn = nτ in the (Q,P ) phase space. The pa-
rameters are Γ0/J = 0.25, A/J = 0.45 for (a), and Γ0/J = 3,
A/J = 0.5 for (b), with ω0/J = 2 and Γ(t) = Γ0 + A sin (ω0t).
Chaos is fully developed in (a); the motion is regular in (b).

statistics PP (S) = e−S [55]. In the last case, the Poisson
statistics gives rise, for very large N , to a Floquet spec-
trum with a non-extensive number of quasi-degeneracies;
nevertheless relaxation to the Floquet diagonal ensemble
and eqs. (5) are still valid, as shown in refs. [7,56] for the
analogous case of a quantum quench with degeneracies in
the energy spectrum. Results for the regular and ergodic
cases are very similar to those found in the kicked-top
problem [41]. Here we will focus on these two paradig-
matic cases; see ref. [35] for details about the intermediate
situations.

We now turn to the evolution of the observables. If
eψ0(nτ) relaxes to a periodic steady regime, its asymp-
totic stroboscopic value must equal eq. (5), and time fluc-
tuations, eq. (6), have to vanish. In fig. 2(a) we show
eψ0(nτ) in the ergodic case: it clearly relaxes to eψ0 . Two
important points are in order:

i) δeψ0 vanishes as ∼ N−1/2 (fig. 2(b)), showing indeed
relaxation in the thermodynamic limit;

ii) eψ0 is independent of the initial state |ψ0〉, up to dif-
ferences of order N−1/2, and equal to the T = ∞
thermal average eT=∞ = 1

N(N+1) TrSmax [Ĥ(0)] (the
trace is restricted to the Smax = N/2 subspace).

This is true for every |ψ0〉: as fig. 2(c) shows, the
Floquet diagonal terms eαα entering in eq. (5) are all
equal to eT=∞, up to fluctuations of order N−1/2, and
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 0
 1
 2

e α
α

μα

(c)

T=∞

Fig. 2: (Colour on-line) (a) Stroboscopic evolution of en-
ergy eψ0(nτ ) in the ergodic case Γ0/J = 0.25, A/J = 0.45,
ω0/J = 2, for two different initial states ψ0, the symmetry-
broken ground state (GS) and an eigenstate |m〉 of 2̂Sz/N ,
simulations are for N = 800. Here we can see that eψ0(nτ )
converges to eT=∞; in panel (b) that the fluctuations δeψ0 de-
cay as N−1/2. (c) eαα = Hαα/N (the diagonal Floquet matrix
elements) vs. the Floquet quasi-energy μα for N = 800: eαα is
almost constantly equal to the eT=∞ value, in agreement with
T = ∞-ETH.

one can see almost by inspection that property ii) follows
whatever the initial state is, thanks to the normalization∑

α |Rα|2 = 1. Indeed, when the dynamics is ergodic, all
the Floquet states are equivalent: they are superpositions
of energy eigenstates with random phases and each one is
equivalent to the T = ∞ thermal ensemble: they behave
as eigenstates of a random matrix [13–15,54,57,58] and
obey the eigenstate thermalization hypothesis at T = ∞.
Concerning fluctuations, we have verified numerically (see
refs. [35,59]) that the Floquet off-diagonal terms |eαβ| in
eq. (6) scale like N−1/2 and, consequently, so does δeψ0 ,
whatever the initial state is (property i)). There is also
an analytical argument leading to this scaling. It relies on
the fact that the Floquet states obey T = ∞-ETH and are
indeed uniform superpositions with random phases of the
eigenstates of the Hamiltonian

|φα〉 =
1√
N + 1

N+1∑
n=1

e−iθα
n |n〉, (7)

where θαn are independent random variables uniformly dis-
tributed in [0, 2π]. Using this formula, the fact that |n〉 are
eigenstates of Ĥ(0) and the central limit theorem, it is easy
to show that the distributions of the real and the imagi-
nary part of eαβ have a variance scaling like ∼ 1/N and
indeed δeψ0 ∼ N−1/2. We report the detailed derivation
in ref. [59]. Thermalization to T = ∞ by means of ETH
applies whenever the system is classically ergodic and is
valid for the energy as well as for all the other intensive
observables.

The physics in the classically regular case is very dif-
ferent: fig. 3(a) shows examples of eψ0(nτ): We see relax-
ation to the Floquet diagonal ensemble (δeψ0 is practically

 1e-07
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(b)

N-1/2

N-1

-1 -0.5  0  0.5  1
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-2
-1
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 3
 4

e α
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(c)T=∞

-0.2

-0.1

 0

 0  50  100  150  200

e(
nτ

)

n

ψ0=m=-0.5

ψ0=m=-0.25
(a)

Fig. 3: (Colour on-line) Similar to fig. 2, but for the classically
regular case Γ0/J = 3, A/J = 0.5, ω0/J = 2. Here the ini-
tial states are two different eigenstates |m〉 of 2̂Sz/N and the
ground state. (In panel (a) we omit the results for the GS which
show very small fluctuations around e = −3.) Notice that eψ0

depends on ψ0, while the (very small) fluctuations decay with
N with a scaling exponent dependent on |ψ0〉 (panel (b)), and
eαα fluctuates wildly with μα (panel (c)).

invisible and scales to 0), but the asymptotic value eψ0

strongly depends on |ψ0〉. The Floquet states behave here
very differently: the diagonal terms eαα strongly depend
on α (see fig. 3(c)) and there is no ETH. We show nu-
merically in ref. [59] that also in this case the off-diagonal
terms |eαβ | scale on average to zero like N−1/2. We also
find that these terms show larger fluctuations than in the
ergodic case; this is the reason why δeψ0 scales, in the reg-
ular case, in a less smooth way with a scaling exponent
depending on |ψ0〉 (see fig. 3(b), where for the eigenstates
|m〉 of 2Ŝz/N we have δem ∼ N−1/2 and for the ground
state δeGS ∼ N−1).

