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Abstract – One of the defining traits of quantum mechanics is the uncertainty principle which
was originally expressed in terms of the standard deviation of two observables. Alternatively, it
can be formulated using entropic measures, and can also be generalized by including a memory
particle that is entangled with the particle to be measured. Here we consider a realistic scenario
where the memory particle is an open system interacting with an external environment. Through
the relation of conditional entropy to mutual information, we provide a link between memory
effects and the rate of change of conditional entropy controlling the lower bound of the entropic
uncertainty relation. Our treatment reveals that the memory effects stemming from the non-
Markovian nature of quantum dynamical maps directly control the lower bound of the entropic
uncertainty relation in a general way, independently of the specific type of interaction between
the memory particle and its environment.

Copyright c© EPLA, 2015

Introduction. – The uncertainty principle is a pillar
of quantum theory, embodying one of its characteristic
traits: inevitable uncertainty limiting our ability to pre-
dict the measurement results of two incompatible observ-
ables simultaneously. Based on the ideas of Heisenberg [1]
related to the uncertainty of position x and momentum
px, Kennard [2] formulated the first uncertainty rela-
tion in terms of the product of standard deviations, i.e.,
ΔxΔpx ≥ �/2. Later, this relation was generalized by
Robertson [3] for two arbitrary observables Y and Z as
ΔY ΔZ ≥ 1

2 |〈ψ|[Y,Z]|ψ〉|. Nevertheless, there are sev-
eral drawbacks in quantifying uncertainty via standard
deviation [4,5]. Moreover, the uncertainty bound above
is state dependent, and it can become trivial when a
state |ψ〉 has zero expectation value for the commutator
[Y,Z].

An alternative method is to quantify the uncertainty
about the probability distribution for measurement out-
comes based on the use of entropic measures [6]. Such
an approach is especially meaningful when we are in-
terested in the uncertainty related to the lack of knowl-
edge of possible measurement outcomes. One of the most
well-known entropic uncertainty relations was proved by

(a)E-mail: goktug.karpat@utu.fi

Maassen and Uffink [7],

H(Q) + H(R) ≥ log2

1
c
, (1)

where the Shannon entropy H(X) = −
∑

x p(x) log2 p(x)
quantifies the amount of uncertainty about the observ-
able X ∈ (Q,R) before the result of its measurement is
revealed. Here, the probability of the outcome x is de-
noted by p(x) when a density operator ρ is measured in
X-basis. Complementarity of the observables Q and R is
given by 1/c = 1/maxi,j |〈ψi|φj〉|2, where |ψi〉 and |φj〉
are the eigenstates of the Hermitian observables Q and R,
respectively.

We now consider a scenario in which Bob has access
to an additional particle serving as a quantum memory
(particle B), which is entangled with the particle held by
Alice (particle A). Alice performs measurements on her
particle as described by Q and R. In this setting, Berta
et al. showed [8] that a more general uncertainty relation
holds

S(Q|B) + S(R|B) ≥ log2

1
c

+ S(A|B), (2)

where S(A|B) = S(ρAB) − S(ρB) is the conditional en-
tropy. While S(ρ) = tr[ρ log2 ρ] denotes the von Neumann
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entropy, S(X|B) with X ∈ (Q,R) represents the condi-
tional entropies of the post-measurement states ρXB =∑

j(|ψj〉〈ψj | ⊗ I)ρAB(|ψj〉〈ψj | ⊗ I) after the subsystem
A is measured in X-basis, {|ψj〉} are the eigenstates of
the observable X, and I is the identity matrix. The
memory-assisted uncertainty relation in eq. (2) gave rise to
applications related to witnessing entanglement and cryp-
tographic security [8]. It has also been verified with two
experiments [9,10].

