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Abstract – Network theory has unveiled the underlying structure of complex systems such as the
Internet or the biological networks in the cell. It has identified universal properties of complex
networks, and the interplay between their structure and dynamics. After almost twenty years
of the field, new challenges lie ahead. These challenges concern the multilayer structure of most
of the networks, the formulation of a network geometry and topology, and the development of a
quantum theory of networks. Making progress on these aspects of network theory can open new
venues to address interdisciplinary and physics challenges including progress on brain dynamics,
new insights into quantum technologies, and quantum gravity.

perspective Copyright c© EPLA, 2015

Introduction. – Network theory emerged almost
twenty years ago as a new field for characterizing interact-
ing complex systems, such as the Internet, the biological
networks of the cell, and social networks. It is now time to
reflect on the maturity of the field, indicating the main re-
sults obtained so far and the big challenges that lie ahead.

Initially, the physics perspective, in particular the
statistical-mechanics approach, has dominated the field of
network theory [1–7]. This point of view has played a
central role to characterize the universal properties of the
structure of complex networks. It has been found that de-
spite the diversity of complex networks, ranging from the
Internet to the protein interaction networks in the cell,
most networks obey universal properties: they are small
world [8], they are scale free [9], and they have a non-
trivial community structure [7]. Furthermore, over the
years, special attention has been addressed to the inter-
play between network structure and dynamics [10,11]. In
fact phase diagrams of critical phenomena and dynamical
processes change drastically when the dynamics is defined
on complex networks. Complex networks are responsible
for significant changes in the critical behaviour of perco-
lation, Ising model, random walks, epidemic spreading,
synchronization, and controllability of networks [10–13].

The need to characterize complex systems, to extract
relevant information from them, and to understand
how dynamical processes are affected by the network
structure, has never been more severe than in the
XXI century when we are witnessing a Big Data explosion

in social sciences, information and communication tech-
nologies and in biology.

Under different points of view, it can be argued that
network theory, started from the perspective of the the-
oretical physicists with the goal of answering these ques-
tions, is becoming an increasingly multidisciplinary field.
As knowledge and amount of data about biological net-
works, social networks or infrastructures, are becoming
more substantial, it seems inevitable that different types
of networks require different expertise, involving scientists
of the relative specific disciplines in the first place. There-
fore, while network tools are becoming widely accepted
in system biology, social sciences, or in engineering, the
different sub-fields are becoming more specialized.

Here I am advocating that the theoretical approach is
nevertheless fundamental to address the Big Challenges
that lie ahead, and that physicists and mathematicians
continue to be essential for the advance of the field. We
will never make real progress in the understanding of the
brain function [14] or of the origin of life if we do not inte-
grate the biological knowledge with a physics understand-
ing [15,16] of these two most striking examples of emergent
phenomena. In this effort, considering the brain under the
point of view of multilayer networks [17–22] could con-
tribute to the global understanding of brain function as
due to the dynamics occurring on several interacting net-
works. Moreover, to understand the origin of life it would
be crucial to shed light on the formation of the minimal
cellular networks of protocells. To this end, it would be
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essential to model how the cell has evolved as the most
beautiful example of multilayer networks, formed by sev-
eral interacting and interdependent networks.

A very crucial question, from the theoretical physics
perspective is whether network theory is a field that might
have a significant impact also in more traditional fields of
mathematics and physics. From this point of view, two
main directions are attracting the attention of an increas-
ing number of scientists: network geometry and topology
and a quantum theory of networks. These two branches of
network theory not only represent theoretical challenges,
but they are likely to have several important practical
applications.

