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Instituto de F́ısica, Pontificia Universidad Católica de Chile - Casilla 306, Santiago 22, Chile

received 7 May 2015; accepted in final form 20 July 2015
published online 17 August 2015

PACS 75.78.-n – Magnetization dynamics
PACS 75.78.Fg – Dynamics of domain structures
PACS 75.75.-c – Magnetic properties of nanostructures

Abstract – Recent analytical and numerical work on field-driven domain wall propagation in
nanowires and thin films has shown that for large transverse anisotropy and sufficiently large
applied fields the Walker profile becomes unstable before the breakdown field, giving way to a
domain wall whose speed increases at a slower rate with the applied field. We perform an asymp-
totic expansion of the Landau-Lifshitz-Gilbert equation for large transverse magnetic anisotropy
and show that the asymptotic dynamics reproduces this behavior. The appearance of a different
regime in the asymptotic dynamics is due to a transition from a pushed to a pulled front of a
reaction diffusion equation in which the speed of the domain wall increases with the square root
of the applied field

Copyright c© EPLA, 2015

Magnetic domain wall propagation is an active area of
research both as an interesting physical phenomenon as
well as for its possible applications in logic devices, mag-
netic memory elements and others [1]. The dynamics
of magnetic domain walls is described by the Landau-
Lifshitz-Gilbert (LLG) equation [2,3] which cannot be
solved analytically except in very special cases. For an
infinite medium with uniaxial anisotropy and an exter-
nal field applied along the symmetry axis, the Walker so-
lution [4] provides the best-known analytical expression
for the profile and speed of the domain wall. The ex-
act Walker solution, predicts that the speed increases lin-
early with the field up to a critical field Hw. Above this
value a sudden drop in velocity and an irregular precess-
ing motion of the magnetization appears. Field-induced
domain wall propagation in thin films and nanowires has
been examined with greater detail in recent work. The
numerical study [5] showed that depending on the relative
magnitude of the hard-axis anisotropy different scenarios
arise. For small hard-axis anisotropy the Walker solution
is realized. For sufficiently large values of the hard-axis
anisotropy the Walker breakdown does not occur. There
is a slower increase in speed of the domain wall due to
spin wave emission and no sudden drop in speed. For
the largest values considered in [5] the domain wall speed
changes from a regime of linear growth with the applied
field to a regime of slower growth with increasing applied

field. This behavior is observed when both the exchange
constant and uniaxial anisotropy are much smaller than
the hard-axis anisotropy. Further numerical studies [6,7]
analyze in detail the nature of the spin waves emitted and
distinguish two scenarios, depending on the relative values
of the exchange and anisotropy constants. The parameter
ranges studied in [5] and [7] differ, however, in both cases
the Walker breakdown is not observed when the hard-axis
anisotropy is sufficiently large. The stability of the Walker
solution with respect to small perturbations has been stud-
ied recently [8] using dynamical systems techniques. The
analysis of the spectrum of a perturbation to the Walker
solution shows that it may become absolutely or convec-
tively unstable before the breakdown field. This instability
is found for sufficiently large hard-axis anisotropy and for
fields larger than a critical value. Samples with a large dis-
parity in anisotropies have been achieved in the magnetic
semiconductor (Ga, Mn)(As, P) [9] showing that the ratio
of anisotropies has a large effect on the domain wall speed
in agreement with the numerical calculations mentioned
above.

The purpose of this work is to study the dynamics of the
LLG equation by means of an asymptotic expansion using
as a small parameter the ratio between easy- and hard-
axis anisotropies. The asymptotic expansion captures the
slower relaxation dynamics of the domain wall and filters
out the fast spin waves [10]. We find that the leading-order
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Fig. 1: Coordinate axes and applied field in the nanowire.

asymptotic dynamics predicts a transition from a Walker-
type regime to a regime where the speed increases with
the square root of the applied field. In leading order the
dynamics of the in-plane magnetization obeys a reaction
diffusion equation, and the magnetization in the hard-axis
direction is slaved to the in-plane components. The new
asymptotic regime appears as a transition from a pushed
to a pulled front at a critical value of the applied field.