Realistic quantum systems interact with their surround-
ings, resulting in the loss of characteristic features of quan-
tum theory. The effects of this interaction are described
within the framework of open quantum systems [11]. From
the perspective of memory effects, it is conventional to
categorize the dynamics of open systems into two groups.
While Markovian evolution leads to the absence of mem-
ory effects, where the system monotonically loses informa-
tion to the environment, non-Markovian features might
enable the system to recover some part of the information
back from the environment, generating memory effects.
The characterization of non-Markovianity [12–19] and the
advantages of memory effects [20–25] are an active field of
research. All the same, we should underline that our work
is not merely another attempt to contribute to discussions
about which measure is better than others. Rather, here
we point out a fundamental operational meaning of mem-
ory effects in quantum theory.

In this work, we consider a setting where the memory
particle B is an open system interacting with an environ-
ment E and thus undergoing non-unitary dynamics de-
scribed by a t-parameterised family of quantum channels
Φt. Let us assume that both the state of the compos-
ite system AB and the environment E are initially pure,
and keep in mind the relation of the conditional entropy
S(A|B) to the mutual information I(ρAB) (see eq. (5)).
We are thereby able to provide a link, via eq. (6), be-
tween memory effects, emerging as a consequence of the
backflow of information from the environment E to the
memory particle B, and the rate of change of the con-
ditional entropy S(A|B). We reveal that memory effects
directly control the lower bound of uncertainty associated
with the observables Q and R. Our approach establishes
a general connection between the memory effects and the
lower bound of the memory-assisted entropic uncertainty
relation, in a way that is independent of the type of non-
Markovian noise on the memory particle B. We demon-
strate the implications of our findings by studying Bob’s
uncertainty, about the measurement results of two observ-
ables Q and R, along with its lower bound for dephasing
and relaxation models.

Preliminaries. – It is convenient to think about uncer-
tainty relations with the help of an uncertainty game [8],
taking place between Alice and Bob. Firstly, they agree
on two observables, Q and R. Then, Bob prepares a par-
ticle in a quantum state that he desires and sends it to
Alice. Finally, Alice measures the particle she received in

one of the two agreed bases and tells her choice to Bob,
whose task is then to minimize the uncertainty about the
measurement outcomes. In fact, in the absence of quan-
tum memory, eq. (1) restricts Bob’s uncertainty about the
measurement on Alice’s system.

Provided Bob entangles the particle A that he sends
to Alice with an additional memory particle B before
the game starts, then the memory-assisted entropic un-
certainty relation in eq. (2) bounds his uncertainty about
the outcomes of measurements in Q and R bases on Al-
ice’s system. Particularly, the left-hand side of eq. (2)
quantifies Bob’s total amount of ignorance about Alice’s
measurement outcomes, given that Bob has access to the
memory particle B. Also, there appears an additional
term on the right-hand side, namely S(A|B), modifying
the lower bound of the uncertainty associated to the ob-
servables Q and R. It is crucial to emphasize that, unlike
its classical counterpart, quantum conditional entropy can
take negative values, which by itself paves the way to inter-
esting operational applications [26]. In the extreme case,
where A and B are maximally entangled, Bob can indeed
correctly predict the measurement outcomes of two incom-
patible observables with vanishing uncertainty.

We now clarify how we understand the memory effects
in open quantum systems. Such memory effects result
from the non-Markovian reduced dynamics of the mem-
ory particle B, caused by its interaction with an external
reservoir. However, non-Markovianity is a multi-faceted
phenomenon in the quantum domain and there exists no
unique way of capturing all different features of memory
effects [12–19,27,28]. We will characterize them through
the non-monotonical behavior of the mutual information
under local completely-positive-trace–preserving (CPTP)
maps [16], since this approach enjoys a physical interpre-
tation in terms of flow of information between the system
and its environment [29].

Quantum mutual information quantifies the total
amount correlations in a bipartite state as

I(ρAB) = S(ρA) + S(ρB) − S(ρAB), (3)

where ρA = trB [ρAB ] and ρB = trA[ρAB ] are density
matrices of the reduced systems. Probing the dynamics
of mutual information between an open system and an
isolated one, Luo, Fu, and Song (LFS) proposed a crite-
rion to identify the memory effects associated with non-
Markovian dynamical maps [16]. Note that memoryless
Markovian maps satisfy the property of divisibility, i.e.,
Φt = Φt,sΦs with Φt,s being CPTP and s ≤ t. If we as-
sume that the map Φt is acting only on the subsystem
B and the subsystem A evolves trivially, the absence of
memory effects immediately implies

