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Abstract – Dynamics of charging of an absorbing spherical body is studied by means of a numer-
ical simulation. Upon saturation of the charge of the body and relaxation of transient oscillatory
phenomena accompanying the charging, the disturbed plasma passes into a stable steady state.
Along with the determination of space-time dependences of electrostatic quantities, the numerical
experiment allows to observe the time evolution of electron and ion distributions in phase space.
A dense cloud of trapped ions is formed near the spherical body, provided that the ion Debye
length is of the order of the radius of the body, and the electron Debye length exceeds appreciably
the radius. The trapped ions contribute substantially to the screening of the charged sphere,
thereby affecting the structure of the disturbed plasma in the asymptotic steady state at long
times.

Copyright c© EPLA, 2015

Introduction. – The first theoretical studies of plas-
mas disturbed by an absorbing spherical body were paral-
leled by the development of the electric probe theory [1–3].
The investigation of the interaction of bodies with space
plasmas calls for solving the same problem usually un-
der the simplifying the assumption of the spherical shape
of the body [4,5]. Such an assumption has also been in
use for the computation of the charge of an individual
grain of dust in dusty plasma physics [6]. Despite numer-
ous applications of the problem of the charged sphere in
plasmas [6–11], the long history of the studies and con-
siderable progress in understanding of physics, there is a
serious long-standing impediment to a rigorous consistent
treatment of this classic problem. The fundamentally im-
portant question of the distribution function of trapped
charged particles and their contribution to the screening
of the absorbing sphere, as applied to collisionless plasmas,
remains unresolved up to now.

In most cases, the problem is treated within the frame-
work of the traditional formulation, i.e. possible steady
states of the disturbed plasma are examined. However,
if the radius of the sphere is small or of the order of

(a)E-mail: alexander.kiselyov@stonehenge-3.net.ru
(b)E-mail: vkrasov@iki.rssi.ru

the Debye length, a difficulty of a fundamental nature is
typical of such an approach. The distribution function
of trapped particles moving on finite orbits around the
charged sphere remains undetermined. The reason is that,
contrary to free particles moving infinitely, the trapped-
particle distribution function does not obey the bound-
ary condition at infinity, where the distribution function
is assumed to be given. Although with allowance made
for collisional phenomena the trapped-particle distribu-
tion can be established [4], in a fully collisionless plasma
its uncertainty results in the absence of uniqueness of the
solution [12]. In the case of sufficiently large radius of
the sphere, the trapped particles cannot exist [3], so that
the mentioned difficulty disappears. However, in order to
solve the problem rigorously in the case of small radius of
the sphere, it is necessary to investigate all possible steady
states of the disturbed plasma with respect to stability, or
to solve an initial value problem of transition to the stable
state. Below, we will follow the second way.

Although the strongly nonlinear problem in a nonsta-
tionary formulation is extremely difficult for theoretical
analysis, it can be solved by numerical methods. A nu-
merical simulation of the charging may be found, for ex-
ample, in the paper [13], where collisions have been taken
into account and Cartesian coordinates have been used
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in the application to the spherically symmetric problem.
Similar computations were later carried out with the help
of the molecular-dynamics method [14,15]. In contrast
to the mentioned work, we will treat the problem in the
most refined formulation, i.e. under the assumption of the
absence of collisions, and exploiting the spherical symme-
try of the problem in full measure by the use of canonical
equations of charged-particle motion. The purpose of our
numerical simulation is to observe the dynamics of charg-
ing and to find the asymptotic steady state of the plasma
disturbed by the charged absorbing sphere, including the
specific form of the trapped-particle distribution function
at long times, the charge of the sphere and other electro-
static characteristics of the physical system.

Formulation of the problem and input equations.
– A simple formulation of the initial value problem on the
charging of a sphere absorbing electrons and ions presumes
the appearance of the sphere of radius R in a collisionless
isotropic plasma at some instant of time t = 0. Under
typical conditions, the flux of more mobile electrons ex-
ceeds the ion flux, so that the sphere acquires a negative
charge. As time is going, the electron flux is decreasing
while the ion flux is increasing. At long times, the fluxes
equalize, so that the plasma tends to a certain asymptotic
steady state. This stable equilibrium is of particular in-
terest. The purpose of the numerical simulation described
below is to trace the transition of the plasma to this state.