The starting point of the calculation is the LLG equa-
tion for the magnetization. The material has magnetiza-
tion �M = Ms �m where Ms is the saturation magnetization
and �m = (m1, m2, m3) is a unit vector along the direction
of magnetization. The dynamic evolution of the magneti-
zation is governed by the LLG equation,

d �M

dt
= −γ0 �M × �Heff + α

�M

Ms
× d �M

dt
, (1)

where �Heff is the effective magnetic field, γ0 = |γ|μ0,
γ is the gyromagnetic ratio of the electron and μ0 is the
magnetic permeability of vacuum. The constant α > 0
is the dimensionless phenomenological Gilbert damping
coefficient.

The problem that we will consider may describe either
a biaxial nanowire with the easy axis along its length and
a hard-axis along a transverse direction (which we choose
as the z-axis as in fig. 1) or a thin and narrow film in the
(x, y)-plane, with the easy axis x along its length and hard
axis perpendicular to the thin-film plane. A constant ex-
ternal field is applied along the easy axis �Ha = Hax̂, as
shown in figs. 1 and 2. For sufficiently hard-axis anisotropy
the magnetization will lie predominantly in the (x, y)-
plane having a small z component.

For a nanowire and for a thin narrow film the magne-
tization may be assumed [11] to depend on the easy-axis
coordinate, �M(x, y, z) = �M(x). The effective magnetic
field is given by [5–9]

�Heff = Hax̂+
Cex

μ0M2
s

∂2 �M

∂x2 +
2Ku

μ0M2
s

M1x̂− 2Kd

μ0M2
s

M3ẑ, (2)

where Cex is the exchange constant, Ku the easy-axis ef-
fective uniaxial anisotropy and Kd is an effective hard-axis
anisotropy. We have assumed that the demagnetizing field
has a local expression as an additional anisotropy in the
direction perpendicular to the thin-film plane, as demon-
strated rigorously in [12]. The combined effect of a local
approximation for the demagnetizing field plus crystalline
and stress-induced anisotropies may be represented by ef-
fective anisotropies [9].

Fig. 2: Coordinate axes and applied field on a thin strip. Un-
der the action of the applied field the unit magnetization vec-
tor �m will rotate having a small z component if the hard-axis
anisotropy is large.

Introducing Ms as unit of magnetic field, and intro-
ducing the dimensionless space and time variables ξ =
x
√

Ku/Cex and τ = μ0|γ|Mst we rewrite eqs. (1) and (2)
in dimensionless form

d�m

dτ
= −�m × �heff + α�m × d�m

dτ
(3)

with

�heff = hax̂ +
1
2
K‖

∂2 �m

∂ξ2 + K‖m1x̂ − K⊥m3ẑ, (4)

where ha is the dimensionless applied field and the
dimensionless numbers that have appeared are K‖ =
2Ku/(μ0M

2
s ), K⊥ = 2Kd/(μ0M

2
s ). Equations (3) and (4)

describe the dynamics of the problem.
We are interested in the case of a perpendicular (z-axis)

anisotropy much larger than the uniaxial anisotropy. We
will also assume that the dimensionless applied field is
weak. We search then for a solution of the LLG equation
in the asymptotic limit ha � K⊥, K‖ � K⊥ and there-
fore, m1, m2 � m3. Let then m1 = m10 + εm11 + . . . ,
m2 = m20 + εm21 + . . . , m3 = εm30 + ε2m31 + . . . , where
ε is a small quantity. Since the perpendicular anisotropy
is larger than the uniaxial anisotropy and the applied
field is weak, we introduce the scaling K‖ = εK̃‖, ha =
εh̃a with K⊥ of order one. The components of the ef-
fective magnetic field, �heff = (h1, h2, h3) become then
hi = εhi0 + ε2hi1 + . . . with the leading-order components
given by

h10 = h̃a +
1
2
K̃‖

∂2m10

∂ξ2 + K‖m10, (5a)

h20 =
1
2
K̃‖

∂2m20

∂ξ2 and (5b)

h30 = −K⊥m30. (5c)

Furthermore we introduce a slow time scale s = ετ and
notice that the leading-order components of the in-plane
magnetization satisfy

m2
10 + m2

20 = 1 − O(ε2). (6)
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Introducing these scalings in eq. (3) and expanding in ε
one obtains in leading order,

∂m10

∂s
= −m20h30, (7a)

∂m20

∂s
= m10h30, (7b)

0 = −m10h20 + m20h10 + α

(
m10

∂m20

∂s
− m20

∂m10

∂s

)
.