I((I ⊗ Φt)ρAB) ≤ I((I ⊗ Φs)ρAB), (4)

at all times 0 ≤ s ≤ t for all bipartite states ρAB . There-
fore, based on the violation of this inequality, one can de-
tect the presence of memory related to the map Φt. That is
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Fig. 1: (Color online) (a) Schematic representation of our set-
ting where the memory particle B is in interaction with an en-
vironment E, and the measurements performed on the particle
A are agreed to be in Q and R bases. (b) Entropy diagram for
the tripartite system ABE showing the information exchange
among the parties. The total amount of mutual information
enclosed by the thick line, i.e. I(ρAB)+I(ρAE), stays the same
throughout the dynamics. Thus, the information that B and
E individually share with A flows into each other.

to say that any revival of I(ρAB) throughout the dynamics
is a signature of the memory effects.

Main result. – In the following, we consider a real-
istic setting where the memory particle B, which is in
Bob’s possession to improve the uncertainty bound given
in eq. (2), is an open system interacting with an environ-
ment E, as pictorially sketched in fig. 1(a). The moti-
vation for this scenario, where the memory particle B is
being affected by the environmental noise, is connected
with the fact that the significance of the memory-assisted
uncertainty relation in eq. (2) relies on the quantumness of
the memory particle B. Therefore, we intend to compre-
hend the usefulness and relevance of non-Markovian mem-
ory effects while the memory particle B becomes classical
undergoing a decoherence process.

We first remember that we can write the mutual infor-
mation I(ρAB) of a bipartite state ρAB in terms of con-
ditional entropy as I(ρAB) = S(ρA) − S(A|B). In our
setting, as the bipartite system AB evolves in time, time-
dependent mutual information I(ρAB(t)) shared by the
particle A to be measured and the memory particle B is
given as

I(ρAB(t)) = S(ρA) − St(A|B), (5)

where St(A|B) = S(ρAB(t)) − S(ρB(t)). Taking the time
derivative of both sides, our main argument simply follows:

d
dt

I(ρAB(t)) = − d
dt

St(A|B), (6)

due to the fact that S(ρA) is invariant in time.
Equation (6) provides a direct connection between
the rate of change of the mutual information I(ρAB(t)),
whose summation over a certain time interval measures
the amount of memory effects, and the rate of change
of the conditional entropy St(A|B), summation of which
over the same interval basically controls the uncertainty

bound in eq. (2) since the complementarity 1/c is not state
dependent. In other words, this relation clearly reveals
how the lower bound of the memory-assisted entropic un-
certainty relation is reduced via the effects of the memory.
In particular, when the memory effects manifest, as sig-
nalled by a increase of mutual information I(ρAB(t)), we
will observe a decrease in the conditional entropy St(A|B),
which, in turn, corresponds to a reduction in the lower
bound in eq. (2). At this point, we emphasize that this is
a quite interesting and non-trivial result, considering the
fact that there exist numerous other quantifiers of non-
Markovian memory effects in the literature, none of which
can be directly linked to the entropic uncertainty rela-
tions as we have demonstrated in this work. In fact, we
should also mention that independently of the existence of
memory effects in the dynamics, the rate of change of the
lower bound of the memory-assisted entropic uncertainty
relation is linked to the rate of change of the conditional
entropy St(A|B) and thus to the rate of change of the mu-
tual information I(ρAB(t)). As a result, our approach is
not limited to non-Markovian dynamics and it holds for
any quantum process defined for the memory particle B.