The input equations are Poisson and Vlasov equations
for electrons and ions. Due to spherical symmetry of the
problem and conservation of the angular momenta of
charged particles, the motion of particles can be treated as
a motion in one-dimensional effective potential, formally
as a motion with one degree of freedom [3,4]. As a result,
the solution of the problem and the technique of the nu-
merical simulation are significantly simplified owing to the
important advantage of the equations in canonical form.
If the following units of measurement are in use

[r] = R, [ve] = [vi] = ue, [t] = R/ue, [n] = n0,

[φ] = meu
2
e/e, [E] = meu

2
e/eR, [We] = meu

2
e,

[Wi] = miu
2
e, [Me] = meueR, [Mi] = miueR,

where [Me,i] are units of the angular momenta of electrons
Me and ions Mi, [We,i] are the energy units, n0 is the
number density of undisturbed plasma and ue is a typical
electron velocity, the Vlasov and Poisson equations take
the dimensionless form

∂fe,i

∂t
+ vr

∂fe,i

∂r
− ∂Ue,i

∂r

∂fe,i

∂vr
= 0, (1)

(De/r)2(∂/∂r)r2E = ni − ne, E = −∂φ/∂r. (2)

Every charged particle is moving in the effective potential
taking into account the action of the centrifugal force,

Ue,i(r, t; Me,i) = M2
e,i/2r2 + ce,iφ(r, t),

ce = −1, ci = μ = me/mi,
(3)

where the absolute value of the angular momentum
of an individual charged particle M is a constant
parameter.

On the whole, the problem is characterized by the fol-
lowing three parameters:

u = ui/ue, μ = me/mi, De = de/R = ue/ωpeR, (4)

where ue and ui are typical velocities of electrons and ions
in the unperturbed plasma, and De is the dimensionless
electron Debye length. The values ue,i as well as the effec-
tive Debye radii de,i = ue,i/ωpe,i can be defined in accor-
dance with a specific form of the unperturbed distribution
functions of the particles Fe,i at t = 0. In particular, the
dimensionless form of the monoenergetic distributions is
given by

Fe,i = (1/4πV 2)δ(V − Ve,i), Ve = 1, Vi = u, (5)

where V is the absolute value of the velocity of a par-
ticle, so that the kinetic energy of the particle equals
W ≡ V 2/2 = (1/2)(v2

r + M2/r2). The distribution func-
tions Fe,i are also boundary conditions for eqs. (1) at infin-
ity, r = ∞. The distributions (5) projected on the plane
(z, vr), where z = r3, are uniform. This simplifies the ob-
servation and physical interpretation of the deformation
of the phase space density of the particles in the course of
simulation. At the same time, it is not difficult to gener-
alize the scheme of computations and the corresponding
programming codes to the case of an arbitrary isotropic
in velocity space Fe,i.

PIC method for solving spherically symmetric
problems. – Equations (1) and (2) represent the ba-
sis for a collisionless PIC (“particle-in-cell”) simulation.
As is known, the PIC technique is well suited as applied
to studies of trapping phenomena [16]. The trapping of
charged particles in potential wells is characterized by
the appearance of multistream motions of Vlasov’s fluid
accompanied by overturning the equal-level curves of the
distribution function and by the formation of vortex struc-
tures in phase space. A bright example of the observation
of the trapping phenomenon is the numerical simulation
of nonlinear saturation of a beam-plasma (or two-stream)
instability in plane one-dimensional (1D) geometry. The
numerical experiments described in [16] refer to one of
the first achievements of computational plasma physics,
since the nonlinear stage of the instability cannot be de-
scribed analytically. The PIC method turns out to be
very effective and quite economical also in the application
to three-dimensional (3D) spherically symmetric problems
of plasma kinetics. However, the spherical geometry of
the problem calls for a certain modification of the PIC
scheme in comparison with the plane 1D case. In particu-
lar, instead of “cells” in the form of plane layers, the cells
represent spherical layers in our simulation. The second
important distinction from the plane case is that charged
particles are moving in the effective potential (3) which
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depends on the parameter M . As a consequence, every
value of M determines an “individual” phase plane (r, vr)
for the particles with that angular momentum, in con-
trast to the unique phase plane shown, for example, in
the figures from [16]. To observe entirely the phase space
dynamics of all particles, these “individual” phase planes
(r, vr; M) may be projected on one plane as is done be-
low. It should be noted, however, that in this “combined”
phase plane, the phase trajectories of particles with dif-
ferent M can intersect with each other. Needless to say
that in the six-dimensional phase space such intersections
are impossible in accordance with well-known principles
of mechanics.