(7c)

Substituting (7a) and (7b) into (7c) and using (6) we find
that in leading order,

h30 =
1
α

(m10h20 − m20h10) (8)

and eqs. (7a) and (7b) become

∂m10

∂s
= −m20

α
(m10h20 − m20h10), (9a)

∂m20

∂s
=

m10

α
(m10h20 − m20h10). (9b)

Because of (6) we can write m10 = cos θ, m20 = sin θ.
Using (5a) in eqs. (8), (9) we obtain

α
∂θ

∂s
=

1
2
K̃‖θξξ − sin θ(h̃a + K̃‖ cos θ), (10)

m30 = − 1
K⊥

∂θ

∂s
. (11)

Finally going back to the unscaled time variable τ and
parameters K‖, K⊥, we write the leading-order magneti-
zation components as

m1 = cos θ, m2 = sin θ, m3 = − 1
K⊥

∂θ

∂τ
, (12a)

where

α
∂θ

∂τ
=

K‖
2

θξξ − sin θ(ha + K‖ cos θ). (12b)

Equations (12) show that the leading-order dynamics
is determined by the equation for the in-plane magne-
tization components, the perpendicular magnetization is
slaved to the tangential magnetization. Equation (12b)
is the well-studied reaction diffusion equation, for which
we know that an initial perturbation to an unstable state
evolves into the monotonic front of minimal speed [13]. In
order to render (12b) into the standard form we introduce
the dependent variable u defined by θ = π(1 − u) which
satisfies

αuτ = Duξξ + f(u), (13)

with
f(u) =

1
π

sin πu(ha − K‖ cosπu).

The diffusion constant D = K‖/2 and the reaction term f
satisifies f(u) > 0 in (0,1), f(0) = f(1) = 0. A small

perturbation to the unstable state u = 0 (θ = π)
evolves into a traveling monotonic front of minimal speed
c∗ [13,14] that joins the unstable state to the stable state
u = 1(θ = 0). The minimal speed can be obtained from a
variational principle [15] and is bounded by [13]

cKPP ≡ 2
α

√
Df ′(0) < c∗ <

2
α

√
D sup f(u)/u. (14)

When the upper and lower bounds coincide the speed is
exactly cKPP and the traveling front is called a KPP or
pulled front. The dynamics associated to this equation
has been studied for its mathematical interest and for its
application in population dynamics, autocatalytic chemi-
cal reactions and others. We refer to [16] for a description
of some of its mathematical features and biological appli-
cations and to [17] for a recent review.

In the present problem eq. (13) has the exact traveling
front solution

u(ξ, τ) =
2
π

arctan
[
e−

√
K‖
D (ξ−cNτ)

]
, (15)

where

cN =
ha

α

√
D

K‖
.

This solution is not a KPP front, it is a so-called pushed
front, that is, it does not propagate with the KPP speed.
This is the front into which an initial condition will evolve
only if it is the front of minimal speed. It is not difficult
to verify that as ha increases this is not the the front of
minimal speed and an initial condition u(x, 0) will not
evolve into this solution. For ha ≥ 4K‖ the upper and
lower bounds in (14) coincide and the speed of the front
must be the KPP value. The transition from a pushed
to a pulled front may occur before the upper and lower
bounds coincide. In this problem for which there is an
exact solution we know that the transition will occur when
cN = cKPP. That is

c =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ha

α

√
D

K‖
, if ha ≤ 2K‖,

2
α

√
D(ha − K‖), if ha > 2K‖.

Going back to the physical variables, we have then that
the speed of the domain wall is given by

v =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
α

√
Cex

2Ku
μ0|γ|Ha, if Ha <

4Ku

μ0Ms
,

2|γ|√Cex

αMs

√
μ0MsHa − 2Ku, if Ha >

4Ku

μ0Ms
.