Developing a new theory of network geometry and
topology could contribute to a deeper understanding of
network structure, and could be crucial for solving prob-
lems in community detection and data mining [23–25].
Moreover, it is believed that this theory could be funda-
mental for proposing new routing strategies for packets in
the Internet, solving in this way a problem of scalability of
the presently used technology [26–29]. Additionally char-
acterizing brain geometry and topology will contribute
to a deeper understanding of the relation between brain
structure, dynamics and function [21,30–34]. Finally, geo-
metrical network models [35–39] have been able to gener-
ate networks sharing the phenomenology of most complex
networks and therefore provide the best way of under-
standing how all the universal properties of complex net-
works might emerge at the same time.

A quantum theory of networks, combining quantum me-
chanics and complex networks properties, could play a
pivotal role in the future development of quantum commu-
nication technologies [40]. It is known that future quan-
tum communication technologies can improve the security
and the transfer rate of current classical communication
systems. When fully implemented on the large scale, it is
likely that they will share some of the complexity prop-
erties of the current communication systems. Therefore,
the cross-disciplinary field between complex network and
quantum information is gaining increasing attention. On
the one hand, quantum dynamical processes are increas-
ingly explored on network structures [41–50]. On the other
hand, quantum information proposals [51,52], are pushing
the frontier of our understanding of how quantum net-
works could be realized. Moreover, this field has con-
tributed to the formulation of new entropy measures for
quantifying the complexity of networks [53–56], and of new
ranking algorithms [57–59].

Defining geometrical complex networks, and relating
them to quantum states can open a new scenario for cross-
fertilization between network theory and quantum gravity.
As Penrose wrote “My own view is that ultimately physical
laws should find their most natural expression in terms of
essentially combinatorial principles, [. . .]. Thus, in ac-
cordance with such a view, should emerge some form of
discrete or combinatorial spacetime.” [60]. At the moment,
most quantum gravity approaches agree that the quantum

space-time has a discrete, network-like structure [61–64].
Moreover, it is not to be excluded a priori that network
theory, developed to understand complexity and biolog-
ical systems could bring new insight on some aspects of
quantum gravity. In the words of Lee Smolin “A theory
of quantum cosmology cannot be logically consistent if it
does not describe a complex universe.” [65].

In this direction, new results have been obtained. On
the one hand, the connection between hyperbolic complex
networks and causal sets [63,64] used in quantum grav-
ity has been explored in a recent paper [66], and causal
sets have been used to analyse complex networks [67]. On
the other hand, significant progress has been made ex-
ploring the relations between emergent network geome-
tries, evolution of quantum network states, and quantum
statistics using equilibrium [68,69] and non-equilibrium
approaches [35–37].

In the following I will focus on several topics of signifi-
cant recent interest in network theory framing the results
obtained so far and their possible role for solving the big
interdisciplinary and physical challenges that I have here
outlined.

Multilayer networks. – From the cell, to the brain
most networks are multilayers [17–19,70], i.e. they are
formed by several interacting networks. For example, in
the cell, the protein-protein interaction network, the sig-
naling networks, the metabolic networks and the tran-
scription networks are not isolated but interacting, and
the cell is not alive if anyone of these networks is not
functional. In the brain, understanding the relation of
functional and structural networks [14], forming a multi-
layer network, is of fundamental importance. Moreover,
there are additional multiple ways to characterize brain
networks as multilayer structures that capture other as-
pects of its complexity. For example it is possible to dis-
tinguish between the synaptic and electrical connectivity
of the fully annotated brain of the worm c. elegans [22],
or it is possible to construct a multilayer network formed
of different functional network modules of the brain [20].

Multilayer networks have been first introduced in the
context of social sciences [71] to describe different types
of social ties. Social networks remain at the moment one
of the typical examples of multilayer networks; neverthe-
less multilayer networks have attracted significant inter-
disciplinary interest only in the last five years, because
it has become clear that characterizing multilayer net-
works is fundamental to understand most complex net-
works including cellular networks, the brain, complex
infrastructures, and economical networks in addition to
social networks.

