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charge-density excitations)
PACS 78.67.Wj – Optical properties of graphene

Abstract – By taking a graphene nanoribbon as a resonator, we have numerically and analytically
investigated the spectral characteristics of plasmon-induced transparency in integrated graphene
waveguides. For the indirect coupling, the formation and evolution of the transparency window
are determined by the excitation of the super resonances, as well as by the destructive interference
and the coupling strength between the two resonators, respectively, while for the indirect coupling,
the peak transmission and corresponding quality factor can be dynamically tuned by adjusting
the Fermi energy of graphene nanoribbons and the transparency peak shifts periodicity with the
round-trip phase accumulated in the graphene waveguide region. Analytical results based on
temporal coupled mode theory (CMT) show good consistence with the numerical calculations.
Our findings may support the design of ultra-compact plasmonic devices for optical modulating.

Copyright c© EPLA, 2015

Introduction. – Electromagnetically induced trans-
parency (EIT) effect observed in atomic media is the
result of a quantum destructive interference between co-
herent optical transitions [1]. The EIT system promises
potential applications in slow light, optical storage and
other nonlinear optical processes for its high-Q resonances
and drastic normal dispersion [2]. However, its appli-
cation in practice is greatly hindered by the demanding
condition that is required to preserve quantum state coher-
ence. Fortunately, an analogical interference phenomenon
of wave functions can occur in classical oscillators sys-
tems, and EIT-like behavior can be achieved by designing
coherent excitation pathways, including coupled micro-
resonators [3], metamaterials [4], photonic crystal cavi-
ties [5] and all-dielectric metasurfaces [6]. Surface plasmon
polaritons (SPPs), the collective excitations confined in
metal-dielectric interface, have been widely studied in past
decades, because they can overcome the traditional diffrac-
tion limit and manipulate light in deep-subwavelength do-
main [7]. The most promising candidate among plasmonic
devices for plasmon-induced transparency (PIT) is the

(a)E-mail: llwang@hnu.edu.cn

metal-insulator-metal (MIM) waveguide, which has been
theoretically introduced and experimentally demonstrated
in recent studies [8–15]. PIT can be realized in MIM
waveguide systems via destructive interference between
radiative and dark plasmonic modes [9–12] or near-field
coupling between two detuned resonators [13–15]. How-
ever, the tuning of plasmon resonance is difficult except
for carefully re-optimizing the geometric parameters of the
metallic nanostructure, which restrict its further develop-
ment in integrated optics. Recently, graphene plasmon-
ics [16], with a great diversity of electrical and optical
properties such as extreme confinement, active tunability,
and low loss, have been introduced to the design of PIT de-
vices [17–20]. For example, graphene-based dolmen struc-
tures have been investigated comprehensively, suggesting
non-radiative loss reduction [17], substantial slow-light
effect [18] and dynamic tuning of transparency window
via external fields [17–20]. On the other hand, PIT-
like transmission can be achieved in graphene integrated
Fabry-Perot (FP) microcavity [21], exhibiting high con-
trast electro-optic modulations. Furthermore, the destruc-
tive interference between radiative and dark plasmonic
modes supported by a graphene-based dolmen structure

34004-p1



Qi Lin et al.

can be analytically described by the coupled Lorentz os-
cillator model [17], and the dynamics of PIT-like mod-
ulation in graphene integrated FP microcavity can be
accurately evaluated by employing the transfer matrix
method [21]. However, very few numerical investigations
with uniform analytical description have been performed
systematically on the PIT effect in integrated graphene
waveguide, although this is very essential for the ma-
nipulation of propagating SPPs in deep-subwavelength
domain.

In this letter, we numerically and theoretically in-
vestigate the EIT-like spectral responses in integrated
graphene waveguide. There are two typical physical pic-
tures: direct coupling model consisting of a radiative
resonator (directly coupled to the waveguide) and a dark
resonator (indirectly coupled to the waveguide through the
radiative resonator) [22]; indirect coupling model consist-
ing of two detuned resonators, which is essential for the ob-
servation of EIT-like and slow-light effect [23]. By taking a
graphene nanoribbon as a resonator first, we introduce di-
rect coupling and indirect coupling PIT schemes consisting
of two vertically coupled GNRs with lateral displacement
s and multi-GNRs coupled to the side of the graphene
sheet waveguide, respectively. It is found that plasmonic
resonances and spectral characteristics possess strong de-
pendence on the coupling strength in the direct coupling
scenario. For the indirect coupling scenario, it is shown
that the peak transmission and corresponding quality fac-
tor can be dynamically tuned by adjusting the Fermi en-
ergy of graphene nanoribbons and the transparency peak
can be modulated periodically by the inter-space between
the two resonators. In addition, the multi-peak EIT-like
line is also investigated. Analytical results based on tem-
poral coupled mode theory (CMT) show good consistence
with the numerical calculations. Our findings may provide
guidelines for designing ultra-compact PIT devices.