(16)
In the small-field regime Ha < Hc = 4Ku/(μ0Ms)

the magnetization profile is obtained from (15) and it is
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Fig. 3: Graph of the magnetization profile eq. (17). The solid
line corresponds to m1, the dashed line to m2 and the dotted
line shows the small m3 component.

given by

m1 = tanh
[
− (x − vt)

Δ

]
, (17a)

m2 = sech
[
(x − vt)

Δ

]
, (17b)

m3 =
μ0MsHa√

2αKd

sech
[
(x − vt)

Δ

]
, (17c)

where the domain wall width is given by Δ =
(1/2)

√
Cex/Ku. In fig. 3 we show the components of the

traveling domain wall.
For an applied field larger than Hc there is no analyti-

cal expression for the front profile, only the speed has an
explicit analytic formula. The general theory of reaction
diffusion equations [13,14] guarantees its existence, that it
is a monotonic decaying front and that it approaches the
fixed points exponentially. It is similar in shape to (15)
but it does not have an explicit analytic expression in this
problem.

The solution that we find, eq. (15), corresponds to the
limit of the Schryer-Walker solution when the magnetiza-
tion lies predominantly in the plane defined by the easy
axis and the applied magnetic field. The Schryer-Walker
solution is given by

sin 2ϕ0 = H0/(2παM0) = H0/HW ,

log tan
1
2
θ = [1 + (2πM2

0 /K) cos2 ϕ0]1/2(x − vt),

v = (−γH0/α)[1 + (2πM2
0 /K) cos2 ϕ0]−1/2,

where γ < 0, the demagnetizing field is 4πMx and
HW = 2παM0 is the Walker critical field. For h =
H0/M0 ≈ O(ε) we have ϕ0 = π/2 − ε. One can verify
that 1+ (2πM2

0/K) cos2 ϕ0 = 1+O(ε) ≈ 1 where we have
also used the fact that K/M2

0 is of order ε. In this limit
the Schryer-Walker solution coincides with (15).

Equations (16) and (17) constitute our main result.
These results, obtained from the LLG equation in the

case K‖ � K⊥ and for a weak applied field, explain qual-
itatively the results of the numerical simulations [5–7], of
the experiments [9] and the stability results [8]. At low
fields the speed of the front is proportional to the applied
field Ha and inversely proportional to the damping coeffi-
cient α. The magnetization profile and the speed share the

main features of the Walker solution, the velocity shows
linear dependence on the applied field and inverse propor-
tionality on the damping constant α. The Walker break-
down field HW = αK⊥/2 is of order one, and therefore
large compared to the transition field Hc. Thus, we re-
cover the behavior described in [5–8]: for sufficiently large
perpendicular anisotropy the Walker solution loses stabil-
ity before the breakdown field to a domain wall of slower
increasing speed with the field. When the applied field is
weak and K‖ � K⊥ the numerical integrations in [5,7]
show that the speed increases slowly with the field once
the Walker solution loses stability, in agreement with the
results found in this work. The experimental results for
sample A3 at a temperature T = 20 K obtained in [9] are
consistent with the results obtained in the present work.

The asymptotic approach that we have used is based
on [10], where the numerical simulations, (although for
a different demagnetizing field), show that the asymp-
totic dynamics reproduces the relaxation dynamics of the
full LLG equation, filtering out the spin waves. Reac-
tion diffusion dynamics has also been encountered in thin
nanotubes [18], where the Walker breakdown is not ob-
served. A transition from a linearly increasing to a slower
increasing domain wall speed also occurs in thin nan-
otubes as reported in [19,20]. The asymptotic dynamics
of the LLG equation has been studied by several authors
in different limiting parameter ranges, and wave-type mo-
tion governed by other evolution equations has been de-
rived [21,22]. In particular, different approximations to
the demagnetizing field of a thin film have been studied.
Here we use the local approximation derived in [12], we
refer to [23] for a review of the different scaling regimes
and the corresponding effective fields. In the present prob-
lem we have chosen a parameter regime for which recent
numerical and experimental work has been performed and
found qualitative agreement with the results reported in
them.
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