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Abstract — We study the impact of multiplexing on the global phase synchronizability of different
layers in the delayed coupled multiplex networks. We find that at strong couplings, the multiplex-
ing induces the global synchronization in sparse networks. The introduction of global synchrony
depends on the connection density of the layers being multiplexed, which further depends on the
underlying network architecture. Moreover, multiplexing may lead to a transition from a quasi-
periodic or chaotic evolution to a periodic evolution. For the periodic case, the multiplexing may
lead to a change in the period of the dynamical evolution. Additionally, delay in the couplings may
bring upon synchrony to those multiplex networks which do not exhibit synchronization for the
undelayed evolution. Using a simple example of two globally connected layers forming a multiplex
network, we show how delay brings upon a possibility for the inter-layer global synchrony, that is

not possible for the undelayed evolution.

Copyright © EPLA, 2015

Introduction. — The realization that many real-world
systems such as transport, banks, stock market [1-5],
etc. can be represented by multiple levels of interactions,
has led to a spurt in the activities of understanding and
characterizing various properties of multiplex networks.
The prime motivation of the multiplex framework is
that the function of individuals in one level gets affected
by the interactions and functions in the other levels.
A multiplex network consists of layered networks with one-
to-one correlation between the replica nodes in different
layers [6-11]. Each layer in the multiplex network consti-
tutes different types of relations between the same units,
presenting a more realistic framework of modeling real-
world interactions [1]. Further, one of the most fascinating
emergent behaviors of the interacting nonlinear dynamical
units is the observation of synchronization [12-14], which
is defined as the appearance of a relation between two pro-
cesses due to the interactions between them [15,16]. Syn-
chronization has been investigated a lot due to its wide
range of applicability [13,16]. For example, synchroniza-
tion plays a crucial role in proper functioning of systems

() E-mail: sarikajalan9@gmail.com (corresponding author)

as diverse as motor functions of a neural network [17], effi-
ciency in a business or academic system [2], signal process-
ing in a communication network to proper flow of traffic
in transport networks [18]. A recent work has revealed
that there exists an onset of explosive synchronization
in multilayer networks [19,20]. Other recent works have
investigated changes in the static and dynamic behavior
of multiplex networks with the interlink strength varia-
tion [21] as well as they have revealed the intra-layer syn-
chronization without the inter-layer synchronization [22].

Furthermore, delays naturally arise in real-world
systems due to the finite speed of information propaga-
tion [23]. The delays are shown to lead to many emerging
phenomena in coupled dynamical units such as oscillation
death, stabilizing periodic orbits, enhancement or suppres-
sion of synchronization, chimera state, etc. [24-34]. In
this letter, we investigate the impact of multiplexing as
well as the delay on the global synchronization of vari-
ous networks. Instead of exact synchronization we ana-
lyze the phase synchronization as sparse networks exhibit
a negligible number of nodes manifesting the exact syn-
chronization. Furthermore, in many realistic situations
the connection density as well as the degree distribution
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Fig. 1: Schematic diagram depicting a two-layer multiplex net-
work. The solid lines represent the intra-layer connections and
the dashed lines represent the inter-layer connections.

of various layers can be different. For instance, a collab-
oration and a friendship networks formed by the people
employed in the same institution can have different ar-
chitecture as well as connection density, and hence here
we consider different layers being represented by different
network architectures.

Theoretical framework. — We consider a network of
N nodes and N, connections. The dynamical evolution
of each node at time ¢ in the network is represented by a
variable x%(t),i = 1,2,..., N. This evolution of the dy-
namic variable with the delay (1) can be described by a
delayed coupled map model as [35]

mN
zi(t+1) = (L= f@i(t) + - D Ay (it =), (1)
1 j=1

where ¢ is the overall coupling strength (0 < e < 1), 7 rep-
resents the communication delay between the nodes, and
m is the number of layers in the multiplex network. A is
the adjacency matrix with elements A;; taking values 1
and 0 depending upon whether there exists a connection
between nodes ¢ and j or not. We consider an undirected
network with no self-loop and hence A is a symmetric ma-
trix with diagonal elements being zero. Without loss of
generality, we consider a simple multiplex network with
two layers and N nodes in each layer (see fig. 1), and the
adjacency matrix A for a two-layer multiplex network can