Taking into account the mentioned peculiarities, we
have adopted the collisionless PIC method in the applica-
tion to the studies of spherically symmetric kinetic plasma
phenomena. As an example, below we will discuss results
of the numerical simulation of the charging of the sphere
in fully collisionless plasma.

Discussion of numerical simulation results. – We
describe now a numerical solution of the formulated prob-
lem by means of the technique outlined above. For def-
initeness, here we consider the solution at the following
values: u = 0.005, De = 6.0 and μ = 1/1836, (Di � 1.29),
assuming unperturbed distribution functions of electrons
and ions to be monoenergetic (5). In this case, the dimen-
sionless effective length of screening equals approximately
D = d/R = DeDi/

√
D2

e + D2
i � 1.26. Since the cells in

our PIC model represent spherical layers of equal volume,
in addition to the radial distance r, it is convenient to use
also the new independent variable z = r3 proportional to
the volume of a sphere of radius r. Initially, an approxi-
mately equal number of PIC particles are located in every
cell of width Δz similarly to the plane PIC model. At
t = 0, macroparticles representing small finite elements
of the phase space fluid uniformly fill the region limited
by the inequalities 1 ≤ z ≤ Zmax = R3

max, |vr| ≤ Ve,i

in the plane (z, vr), where Rmax is some maximum value
of the radial distance r. In the run discussed below, the
width of each cell is equal to Δz = 0.022. The number of
particles in every cell is approximately Nc � 130. The mo-
tion equations of individual PIC particles in the effective
potential (3)

dr/dt = vr, dvr/dt = M2
e,i/r3 + ce,iE(r, t), (6)

are integrated by using the Runge-Kutta method with
the time step Δt = 0.38. The calculation region is
bounded by the radius of the sphere r = 1 (z = 1) and
the maximum radius 1 ≤ r ≤ Rmax (1 ≤ z ≤ Zmax).
The value Rmax has been chosen so that the electric-field
strength would appreciably exceed the level of pseudother-
mal noise typical for the collisionless PIC simulation in the
calculation region, except for short times when the inten-
sity of the regular field is very low. In the particular run
discussed below Rmax = 9. The maximum angular mo-
mentum of particles corresponds to the impact parameter

Fig. 1: Time dependence of the absolute value of the electric
field on the surface of the sphere. The fast initial stage of
charging is shown also in the insertion located in the centre
of the figure. The dimensionless electron plasma period equals
Tpe � 37.7. The ion plasma period Tpi is about 1615. After
saturation of the charge of the sphere the field E0 oscillates
slightly near the value of 0.72.

Rmax, so that Me ≤ Rmax and Mi ≤ uRmax. The number
of points used for the discretization of the variable M is
about 6600.

The time dependence of the electric field on the surface
of the sphere E0(t) = |E(t, r = 1)| is shown in fig. 1. Note
that the dimensionless charge of the sphere is simply equal
to Q(t) = −E0(t) provided that the charge is normalized
to 4πen0Rd2

e. The asymptotic value of the charge of the
sphere normalized to the charge in the Debye’s sphere is
approximately Q/(eNd) � 39, where Nd ≡ (4π/3)n0d

3.
At short times (ωpet � 1), the field grows almost lin-
early in accordance with the “neutral” approximation [4].
At long times, the intensity of field tends to the asymp-
totic value E0 � 0.72, and plasma passes into the steady
state. In the process of saturation of the charge, tran-
sient oscillatory processes are observed. The intensity
of the oscillations generally depends on the chosen set
of the parameters (4). The oscillations may be caused
by a combination of Langmuir and ion acoustic modes
as well as by oscillations of trapped ions in troughs of
the effective potential (bounce oscillations). The last ones
are responsible for weak oscillations of E0(t) on the back-
ground of the asymptotic average value 0.72. It is note-
worthy that the typical bounce frequency exceeds the ion
plasma frequency ωB � 1.6ωpi, as follows from fig. 1, since
the typical bounce period TB = 2π/ωB � 1000, while
the ion plasma period is about Tpi = 2π/ωpi � 1615.
As time progresses, the amplitude of the bounce oscilla-
tions decreases slowly due to the continuous phase mixing
of the trapped ions. It should be emphasized that the
frequencies of oscillations of individual trapped particles
in the effective potential wells depend on their energies
and angular momenta, so that the oscillations visible
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Fig. 2: Spatial profile of the electric-field absolute value at
t = 18661 on a dual logarithmic scale. At the distances of
order r > 5 (z > 125) the influence of thermal noise becomes
noticeable.

in fig. 1 represent a summarized effect of many trapped
particles oscillating, generally speaking, with different
frequencies.