Theory and simulations. – To start with, the plas-
monic resonance characteristics in a graphene nanorib-
bon resonator (GNR)-coupled waveguide are investigated
numerically by using the finite-difference time-domain
method (FDTD). As shown in figs. 1(a), (b), a mono-
layer graphene sheet and graphene nanoribbon with width
wi are separately embedded in the dielectric layer with
relative permitivity εr [24–26]. When light is impinged
from the left port, the highly confined SPPs will be sup-
ported and propagate in the graphene sheet which acts
as a planar waveguide. The graphene nanoribbon can be
treated as a novel resonator, where the plasmonic reso-
nant mode can be excited by means of strong optical cou-
pling to the waveguide and dynamically controlled by gate
voltage Vg as shown in fig. 1(a) [16,24,26]. In the mid-
infrared region, intraband scattering dominates in highly
doped graphene, and its conductivity takes on a Drude-like
form σ = je2EF /[πh̄2(ω + jτ−1)], j = (−1)1/2. The elec-
tron relaxation time is expressed as τ = μEF /eυ2

F , where
υF = c/300 is the Fermi velocity and μ = 10m2/Vs is the

Fig. 1: (Color online) (a) Schematic of the single-GNR–coupled
waveguide. The Fermi energy in the graphene nanoribbon
can be tuned by external gate voltage Vg. (b) Cross-section
diagram of the graphene structure. (c) Numerical calcu-
lation (blue balls) and analytical fitting (solid red curves)
of the transmission and reflection spectra with width wi =
100 nm. (d) Field distributions Hz at the resonant wavelength
of 12.21 μm (m = 1). The Fermi energy of the graphene
sheet and graphene nanoribbon are set as EF0 = 0.17 eV and
EFi = 0.16 eV, respectively. The height of the GNR is set
as gi = 100 nm. For the sake of simplicity, the surrounding
environment of graphene is assumed to be air εr = 1.

DC mobility [24]. The two-dimensional FDTD simulations
with a perfectly matched layer (PML) boundary condition
are performed, and the graphene layers are modeled as an
ultra-thin film with a thickness of 1 nm. The mesh sizes
of graphene in the x and y directions are chosen to be
2 nm × 0.1 nm for good convergence of the numerical cal-
culations. The transmission and reflection spectra of the
system is presented in fig. 1(c). The first-order resonant
mode corresponding to the transmission dip at 12.21μm
is plotted in fig. 1(d). Using the CMT, the energy ampli-
tude ai for the GNR with resonance frequency ωi can be
expressed as [23]

dai

dt
=

(
−jωi −

ωi

2Qoi
− ωi

2Qei

)
ai+j

√
ωi

2Qei

(
S

(i)
1+ + S

(i)
2−

)
,

(1)
where κoi represents the decay rate of the field due to the
internal loss in the GNR, and κei is the decay rate due
to the energy escape into the waveguide. The decay rates
satisfy the relationships κoi = ωi/(2Qoi), κei = ωi/(2Qei).
Here Qoi and Qei are quality factors related to the in-
ternal loss and waveguide coupling strength, S

(i)
p+ and

S
(i)
p− (p = 1, 2) are the incoming and outgoing SPPs. With

energy conservation and time reversal symmetry, the rela-
tionships between the amplitudes of the incoming and out-
going SPPs in the waveguide can be described as S

(i)
2+ =

S
(i)
1+ − j(ωi/2Qei)1/2ai, S

(i)
1− = S

(i)
2− − j(ωi/2Qei)1/2ai.