be given as
Ao Al T
S\ T A2

where A' and A? are the adjacency matrices correspond-
ing to the layer 1 and layer 2. k; = (Ejvzl Aéj) + 1 is the
degree of the i-th node in the I** layer of the multiplex
network. The function f(x) defines the local nonlinear
map and the coupling between the nodes. In the present
framework, we consider local dynamics given by the logis-
tic map, f(z) = 4x(1 — x) and the circle map, for which
f(z) shows chaotic evolution [36].

We quantify the global phase synchronization defined
as follows [15]. Let n; and n; denote the number of times
when the variables z;(t) and x;(t), t = 1,2,...,T for the
nodes 7 and j exhibit local minima during the time in-
terval T'. Let n;; denote the number of times these local

(2)
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Fig. 2: (Colour on-line) Phase diagram depicting the varia-
tion of global phase synchronization measured by D for the
SF network with (k) = 4 in the e-7 plane, (a) when it is iso-
lated and (b) after multiplexing with another SF network of
(k) = 10, with respect to €. The number of nodes in each
layer is N = 250. All results are averaged over 20 different
realization.

minima match each other. The phase distance between
two nodes ¢ and j is then given as

Znij

dy=1— "9
! (n; +ny)

The nodes 7 and j are phase synchronized if d;; = d;j; = 0.
We used as global phase synchronization measure
D= Z?fl di; for the whole multiplex network, D; =

Z;VZI d;j and Dy = foN d;j for the first and the second
layer, respectively. The global phase synchronized state
for the whole multiplex network exists for D = 0, whereas
one of the layers being global synchronized is indicated by
Dy =0o0r Dy =0 and D # 0. We study global phase
synchronizability of a 1-d lattice, scale-free (SF), random
and the globally connected networks upon multiplexing
with another layer of 1-d lattice, SF, random and globally
connected network architectures. The 1-d lattices used
in the simulation have circular boundary conditions with
each node having k nearest neighbors. SF and random
networks are obtained by using BA and ER models, re-
spectively [37]. The multiplex network is constructed by
making one-to-one connections between the replica nodes
in two layers.

Results. — We evolve eq. (1) starting from a set of
random initial conditions and study global phase synchro-
nization after an initial transient for various combinations
such as regular-regular, regular-random, random-global,
SF-global, random-random and SF-SF multiplex net-
works. First, we discuss changes in global phase synchro-
nization of sparse SF networks upon multiplexing with a
SF network. We take a SF network ((k1) = 4) and mul-
tiplex it with another SF network ({(k2) = 10). For the
undelayed evolution, an isolated SF network with (k1) =4
does not exhibit global phase synchronization for any of
the coupling values as depicted in fig. 2(a). The multiplex-
ing in this case does not bring upon any change in global
synchronizability.
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Fig. 3: (Colour on-line) Variation of the largest Lyapunov ex-
ponent with € for the isolated SF network with (k1) = 10 (dot-
ted line) and after multiplexing with the globally connected
network (solid line) for (a) undelayed, (b) delayed (7 = 1),
(c) delayed (7 = 2) evolution. Similarly, for isolated random
networks with (k) = 10 (dotted lines) and after multiplexing
with the globally connected networks (solid line) for (d) unde-
layed, (e) delayed (7 = 1), (f) delayed (7 = 2) evolution. Here
the number of nodes N is taken to be 50 in each layer. All
plots are for the average over 20 different realizations of the
initial conditions.