Figure 2 shows the spatial dependence of the electric
field at t = 18661. In the vicinity of the sphere the profile
E(r) is very smooth, and the electric field is well approxi-
mated by the Coulomb law in the limit r → 1. At large dis-
tances, of order Rmax, the regular electric field is strongly
attenuated owing to screening, so that the artificial ther-
mal noise of the computer “plasma” characteristic of any
PIC simulation manifests itself more appreciably. Due to
the inevitable decrease in the electric-field strength at long
distances and the presence of thermal noise, the location
of the external boundary of the calculation region Rmax

has been chosen not too far from the sphere, although it
must exceed, at least, several effective lengths of screening
D (several ion Debye lengths for the set of parameters in
hand). Here Rmax/D � 7.

Now let us consider the dynamics of the plasma. For the
initial unperturbed distribution functions of the form (5),
the initial distribution of PIC particles is uniform in the
plane (z, vr), reflecting the absence of plasma density per-
turbation. The evolution of electron and ion distributions
has been observed with the help of an animation. The elec-
tron dynamics is physically quite simple since the electron
effective potential is a monotonically decreasing function
of r at any M . Because of this, it has been omitted in this
letter. Of greatest interest is the evolution of ion distri-
bution. A fraction of the ions moving toward the sphere
(vr < 0) with small angular momenta M is attracted, ac-
celerated and absorbed by the sphere. The trajectories of
particles with very large M (large impact parameters) do
not suffer a noticeable effect from the action of the electric
field. At last, a fraction of the ions with moderate values
of M may be trapped in the wells of the effective potential

Ui. Figure 3 shows the ion distribution in the phase plane
at different times, including the initial distribution at t = 0
and asymptotic one. The trapping is accompanied by over-
turning of the equal-level lines of the distribution function
and consequent phase mixing process. Depending on the
parameters (4), the trapped ions are grouped into rather
complex vortex-like structures, sometimes quite extensive
in radial direction. However, for the set of parameters in
hand, the trapped-ion bunch is formed in the immediate
vicinity of the sphere. This can be shown by means of
a qualitative consideration of the initial stage of charging
and taking into account the smallness μ � 1. According
to such a scaling analysis the trapped-ion bunch must be
concentrated near the sphere if the ion Debye length is
of the order of di � √

deR, or in the accepted designa-
tions Di � √

De, (u2De/μ = d2
i /Rde ≡ C � 1). For the

parameters under consideration C = 0.2754. As another
result of the scaling, the typical value of trapped-ion an-
gular momentum can be evaluated by M � μ1/2, that is
approximately 4.7 times greater than the angular momen-
tum of an ion moving with impact parameter equal to the
radius of the sphere MR = u. The typical values of kinetic
and potential energies of the trapped ions are of the same
order WT � μ/2, i.e. they are about 20 times greater
than the initial ion energy Wi0 = u2/2. These estimates
are in good agreement with the results of our simulation
as well as with theoretical studies on the structure of the
trapping region [12].

The ratio of total trapped-ion charge to the charge of
the sphere is about QT /|Q| � 0.18, i.e. the charge of
the trapped-particle cloud QT is commensurable with |Q|.
Characterizing the trapped-ion contribution to screening
of the charged sphere, the value of this simple parameter
is one of the new findings of our study and gives the an-
swer to the long-standing question of the trapped-particle
effect. Since polarization charge of a screening plasma
sheath is equal to the charge of the sphere with reversed
sign, summarized charge caused by electron and ion den-
sity perturbation, in addition to the trapped-ion charge,
equals obviously QP = 0.82|Q|.