Combining with boundary conditions S
(i)
2− = 0 and eq. (1),

we can obtain analytical expressions for the complex trans-
mission and reflection coefficients of the system,

ti = α
S

(i)
2+

S
(i)
1+

= α
j(ωi − ω) + ωi/2Qoi

j(ωi − ω) + ωi/2Qoi + ω0/2Qei
, (2)
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ri = α
S

(i)
1−

S
(i)
1+

= α
−ωi/2Qei

j(ωi − ω) + ωi/2Qoi + ωi/2Qei
. (3)

It should be noted that only the internal loss and waveg-
uide coupling loss of GNR can be considered in CMT.
In fact, the dispersion and loss in graphene waveguide
give rise to the asymmetric profile and the transmission
peak less than unity [25]. Here α is the complex transmis-
sion coefficient of the graphene sheet waveguide without
GNR, which is introduced to normalize the transmission
and reflection efficiency of the single-GNR–coupled waveg-
uide. Similar procedures have been performed in ref. [27].
In addition, it is worth noting that the total loss of the
coupled GNRs includes intrinsic loss and waveguide cou-
pling loss. For the electron the relaxation time τ is
big enough, according to the dispersion relation of the
graphene kspp = k0[2πh̄2εr(ω + iτ−1)]/(η0e

2EF ), where
η0 = 377Ω is the intrinsic impedance of air. The intrinsic
quality factor of the GNR can be estimated from Qoi =
−Re(kspp)/(2Im(kspp)). The total quality factor can be
estimated from Qti = λri/δλ, where δλ is the FWHM of
the reflection spectrum. One can obtain the waveguide
coupling loss by subtracting the intrinsic loss from the to-
tal loss, namely, Qei = QoiQti/(Qoi − Qti) [23,25].

We introduce direct coupling and indirect coupling PIT
schemes consisting of two vertically coupled GNRs with
lateral displacement s and multi-GNRs to the side of
the graphene sheet waveguide, respectively, as depicted in
figs. 2(a), (b). For the direct coupling scenario, as shown
in fig. 2(a), the energy amplitude a1,2 can be expressed
as [12,22]

da1

dt
=

(
−jω1 −

ω1

2Qo1
− ω1

2Qe

)
a1 + j

√
ω1

2Qe
(S1+ + S2−)

+ j
ω2

2Qc
a2, (4)

da2

dt
=

(
−jω2 −

ω2

2Qo2

)
a2 + j

ω1

2Qc
a1, (5)

where ω1,2 is the inherent resonant frequencies of the cor-
responding GNRs, ω1/(2Qc) = κ21 and ω2/(2Qc) = κ12

are the coupling coefficients between the two GNRs. Qo1,2,
Qe and Qc are quality factors related to intrinsic loss,
waveguide coupling loss and coupling strength between
the two GNRs, respectively. When a time dependence
of the form exp(jωt) is assumed and the characteristic
equations (4), (5) are solved, the resonance frequency
splitting of the coupled system can be deduced as

ωr1,2 =
(

ω1 + ω2

2

)
± Re (Ω0) , (6)

where

Ω2
0 =

ω1ω2

(2Qc)
2 +

(
jω1 −

ω1

2Qo1
− ω1

2Qe

) (
jω2 −

ω2

2Qo2

)

−
(

j
ω1 + ω2

2
− ω1

4Qo1
− ω1

4Qe
− ω2

4Qo2

)2

.

Fig. 2: (Color online) (a) Direct coupling scheme of the
graphene sheet waveguide with two GNRs: wi is the width
of the GNR, gi the height of the GNR, s the lateral displace-
ment between the two GNRs. (b) Indirect coupling scheme of
the graphene sheet waveguide with two GNRs: Li is the inter-
space between the i-th and (i + 1)-th (i = 1, 2, . . . , N) GNRs.
The dashed lines indicate the reference planes in the middle of
the GNRs. The Fermi energy of GNRs are set as EFi.

With boundary conditions S2− = 0 and S2+ = S1+ −
j(ωi/2Qei)1/2ai, S1− = S2− − j(ωi/2Qei)1/2ai, we finally
arrive at the spectral transmission of the coupled system,

T =
∣∣∣∣αS2−

S1+

∣∣∣∣
2

=

∣∣∣∣∣∣∣α
⎛
⎜⎝1− 1

Qe

j2δ2 + 1
Qo2(

j2δ1 + 1
Qo1

+ 1
Qe

)(
j2δ2 + 1

Qo2

)
+

(
1

Qc

)2

⎞
⎟⎠

∣∣∣∣∣∣∣
2

,

(7)

where δ1,2 = (ω − ω1,2)/ω1,2 is introduced to normalize
the incident frequency ω.