An interesting phenomenon is displayed for the delayed
evolution, while at the weak coupling multiplexing does
not influence the synchronizability, at strong couplings
multiplexing brings upon the global synchronization in
the layer having sparse connections. The isolated SF
networks, irrespective of the average degree of the net-
work, exhibit global phase synchronization at weak cou-
pling for the odd parity of delays in the coupling range
0.16 < ¢ < 0.18 (fig. 2). The dynamical evolution in
this coupling range is periodic with periodicity depend-
ing on the delay value (fig. 3(b)). While the multiplexing
does not introduce any significant change in the synchro-
nizability of the network for this coupling range, it leads
to an enhancement in the global phase synchronizability
at strong couplings. Thus, the delayed coupled isolated
network ((k1) = 4) does not exhibit a global synchroniza-
tion, and multiplexing with different denser networks in-
duces global synchrony. The coupling range for which the
global synchronization is induced may change with the
delay value even when the network architecture remains
the same. For example at 7 = 1 the global synchroniza-
tion is induced for the coupling range 0.71 < ¢ < 0.72
and 0.84 < ¢ < 0.86, and for 7 = 3 synchronization is
observed for the coupling range 0.56 < ¢ < 0.58. The
same phenomenon is also observed for the other network
architectures which, in the isolated state, do not exhibit
the synchrony for the delayed evolution but upon mul-
tiplexing with the another denser network they exhibit
the global synchronization at strong-coupling values. One
such example is the sparse 1-d lattice, which, in the iso-
lated state, does not exhibit the global synchronization at
strong couplings, but upon multiplexing with the globally
connected network it exhibits the global synchronization
in the coupling range 0.56 < e < 0.76 (fig. 4(a)).

1 | Isolated
0.8 atcer
Multiplexing
L 0. 6%y
a] 0.4
0.2

0 S
€ €

Fig. 4: (Colour on-line) (a) Variation of D; for the 1-d lat-
tice ((k1) = 10) before (closed circles) and after multiplexing
(open circles) with the globally connected network for 7 = 1.
(b) Variation of D for a multiplex network consisting of two
globally connected layers for the undelayed (closed circles) and
for the delayed evolution (open circles). The number of nodes
in each layer is N = 250.

Further, two layers do not get synchronized with each
other for the undelayed evolution, whereas the introduc-
tion of the delay induces the global synchronization in
the multiplex network. An introduction of delay is al-
ready known to enhance the synchronizability of a net-
work [29]; however, finding that the multiplex network
exhibits global synchronization for the delayed evolution
is more interesting as for the undelayed evolution the mul-
tiplex network does not exhibit global synchronization
even if the globally connected network forms the individ-
ual layer (fig. 4(b)). Note that the isolated networks for
sufficiently high connection density are known to exhibit
global synchronization for the undelayed evolution. For
example, the multiplex network consisting of the SF layer
with (k1) = 10 and the globally connected layer does not
exhibit global synchronization at ¢ = 0.69 for the unde-
layed evolution (fig. 5(a)), whereas the introduction of de-
lay results in the global synchronization of the multiplex
network (fig. 5(b)). For the case of a multiplex network
consisting of two globally connected layers, the undelayed
evolution does not bring upon the global synchronization
to the whole network, while the individual layer keeps on
showing the global synchronization as observed for the iso-
lated globally connected network (fig. 6(a)). An introduc-
tion of the delay leads to the global synchronization of the
multiplex network (fig. 6(b)). Similarly, an introduction of
the delay causes global synchronization in the multiplex
network consisting of the random and the globally con-
nected layers, which was not observed for the undelayed
evolution as discussed above.

The introduction of global synchrony for the delayed
evolution can be explained by considering the case of ex-
act synchronization in a simple network architecture as
follows. Let z}(t) = y'(t), Vi and Vt > to be the global
synchronized state of a globally connected isolated net-
work and z}(t) = y%(t) be the global synchronized state of
another isolated network. Upon multiplexing, the differ-
ence variable between the two nodes in the same layer 2
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Fig. 5: (Colour on-line) Time series of two nodes (open and
closed circles with solid lines) from the SF network (layer 1)
and two nodes (open and closed circles with dotted lines) from
the globally connected network (layer 2) before and after mul-
tiplexing for (a) undelayed and (b) delayed (7 = 1) evolution.
N = 250 in each layer and ¢ = 0.69. For the SF network,
(k1) = 10. The time series is potted after the initial transient
of 10000 time steps before (fo) and after the multiplexing (tom ).
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Fig. 6: (Colour on-line) Time series of four nodes (open and
closed circles) from the globally connected layers (two from
each) before and after multiplexing for (a) undelayed and
(b) delayed (7 = 1) evolution. N = 250 in each layer and
e = 0.65. The time series is potted after the initial transient
of 10000 time steps before (t9) and after multiplexing (tom ).