Interpretation. – If we assume that both the bipar-
tite system AB, and the environment E can be initially de-
scribed by pure states, then the LFS criterion can be given
an information theoretic interpretation in terms of the in-
formation exchange between the open system and its envi-
ronment. There exists a link between the rate of change of
the mutual information I(ρAB(t)) shared by the particle
A and the memory particle B, and the rate of change of
the mutual information I(ρAE(t)) between the particle A
and the environment E [29],

d
dt

I(ρAE(t)) = − d
dt

I(ρAB(t)), (7)

which follows from the fact that I(ρAB(t)) + I(ρAE(t))
always remains invariant throughout the time evolution.
Specifically, if I(ρAE(t)) (which is initially zero) mono-
tonically increases, this will imply a monotonic decrease
in I(ρAB(t)). However, in case I(ρAB(t)) rises temporar-
ily, then we will see a reduction in I(ρAE(t)) by the
same amount. Note that the ternary mutual information
I(ρABE) vanishes thanks to the pureness of the tripartite
system ABE. In other words, the memory particle B and
the environment E individually exchange the information
that they have in common with the particle A back and
forth during the dynamics as depicted in fig. 1(b). When
the information that A shares with E flows back into the
part which A and B have in common, memory effects
emerge. Conceptually, this means that the particle A in
fact serves as a medium for the correlations hence allowing
memory effects to propagate from the environment E to
the memory particle B. This makes it possible to modify
the lower bound of the memory-assisted entropic uncer-
tainty relation. It should be mentioned that even in case
of mixed initial environmental states (finite temperature
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environments), one can directly use the criterion given in
terms of the non-monotonic behavior of mutual informa-
tion between A and B, to control the entropic uncertainty
bound. Furthermore, our information theoretic interpre-
tation can still be applied with a small modification, where
the state of the environment is purified with an additional
subsystem E′. In this case, our treatment is still fully
valid with one difference: the flow of information should
now be considered between the subsystems A, B and pu-
rified environment EE′.

Examples. – We now elaborate the implications of our
result for two types of non-Markovian noise models on the
memory particle B, which is assumed to be a two-level
system. We start to examine our problem for a colored
dephasing noise introduced by Daffer et al. in ref. [30].
Suppose that the dynamics is described by a master equa-
tion of the form ρ̇ = KLρ, where K acts on the memory
particle B as Kφ =

∫ t

0
k(t− t′)φ(t′)dt′, k(t− t′) is a kernel

function determining the type of memory in the environ-
ment, ρ is the density operator of the particle B, and L is
a Lindblad superoperator. To study a master equation of
this form, we can consider a time-dependent Hamiltonian
H(t) = �Γ(t)σz, where σz is the Pauli operator in the
z-direction and Γ(t) is an independent random variable
with the statistics of a random telegraph signal. Particu-
larly, it can be expressed as Γ(t) = αn(t), where n(t) has a
Poisson distribution with a mean equal to t/2τ and α is a
coin-flip random variable having the values ±α. If α = 1,
the dynamics of the memory particle B can be described
by the Kraus operators

K1(ν) =
√

[1 + Λ(ν)]/2I, (8)

K2(ν) =
√

[1 − Λ(ν)]/2σ3, (9)

where we have Λ(ν) = e−ν [cos(μν) + sin(μν)/μ], and
μ =

√
(4τ)2 − 1 with ν = t/2τ being the scaled time.

The parameter τ controls the degree of non-Markovianity
producing the memory effects. In particular, the dynamics
of B can be obtained using the Kraus operators as

ρAB(ν) =
2∑

i=1

Ki(ν)ρ(0)K†
i (ν). (10)

To study the lower bound of the memory-assisted en-
tropic uncertainty relation, we choose the observables as
Q = σ1 and R = σ3. Also, we set U(t) ≡ St(σ1|B) +
St(σ3|B) and UB(t) ≡ log2[1/c] + St(A|B), where U(t)
and UB(t) stand for uncertainty and uncertainty bound,
respectively. Since σ1 and σ3 are complementary, log2[1/c]
attains its maximal value, i.e., log2[1/c] = 1. Moreover,
the initial states we consider in this work for the bipartite
system AB are of the form

|Ψ〉 =
√

a|00〉 +
√

b|10〉 +
√

c|11〉, (11)

where the normalization condition holds as a + b + c = 1.