To verify the validity of the analytical model, we nu-
merically calculated the transmission spectra of the direct
coupling scenario with different lateral displacement s. As
shown in figs. 3(a)–(d), it is found that an obvious trans-
parency window at 12.21μm emerges and grows in inten-
sity at the original forbidden band when s reaches special
values. While for s = 200 nm, the strong resonance in-
dicates the efficient excitation of surface plasmons in the
first GNR, while the second does not contribute as the
GNRs in the two layers are not coupled to each other ef-
fectively. To explore physics behind this, we calculated
the field distributions Hz at 12.21μm. It can be seen that
a first-order resonance mode is supported in the infinitely
long graphene nanoribbon due to the strong coupling to
SPPs in the graphene sheet waveguide for s = 200 nm.
Moreover, most of the energy fails to pass through the
waveguide, as plotted in fig. 3(h). As the s is gradu-
ally decreased, the resonance mode supported by the first
graphene nanoribbon is diminished due to destructive in-
terference and then turns to be excited in the second one,
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Fig. 3: (Color online) (a)–(d) Transmission spectra calculated
by the FDTD method (blue balls) and analytical fittings (solid
red curves) by the CMT for different s in the direct coupling
scenario. (e)–(h) Field distributions Hz at the transparency
wavelength of 12.21 μm. The heights of the two GNRs are set
as g1 = 100 nm and g2 = 300 nm. The widths of the two GNRs
are fixed to be 100 nm. The Fermi energies in graphene are set
to be EF0 = 0.17 eV, EF1 = EF2 = 0.16 eV.

which could result in an increasing amount of SPPs pass-
ing through the waveguide, as plotted in figs. 3(e)–(h).
The analytical fitting of eq. (7) to the transmission spectra
for different s is presented in figs. 3(a)–(d), exhibiting very
good agreement with the numerical calculations. This is
the control of the EIT-like transmission spectra, which
is different from the method indicated in ref. [24], where
the modulation of the transparency window is achieved
by changing the vertical distance between the two GNRs,
while the different heights gi of the GNR may slightly
affect its resonance frequency [24], which leads to a fre-
quency mismatch between the two GNRs, resulting in the
broken symmetry of the EIT-like lines.

From eq. (7), the quality factor Qc(κ21) controlled by s
between the two GNRs affects the transmission properties
of the graphene waveguide, which is similar to the PIT ef-
fect in MIM waveguide [22]. With the increase of s from 0
to 200 nm, the coupling coefficient κ21 obtained from the
analytical fitting is successively deduced from 2.5 × 1012

to 0.48 × 1012 rad/s. As expected, the resonance mode
supported by the first GNR is split into two super res-
onance modes corresponding to the transmission dips at
λr1 and λr2. With the decrease of the coupling strength,
λr1 is red-shifted while λr2 is blue-shifted. Each of these
numerical results is consistent with the analytical model
based on eq. (6). The field distributions Ex are plotted
in figs. 4(b), (c) at λr1 = 12.04μm, λr2 = 12.44μm for
s = 0nm. At these wavelengths, the two GNRs are both
strongly excited. The near fields in the two GNRs are in
phase at 12.44μm while they are out of phase at 12.04μm,
corresponding to the two super resonances [10]. Actually,
both the super resonances are excited at the transparency
peak wavelength simultaneously so that the near field is

Fig. 4: (Color online) (a) Coupling coefficient κ21 (blue balls)
as a function of s; resonance wavelength of transmission dips
calculated using the CMT (solid curves) and FDTD method
(triangles and squares). (b) Field distributions Ex at the trans-
mission dip wavelengths of 12.04, 12.44 μm for s = 0 nm.

enhanced in one GNR while prohibited in the other, as
shown in fig. 3(e). Hence the formation and evolution of
the transparency window are determined by the excitation
of the super resonances, as well as by the destructive in-
terference and the coupling strength in the direct coupling
scenario, respectively.

For comparison, the indirect coupling scenario shown in
fig. 2(b) is also investigated, which is structurally similar
to the direct coupling but imply a significantly different
physical picture. Combining with eqs. (1)–(3) and S

(i)
2+ =

S
(i)
1+ − j(ωi/2Qei)1/2ai, S

(i)
1− = S

(i)
2− − j(ωi/2Qei)1/2ai, the

relationship between incoming and outgoing SPP waves of
the i-th GNR can be expressed as [23][

S
(i)
1−

S
(i)
2+

]
= Vi

[
S

(i)
1+

S
(i)
2−

]
, (8)

where

Vi =
( −ri/ti α/ti

1 + ri/ti ri/ti

)
.