at ¢ = 1 will be given as

(ki — k)
ki +1)(k) +1)
x(fy'(t=7) = f*(t=7)).  (3)

Thus, for kj = kj, which is the case of the globally
connected network, the intra-layer synchronization man-
ifested by the isolated networks remains unaffected after
multiplexing, whereas the difference variable between the
mirror nodes ¢ and j from two different layers will be

dxfj (t+1) =

wi(t+1) —af(t+1) = fly' (1) = fF*(1)).

The above difference variable will not vanish for the nodes
having the chaotic dynamics and therefore restricting the
synchronization between them. However, for the delayed

1
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Fig. 7: (Colour on-line) Time series of two nodes (open and
closed circles) from the random network (layer 1) and two
nodes (open and closed circles) from the globally connected
network (layer 2) before and after multiplexing. N = 50 in
each layer, ¢ = 0.58 and for the random network the average
degree is (k1) = 10. The time series is potted after the initial
transient of 10000 time steps before (to) and after multiplexing
(tom)-

evolution the difference variable will be

wi(t+1) —aft+1) =1 —e)f(y' (1) - F°(t)
+EUF Wt =1) = fP (=) (4)

and depending on the value of € and 7, nodes from the dif-
ferent layers may get synchronized even when both nodes
have chaotic dynamics.

Further, in order to investigate the changes in the dy-
namical evolution upon multiplexing, we calculate the
largest Lyapunov exponent as a function of ¢ (fig. 3). For
the undelayed evolution, the multiplexing does not bring
upon any significant change in the dynamical evolution
and the dynamics remains chaotic for all the coupling val-
ues as observed for the isolated random network (fig. 3(a)),
whereas, for the delayed evolution, multiplexing may lead
to a transition from the quasi-periodic to periodic, or from
the chaotic to a periodic evolution. For example, in the
coupling range 0.54 < ¢ < 0.58 and for 7 = 1, the multi-
plexing leads to a transition from the quasi-periodic to a
periodic evolution (fig. 3(b)). In the same coupling range
an isolated network exhibits the global phase synchroniza-
tion, while multiplexing destroys the global phase syn-
chronization as discussed above. In the coupling range
(0.83 < e < 0.87), where the isolated network leads to a
periodic evolution, multiplexing retains the periodic evo-
lution with the same period (fig. 3(b)). But for the same
coupling range the multiplexing also retains the global
phase synchronization manifested by the isolated random
network. In the coupling range 0.88 < ¢ < 0.89, the multi-
plexing leads to a transition from a periodic to the chaotic
evolution (fig. 3(b)).

Furthermore, as discussed above, the globally coupled
network exhibits a transition from a periodic state to an-
other periodic state with a different period upon multi-
plexing. For example, in the coupling range 0.54 < & <
0.58, the isolated random network for 7 = 1 exhibits the
chaotic dynamics, and the isolated globally connected net-
work shows a periodic evolution with periodicity three.
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Fig. 8 (Colour on-line) Variation of (D;) for a SF network
with (k1) = 4 multiplexed with (a) SF network at ¢ = 0.86,
(b) random network at ¢ = 0.86 and (c) 1-d lattice at e = 0.76,
for various average degrees. Here the number of nodes N is
taken to be 250 in each layer. All results are for the average
over 20 different realizations of the initial condition.

The multiplexing leads to a periodic state with periodic-
ity six for both the networks (fig. 7). Note that in the
same coupling range there is no synchronization between
nodes of the different layers (fig. 7).