U
, U

B

t/2τ

(b)

U
, U

B

t/2τ

(e)

U
, U

B

t/2τ

(c)

U
, U

B

t/2τ

(f)

U
, U

B

t/2τ

(a)

U
, U

B

t/2τ

(d)

Fig. 2: (Color online) Uncertainty U(t) (red solid line), its
lower bound UB(t) (blue dashed line) and mutual information
I(ρAB(t)) (green dotted line) vs. scaled time t/2τ when the
memory particle B is affected by colored dephasing noise. We
have a = 0.5, b = 0 and c = 0.5 for the initial state of AB in
(a), (b) and (c), and a = 0.5, b = 0.2 and c = 0.3 in (d), (e)
and (f). The parameter controlling non-Markovianity is set as
τ = 0.1 in (a) and (d), τ = 5 in (b) and (e), and as τ = 20
in (c) and (f). Note that the plots in (a) and (d) show the
Markovian limit of the considered model.

In fig. 2, we show the results of our analysis of U(t) (red
solid line), UB(t) (blue dashed line), and I(ρAB(t)) (green
dotted line) for the dephasing noise. In fig. 2(a), (b)
and (c), we let the initial state of AB to be a maxi-
mally entangled state, that is, we set a = 0.5, b = 0 and
c = 0.5. While the parameter controlling the degree of
non-Markovianity is set to τ = 0.1 to show the Markovian
limit of the evolution in (a), it is set to τ = 5 and τ = 20
in (b) and (c), respectively. In the Markovian limit, where
memory effects are absent, uncertainty bound UB(t) and
uncertainty U(t) can be both observed to be monoton-
ically increasing. However, as a direct consequence of
our main result in eq. (6), we see by comparing (b) and
(c) that a greater amount of non-Markovian memory ef-
fects (a greater amount of increase in I(ρAB(t))) implies a
greater reduction in UB(t), which is in fact followed by the
same amount of reduction in U(t) since the bound is tight
in this case. We also note that here the ignorance only
comes from the term St(σ1|B) because St(σ3|B) vanishes.
This example already demonstrates how we can control
the lower bound of the memory-assisted uncertainty rela-
tion by simply adjusting the degree of memory effects. We
emphasize that when the lower bound in eq. (2) is tight
(UB = U), as in this example, memory effects not only
control the lower bound but also the actual uncertainty.
Moving to the remaining three plots, fig. 2(d), (e) and (f),
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Fig. 3: (Color online) Uncertainty U(t) (red solid line), its
lower bound UB(t) (blue dashed line) and mutual information
I(ρAB(t)) (green dotted line) vs. scaled time γ0t when the
memory particle B is affected by zero-temperature relaxation
noise. We have a = 0.5, b = 0 and c = 0.5 for the initial state
of AB in (a), (b) and (c), and a = 0.5, b = 0.4 and c = 0.1 in
(d), (e) and (f). The parameter controlling non-Markovianity
is set as λ/γ0 = 3 in (a) and (d), λ/γ0 = 0.1 in (b) and (e),
and λ/γ0 = 0.03 in (c) and (f). Note that the plots in (a) and
(d) show the Markovian limit of the considered model.

we have a = 0.5, b = 0.2 and c = 0.3 for the initial state
of AB. Whereas τ = 0.1 in fig. 2(d), we have τ = 5 and
τ = 20 in (e) and (f), respectively. It is clear that we can
reach a similar conclusion about the memory effects low-
ering the bound by comparing these plots. It is important
to note that although the bound is not tight for this initial
state, the reduction of UB(t) due to the memory effects is
followed by a reduction of the actual uncertainty U(t).

The second example deals with a zero-temperature re-
laxation model. The Hamiltonian is

H = ω0σ+σ− +
∑

k

ωka†
kak + (σ+B + σ−B†), (12)

where σ± represent the operators of the memory B with
the transition frequency ω0, and B =

∑
k gkak. The an-

nihilation and creation operators of E are denoted by
ak and a†

k, respectively, having frequencies ωk. Suppos-
ing that the environment has an effective spectral density
J(ω) = γ0λ

2/2π[(ω0 − ω)2 + λ2], the dynamics of B is
described by the Kraus operators,

M1(t) =

(
1 0

0
√

p(t)

)
, M2(t) =

(
0

√
1 − p(t)

0 0

)
, (13)

where p(t) = e−λt[cos (dt/2)+(λ/d) sin (dt/2)]2. Here d =√
2γ0λ − λ2 and λ/γ0 controls non-Markovianity.