Finally, we have compared, as far as possible, an
outgrowth of our numerical experiments with a result
of the study [9], wherein the trapped-ion effect was
neglected. The case No. 2 in [9] corresponds to the set
of parameters (4): u = 3.31 × 10−3, μ = 1.37 × 10−4,
De = 1.68. We have revealed that the asymptotic value
E0 � 0.98 (also charge of the sphere) is about four times
lower than the counterpart from [9]. However, it should
be noted that there is no one-to-one correspondence be-
tween our study and the work [9] due to the difference in
the form of Fe(v). The stationary surface potential |φ0| is
about 2.2 times lower than the one from [9]. The potential
is given by the simple equation |φ0| = 0.5(1−u)/(1+μ/u)
following from the current balance |je| = |ji|. This exact
value has been used for testing the accuracy of the simu-
lation. The typical fractional error of the calculated |φ0|
is about 0.01.
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Fig. 3: Evolution of ion phase space distribution. The intensity of the colour corresponds to phase space density, with the scale
unit corresponding to the initial density at t = 0. In the early stage of charging, electrons play a dominant role. The repulsion
of the electrons by the sphere results in the saturation of the charging at the times of the order electron plasma period as
seen in fig. 1. At times of the order of the ion plasma period the accelerated ions start to contribute to screening. As time
passes, their contribution to screening becomes dominant. Concurrently, ion trapping starts at this stage (t = 912, 1036, 1181).
Subsequently, the fine structure of the trapped-ion bunch is changing due to the oscillations of the trapped ions in the effective
potential and phase mixing of the particles, while the coarse structure of the bunch, as a whole, is quite stable at long times.
The trapped-ion population in the sheath screening the sphere is seen as a bright cloud at t = 18661.

Summary. – The study of charging and screening
of absorbing bodies immersed in plasmas has attracted
unremitting attention for many years due to a wide va-
riety of applications of this classic problem of plasma
physics [1–11]. As applied to the plasma free of collisions,

straightforward analysis of steady states of the disturbed
plasma is impeded by uncertainty of the trapped-particle
distribution [3,4,12]. In the case of small radius of the
absorbing sphere, this difficulty represents a major obsta-
cle to a consistent solution of the problem in the standard,
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stationary, formulation. Above, as a way out, we have ex-
amined the problem in a nonstationary setting and carried
out a numerical simulation of the charging under the as-
sumption of the instantaneous appearance of the sphere in
the plasma. As a result, the stable trapped-ion distribu-
tion has been determined in a collisionless regime for the
first time.

The developed computational algorithm and computer
code permit the direct measurement of all electrostatic
quantities and observation of electron and ion motion in
phase space. The main conclusion following from the
performed simulation is that the plasma passes into a sta-
ble steady state at long times. In contrast to collision-
dominating plasmas, the asymptotic equilibrium of the
collisionless plasma is established under the influence of
rapid dynamical processes. The trapping looks as the
formation of a trapped-ion bunch in phase space. It is
accompanied by the appearance of vortex structures in
the phase space typical of the trapping phenomena with
consequent grouping of the trapped ions into the dense
bunch. At long times, phase mixing of the trapped parti-
cles oscillating in effective potential wells leads to gradual
smoothing-out of their distribution function, resulting in
the formation of the stable asymptotic trapped-ion pop-
ulation. The trapped ions contribute substantially to
screening of the negatively charged sphere, especially near
the sphere, where their density is high. Therefore, bunch-
ing of the trapped particles during the charging plays an
important role and affects the final state of the disturbed
plasma and the electrostatic properties of the physical
system.

According to the numerical experiment, the total charge
of the trapped ions is commensurable with the charge of
the absorbing sphere. This indicates, in particular, that
a conclusion of the work [17] about the insignificance of
the ion trapping in rarefied space plasmas is invalid. Cal-
culations of the trapped-particle distribution function in
a collision-dominating plasma [14,15,18,19] cannot be ap-
plied to collisionless plasmas, since the passage to the
limit of infinitesimal collision frequency, completely ig-
noring very important questions of plasma stability, is
physically unjustified. In other words, highly probable
development of instabilities typical of collisionless plas-
mas removes the “paradox” pointed out in [18] in view
of the infinitely long time necessary for the relaxation of
the trapped-ion distribution to the state discussed by the
authors. Calculations performed in [20] on the basis of a
trapped-ion number density postulated without sufficient
physical grounds suffer from a similar drawback (at least
as applied to collisionless plasmas described by the Vlasov
equation neglecting dissipation), inasmuch as, in the strict

sense, the concept of “thermodynamic equilibrium” is in-
applicable to Vlasov’s plasmas.

Finally, regarding the technique of modelling, the per-
formed numerical experiments have demonstrated the high
efficiency and reliability of the developed code, so that it
may be applied to various problems of the collisionless
plasma kinetics under the condition of spherical symme-
try. In addition to the specific problem considered above,
the numerical method described above may be easily mod-
ified for studies of the interaction of space bodies with
plasma environment, spherical wave phenomena, includ-
ing strongly nonlinear wave processes, expansion of plasma
into vacuum, etc.
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