Furthermore, in order to see an impact of the network
architecture on the enhancement in the global synchroniz-
ability of a network upon multiplexing, we present results
for the multiplexing of the SF network with various dif-
ferent network architectures viz. SF, random network and
1-d lattice of various average degrees. We find that the
network architecture plays an important role in deciding
the denseness of connection in a layer which leads to the
global synchronization. For instance, SF networks with
(k1) = 4 exhibit the global synchronization upon multi-
plexing with a SF network having (k2) = 6 (fig. 8(b), (c)),
while the same phenomenon is observed for multiplexing
with the random and the 1-d lattice of (k2) = 10 and
(k2) = 30, respectively (fig. 8(b), (c)).

In order to demonstrate the robustness of the phe-
nomenon for which the multiplexing introduces the global
synchronization in the sparse networks at strong cou-
plings, we present results for the coupled circle maps as
well. The local dynamics then can be given by

flx) =24+ w+ (p/27) sin(27x) (mod 1).  (5)
Here we discuss results with the parameters of a circle
map corresponding to the chaotic evolution (w = 0.44 and
p = 6).

For the local evolution being governed by the circle map
and the coupled dynamics given by eq. (1), the sparse net-
works —those which do not exhibit the global synchrony—
upon multiplexing with the denser networks exhibit the
global phase synchronization. Figure 9 presents an ex-
ample where the isolated SF network ((k1) = 2) leads to
the cluster formation (fig. 9(a)), while multiplexing with
the SF network ((k2) = 10) leads to a transition to the
globally synchronized state at e = 0.96 (fig. 9(b)). Fur-
thermore, at the same coupling value there is a transition
from the chaotic to the periodic evolution with periodicity
four (fig. 9(b)).

250

x, (t)

o O O o
N B O 0 B
L e

ﬁ_O

Fig. 9: (Colour on-line) (a) and (b): node-vs.-node diagram;
(c) time series for SF networks with (k1) = 2. (a) Cluster state
for the undelayed evolution, (b) globally synchronized state
indicated by the formation of a single cluster after multiplexing
with the another SF network having (ko) = 10 and (c) time
series of two nodes from the SF network with (ki) = 2 before
and after the multiplexing. Here the number of nodes (N) is
taken to be 250 in each layer, ¢ = 0.96 and 7 = 1.

Conclusion. — We have investigated the impact of
multiplexing on the global phase synchronization and the
dynamical evolution of the nodes in the individual layer
in delayed multiplex networks. We mainly find that the
impact of multiplexing depends on the network architec-
ture of different layers as well as on the overall coupling
strength. For the undelayed evolution and at the weak
couplings for delayed evolution, multiplexing does not lead
to any significant impact on the synchronizability of a net-
work, yielding a similar dynamical evolution irrespective
of the network architecture. For these cases, the same par-
ity of delay values brings upon a similar impact as that
observed for the isolated networks [29,30]. Upon multi-
plexing, the odd parity of delay values exhibits the global
phase synchronization with a periodic evolution, whereas
in the same coupling range the even parity of delays may
exhibit the global phase synchronization with the dynam-
ical evolution being chaotic. At strong couplings, the de-
layed sparse networks exhibit the global synchrony upon
multiplexing with the denser networks. The connection
density of the layer being multiplexed plays an impor-
tant role in deciding if there will be an introduction of
the global synchronization in the sparse networks which
further depends on the network architecture. Multiplex-
ing with a SF network with the connection density lower
than the corresponding ER and regular networks may lead
to the global synchrony in a sparse SF network at the
strong couplings. Furthermore, for the undelayed evolu-
tion, the multiplex network does not display the global
synchrony even though the nodes in each layer are glob-
ally connected while incorporation of delay leads to the
global synchronization of the entire network. By using
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a simple network architecture consisting of two globally
connected layers, we demonstrate that for the chaotic in-
trinsic dynamical evolution, the global synchronization in
a multiplex network is not possible. The introduction of
delays in the coupling provides a possibility for the same.
Additionally, the multiplexing leads to a transition from a
quasi-periodic or the chaotic evolution to a periodic evo-
lution as well as it may lead to a change in the periodicity.

This analysis can be further extended to get a better un-
derstanding of various dynamical processes in real-world
systems, such as controlling congestion in the multiplex
transport networks [18] as well as the occurrence of differ-
ent diseases such as epileptic seizure by representing brain
as delayed multiplex networks [38,39].
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