Consistently with this picture, the order parameter stro-
boscopic time average mzψ0 vanishes if ergodicity is at
play, even if Γ(t) is always within the equilibrium ferro-
magnetic phase. We see this in fig. 4, where we show
mzψ0(nτ) for two different |ψ0〉. Although different in
the details, this finding is in line with the “dynamical
transition” found upon quenching from the ferromagnetic
phase [39,40]. Indeed, by taking |ψ0〉 as the broken-
symmetry ferromagnetic |GS〉 at Γ0 and considering the
dependence of mzGS on the driving field amplitude A, we
observe a transition at a critical value Ac (see the inset)
independent of the number of particles N . As done in
ref. [39] for the case of quantum quench, we can give a
classical phase space interpretation of this fact. In the
classical N → ∞ limit the ground state is a point in the
phase space; if Γ0 is in the broken symmetry phase, this
point has coordinates P = 0 and Q = ±√

1 − Γ2
0. For

A < Ac this point falls in the regular region of the phase
space (bottom left panel of fig. 4) and its subsequent dy-
namics is trapped in a torus [50] which is not symmetric
around (mz)N→∞ = Q = 0. Instead, when A > Ac, the
ground-state phase space point falls in a chaotic region
symmetric around Q = 0 (bottom right panel) which is
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Fig. 4: (Colour on-line) Upper panel: stroboscopic evolution of
mz,ψ0(nτ ) starting from |ψ0〉 = |m = −0.75〉 and |GS〉 in the
ergodic case, showing a quick convergence towards mz,ψ0 = 0.
Inset: mz,GS vs. A for Γ0/J = 0.25 and ω0/J = 2, showing a
dynamical phase transition (at Ac ∼ 0.07) similar to that found
in ref. [39]. Lower panels: classical phase space interpretation
of the transition: for A < Ac (left panel, A = 0.03) the phase
space point representative of the ground state is in a regular
broken-symmetry region of the phase space; for A > Ac (right
panel, A = 0.45) it is in a chaotic region symmetric around
Q = 0.

ergodically explored by the subsequent dynamics, and so
the time average of (mz)N→∞ = Q vanishes. As a matter
of fact, by changing the parameters A and ω0 of the driv-
ing, we would find a whole critical line separating regions
of phase space where the symmetry is broken from regions
where the symmetry is dynamically restored.

It is interesting to explore the connection between ther-
malization and delocalization of states in the Hilbert
space [18,20,21,27]. An indicator for delocalization is the
inverse participation ratio (IPR) [60] of a state on a given
basis. If we consider the basis {|En〉} of the eigenstates
of Ĥ(0), we can study the localization of a given Floquet
state |φα(0)〉 by calculating IE(φα) =

∑
n |〈En| φα(0)〉 |4.

For the ergodic case, we find a clear delocalization: upon
averaging over α, we have 〈IE(φα)〉α ∼ 1/N , with fluc-
tuations that scale to 0 for N → ∞, consistently with
the Floquet states obeying T = ∞-ETH (see [35]). In
the classically regular cases, on the contrary, 〈IE(φα)〉α
is finite and almost independent of N , again with fluctu-
ations scaling to 0, marking the localization of the Flo-
quet states. We can gauge delocalization in the Hilbert
space [61] also by means of the probability amplitude to
remain in |ψ0〉, Gψ0(nτ) = 〈ψ0|ψ(nτ)〉 = 〈ψ0|Ûn(τ)|ψ0〉
whose square Fψ0(t) = |Gψ0(t)|2 = |〈ψ0|ψ(t)〉|2 can be
seen as a dynamical fidelity [62]. Interestingly, one can

show that

Fψ0 = lim
n→∞

1
n

n−1∑
k=0

|Gψ0(kτ)|2 =
∑
α

|Rα|4 ≡ IF (ψ0),

which is the IPR of the initial state |ψ0〉 in the Floquet
basis. In the ergodic cases, we find that Fψ0 ∼ N−1:
any |ψ0〉 appears as extended in the Floquet basis, the
possibility of Anderson —here “dynamical”— localization
is excluded, in full agreement with results on the kicked
top [41]. Classically regular cases show a diversity of possi-
bilities: some states are definitely localized in the Floquet
basis, while other states show anomalous scaling of the
IPR, IF (ψ0) ∼ N−λ with 0 < λ < 1, but further work is
necessary to precisely understand the physics behind this.

Conclusions and perspectives. – We have shown
how, in a periodically driven fully connected spin model,
classical ergodicity translates, at the quantum level, into
the system heating up to T = ∞, with Floquet states
obeying T = ∞-ETH and being delocalized in the Hilbert
space. On the contrary, if the classical dynamics is reg-
ular no thermalization occurs. We expect that a similar
behaviour can be seen in other fully connected models like
Bose-Hubbard or Dicke models [39]. We can propose an
experimental set-up to verify our predictions: modulating
the inter-well barrier height in a double-well BEC real-
ization [38], a driven two-mode Bose Hubbard Hamilto-
nian equivalent to our model [31] can be realized. Due to
ergodicity and the exponential separation of trajectories,
quantum effects can be easily observed, becoming evident
after a few periods even if N is large [35] and we are well
inside the semi-classical regime. In this work we have con-
sidered the signatures of quantum many-body ergodicity
manifesting in the behaviour of local observables, which
have a clear classical limit. The next step is to study
the behaviour of genuinely quantum non-local objects like
the entanglement entropy whose analysis in connection to
quantum phase transitions in static fully connected spin
chains has been carried out in refs. [63,64].
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