For the indirect coupling configuration, the side-coupled
GNRs can be treated as frequency-dependent lossy mir-
rors, i.e. the waveguide regions between the GNRs can be
regarded as Fabry-Perot (FP) cavities, and the SPP waves
in the graphene waveguide should satisfy the steady-state
condition [21,23][

S
(i+1)
1+

S
(i+1)
2−

]
= Mi

[
S

(i)
1−

S
(i)
2+

]
, (9)

where

Mi =

(
0 ejθi

e−jθi 0

)
.

Here θi (i = 1, 2, . . . , N − 1) is the phase difference be-
tween the i-th and (i + 1)-th GNRs, which can be ex-
pressed as θi = Re(neff)Li/c, where neff = πε0h̄

2(ω +
jτ−1)/(k0e

2EF ) is the effective index of the graphene
waveguide [25]. Thus, the transfer equation of the indi-
rect coupling configuration can be expressed as[

S
(i+1)
1+

S
(i+1)
2−

]
= H

[
S

(i)
1−

S
(i)
2+

]
, (10)
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Fig. 5: (Color online) Transmission spectra for the two indi-
rectly coupled GNRs with different frequency detuning corre-
sponding to different Fermi energy EFi in GNRs. (a) 0.162
and 0.178 eV, (b) 0.164 and 0.176 eV, (c) 0.166 and 0.174 eV,
(d) 0.168 and 0.172 eV and (e) 0.170 eV. The widths of
GNRs are set as wi = 100 nm and the heights are fixed to
be gi = 100 nm. The inter-space is set to be L1 = 400 nm.
Numerical and theoretical results are labeled by blue balls and
solid red curves, respectively.

where H = VNMN−1VN−1MN−2, . . . , V2M1V1, and the
transmittance can be derived as

T =

∣∣∣∣∣αS
(N)
2+

S
(1)
1+

∣∣∣∣∣
2

=
∣∣∣∣H21H12 − H22H11

H12

∣∣∣∣
2

. (11)

Figure 5 shows the transmission spectra of the dual-
GNR–coupled waveguide, suggesting typical EIT-like line-
shapes, i.e., a narrow transparency window within the
original forbidden band. The resonant wavelength of
the two GNRs can be dynamically tuned by adjusting
the Fermi energy according to the expression of ωi ∝
eh̄−1(2EFi(ε0w)−1)1/2 [25]. Based on eq. (11), the trans-
mission efficiency of the dual-GNR–coupled waveguide
(N = 2) can be deduced to be

Tdual =

∣∣∣∣∣αS
(2)
2+

S
(1)
1+

∣∣∣∣∣
2

=

∣∣∣∣∣ αej2θ1t1t2

|α|2 − r1r2ej2θ1

∣∣∣∣∣
2

, (12)

where t1,2 and r1,2 based on eqs. (2), (3) are the com-
plex transmission and reflection coefficients of the single-
GNR–coupled waveguides with different Fermi energies
EF1,2. As shown in fig. 5, a transparency window with
frequency detuning |ω1 − ω2| appears at the frequency of
(ω1 + ω2)/2. It can be seen that a smaller frequency detun-
ing induces a narrower spectral bandwidth but a reducing

Fig. 6: (Color online) (a) Transmission spectra of the in-
direct coupling scenario for inter-space L1 = 350, 400, 500
and 600 nm, with w1 = w2 = 100 nm and EF1 = 0.166 eV,
EF2 = 0.174 eV. The black solid curves with triangles and
circles are the transmission spectra of the single-GNR–coupled
waveguide with EF1 = 0.166 eV and EF2 = 0.174 eV, respec-
tively. (b) Transmission for different inter-space L1 at the
transparency wavelength of 11.85 μm. (c) Evolution of trans-
mission spectra vs. incident wavelength and L1 obtained by
eq. (12).

peak transmission, indicating a tradeoff between the qual-
ity factor and the peak transmission, which is similar to
the phase-coupled PIT in a detuned cavity-coupled MIM
waveguide [23,27]. Interestingly, the frequency detuning
can be dynamically controlled by external gate voltages,
which provides a convenient scheme to adjust the quality
factor of the transparency window without changing the
structural parameters. The theoretical results obtained by
eq. (12) are in good agreement with numerical simulations.