Figure 3 displays our findings for the zero-temperature
relaxation noise on the memory particle B. In fig. 3(a),
(b) and (c), the initial state of the bipartite system AB
is taken as a = 0.5, b = 0 and c = 0.5, which is the
maximally entangled state. We set λ/γ0 = 3 in (a) to
show the Markovian limit of the model, and λ/γ0 = 0.1
and λ/γ0 = 0.03 in (e) and (f), respectively. We observe
that, unlike in case of the dephasing model, both terms
in U(t) are non-zero here, and the maximally entangled
state does not saturate the bound. On the other hand, we
show the result of a similar analysis for the initial state
a = 0.5, b = 0.4 and c = 0.1 in fig. 3(d), (e) and (f),
where the uncertainty bound becomes almost tight. Our
general conclusion about the memory effects reducing the
lower bound of the memory-assisted entropic uncertainty
relation can also be easily observed to hold here.

Conclusion. – In conclusion, considering a realistic
setting where Bob’s memory particle B is an open system
interacting with an external environment E, we have es-
tablished a connection between the memory effects and the
lower bound of Bob’s uncertainty for two observables mea-
sured on Alice’s system. We have demonstrated that mem-
ory effects, which have their roots in the non-Markovian
features of the dynamical map, can be used to diminish
the lower bound of the uncertainty relation. Furthermore,
this reduction might in turn reduce Bob’s ignorance about
the outcomes of the measurements in Q and R bases on
Alice’s part, as demonstrated in the two paradigmatic ex-
amples we present.

While specific results have been obtained on the ef-
fect of noise to the memory-assisted entropic uncertainty
relation [31], we stress that our treatment provides a con-
nection between the lower bound of uncertainty and the
memory effects by means of an information theoretic defi-
nition of non-Markovianity. Thus, it is completely general
and holds independently of any specific model for open
quantum systems. In other words, the underlying relations
between non-Markovian behavior and entropic uncertainty
in the results obtained in ref. [31] can be consistently un-
derstood and unified through our model-independent and
information theoretic approach.
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Göktuğ Karpat et al.

[3] Robertson H. P., Phys. Rev., 34 (1929) 163.

[4] Deutsch D., Phys. Rev. Lett., 50 (1983) 631.

[5] Bialynicki-Birula I. and Rudnicki L., in Statistical
Complexity, edited by Sen K. D. (Springer, New York)
2011.

[6] Wehner S. and Winter A., New J. Phys., 12 (2010)
025009.

[7] Maassen H. and Uffink J. B. M., Phys. Rev. Lett., 60
(1988) 1103.

[8] Berta M., Christandl M., Colbeck R., Renes J. M.

and Renner R., Nat. Phys., 6 (2010) 659.

[9] Prevedel R., Hamel D. R., Colbeck R., Fisher K.

and Resch K. J., Nat. Phys., 7 (2011) 757.

[10] Li C.-F., Xu J.-S., Xu X.-Y., Li K. and Guo G.-C.,
Nat. Phys., 7 (2011) 752.

[11] Breuer H.-P. and Petruccione F., The Theory
of Open Quantum Systems (Oxford University Press,
Oxford) 2007.

[12] Rivas A., Huelga S. F. and Plenio M. B., Phys. Rev.
Lett., 105 (2010) 050403.

[13] Hou S. C., Yi X. X., Yu S. X. and Oh C. H., Phys.
Rev. A, 83 (2011) 062115.

[14] Breuer H.-P., Laine E.-M. and Piilo J., Phys. Rev.
Lett., 103 (2009) 210401.

[15] Lu X.-M., Wang X. and Sun C. P., Phys. Rev. A, 82
(2010) 042103.

[16] Luo S., Fu S. and Song H., Phys. Rev. A, 86 (2012)
044101.

[17] Fanchini F. F., Karpat G., Çakmak B., Castelano
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