On the other hand, when light is impinged from the left
port, the first-order resonant modes in the two GNRs can
be excited simultaneously and the L1-dependent trans-
parency peak between the separate resonances exhibits a
shift in transmission intensity for a fixed frequency detun-
ing, as shown in fig. 6(a), suggesting the coherent and
resonant interaction between the two GNRs. Accord-
ing to eq. (12), the transmission efficiency can be further
derived as

Tdual =

(
|t1t2|

|α|2−|r1r2|

)2
⎛
⎝|α|2+4

( √
r1r2

|α|2−|r1r2|

)2

sin2ϕ1

⎞
⎠

−1

,

(13)
where ϕ1 is one-half of the round-trip phase accumu-
lated in the FP cavity: ϕ1 = Arg[r1r2 exp(−2jβL1)]/2.
To test this prediction, we numerically calculated the
transmission spectrum for different inter-space L1 at the
transparency peak wavelength of 11.85μm, as shown in
fig. 6(b). It can be seen that the transmittance shifts pe-
riodicity with the inter-space L1 (the periodicity is about
150 nm) and the peak values of the transmission spectrum
gradually get smaller due to the increase of the intrin-
sic loss in the waveguide region between the two GNRs.
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Fig. 7: (Color online) (a) Simulation (blue balls) and theo-
retical (solid red curve) transmission spectrum of the triple-
GNR–coupled waveguide with wi = 100 nm, gi = 100 nm,
L1 = L2 = 100 nm, and EF1 = 0.16 eV, EF2 = 0.17 eV,
EF3 = 0.18 eV. Field distributions Hz at the two transparency
wavelengths: (b) λ12 = 12.01 μm and (c) λ23 = 11.69 μm.

According to eq. (13), the transmittance gets maximized
when one-half of the round-trip phase ϕ1 is a multiple
of π, i.e., sin2ϕ1 = 0. For instance, the real part of
the effective refractive index equals 43.07 at 11.85μm,
and sin2ϕ1 = 0.0011 (0.9967) for L = 440 (510) nm cor-
responds to the maximum (minimum) transmittance of
0.57 (0.46). Figure 6(c) shows the evolution of transmis-
sion spectra vs. wavelength and L1 obtained by eq. (12).
It is shown that the transmission dips corresponding to the
separate resonances remain unchanged, while the trans-
parency peak undergoes periodical modulation, exhibiting
good agreement with the numerical simulations.

Finally, a triple-GNR–coupled waveguide is investigated
to validate the effectiveness of the theoretical model in
multi-GNR–coupled waveguide. When N = 3, the trans-
mission efficiency can be obtained as

Ttriple =

∣∣∣∣∣αS
(3)
2+

S
(1)
1+

∣∣∣∣∣
2

=

∣∣∣∣∣ αej2(θ1+θ2)t1t2t3

|α|3−αr1r2ej2θ1−αr2r3ej2θ2−αr1r3(r2+t2)ej2(θ1+θ1)

∣∣∣∣∣
2

.

(14)

As shown in fig. 7(a), the theoretical calculation based on
eq. (14) shows good agreement with the numerical simula-
tion. There are two transmission peaks at the wavelengths
λ12 = 12.01μm and λ23 = 11.69μm in the transmission
spectrum, forming the dual-band EIT-like line. To illus-
trate the physics behind this, we plotted the field distri-
butions of the transparency wavelengths. An obvious FP
resonance is achieved in the waveguide region between the
first and second (second and third) GNRs at the wave-
length λ12 = 12.01μm (λ23 = 11.69μm), as depicted in
figs. 7(b), (c), which is consistent with the aforementioned
discussion about the dual-GNR–coupled waveguide. It is
truly indicated that the indirect coupled model can be
further extended to the multi-GNR–coupled situations.

Conclusions. – In conclusion, we have theoretically
investigated PIT characteristics using CMT in integrated

graphene waveguides with direct and indirect couplings.
Numerical simulations verify the theoretical predication
and demonstrate that the formation and evolution of the
transparency window are attributed to the excitation of
the super resonances, as well as to the destructive inter-
ference and the coupling strength in the direct coupling
scenario, respectively. For the case of indirect coupling,
the peak transmission and corresponding quality factor
can be dynamically tuned by adjusting the Fermi energy
of GNRs. Moreover, the transparency peak shifts period-
icity with the round-trip phase accumulated in the waveg-
uide region, which can be quantitatively testified by CMT
and FP model. In addition, the indirect coupled model can
be further extended to the multi-GNR–coupled situations.
Our works may have potential application in the design of
ultra-compact plasmonic devices for optical modulating.
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