A multilayer network is not to be confused with a larger
network including all the interactions. As a network ulti-
mately is a way to encode information [72] about the un-
derlying complex system, there is a significant difference
between considering all the interactions at the same level,
or including the information on the different nature of the
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Fig. 1: (Color online) Visualization of different types of mul-
tilayer networks. Panel (a) shows a multiplex network where
the same set of nodes is linked in different layers. For example
these can correspond in social networks to people connected by
different means of communication. Panel (b) shows an example
of network of networks, where the nodes of different networks
are connected by interlinks (dashed lines).

different interactions. In a multilayer network, each in-
teraction has a different connotation, and this property is
correlated with other structural characteristics, allowing
network scientists to extract significantly more informa-
tion from the complex system under investigation. There-
fore, a significant impact of this research is expected on
network medicine that requires the integration of many
different data regarding the patients.

Multilayer networks can be distinguished in two major
classes: multiplex networks and network of networks (see
fig. 1). A multiplex network is a network formed by the
same set of nodes interacting through different types of
networks (also called layers) as, for example, a set of peo-
ple interacting through different means of communication.
Examples of characterized multilayer networks include col-
laboration networks [22,73], transportation networks [74],
social networks [75], just to name few of the most stud-
ied datasets. A network of networks is instead formed
by networks that are interacting with each other but are
formed by different types of nodes, such as the Internet,
the power grid, and other types of interdependent infras-
tructures [70]; or different biological networks in the cell.
The links joining nodes of different layers are also called
interlinks.

In these last five years the focus of the research has
been on multilayer network structure and dynamics [17].
It has been shown that considering the multilayer na-
ture of networks can modify significantly the conclusions
reached by considering single networks. A number of dy-
namical processes, including percolation [70,76–82], diffu-
sion [83], epidemic spreading [84] and game theory [85]
present a phenomenology that is unexpected if one con-
sider the layers in isolation. Moreover, it has been shown
that multilayer networks are characterized by significant
correlations [22,86–90] in their structure that can change
the dynamical properties of the multilayer network.

Particularly noticeable has been the finding that when
nodes of different networks are interdependent with each
other, multilayer networks might be much more fragile

Fig. 2: (Color online) The figures show the size of the mutually
connected giant component β∞, as a function of p, the fraction
of non-damaged nodes, for Erdős and Renyi multiplex networks
(ER) and scale-free multiplex networks (SF). The transition
is discontinuous in the case in which most of the interlinks
imply interdependences (strong coupling) and continuous if the
fraction of interdependent interlinks is below a given threshold
(weak coupling). Figure from ref. [78]. Copyright (2010) by
The American Physical Society.

than single networks and may have cascading failures that
yield abrupt transitions [70,76–81]. Therefore, this result
explains why global infrastructures are prone to dramatic
avalanches of failures. In the presence of interdepen-
dences, a new type of percolation phase transition can
be defined [70] in which the order parameter is the size of
the mutually connected giant component, i.e. an appropri-
ate generalization of the giant component defined on sin-
gle networks. When nodes of an interdependent multilayer
networks are damaged with an increasing probability, the
mutually connected component has a hybrid phase tran-
sition [70,76], in which the size of the mutually connected
giant component has a discontinuity and the system un-
dergoes an avalanche of failures. If the interdependence is
only partial, i.e. some interlinks do not imply interdepen-
dences, the mutually connected component can emerge at
a continuous second-order phase transition [78] (see fig. 2).
This generalized percolation transition has been studied
on multiplex networks, multilayer network and network of
networks finding a rich phenomenology [70,76–82]. Multi-
layer networks found in biological systems [20], are differ-
ent from man-made multilayer infrastructures, and they
display a significant robustness allowing them to survive
biological selection. Characterizing them could contribute
to a better design of complex infrastructures.

The literature on multilayer networks is growing at a
very fast rate due to the relevance of this research for
a large variety of fields. Additional important results are
covered in detail on the recent review articles on multilayer
networks and multiplex networks [17–19]. Here we have
chosen just to provide a short overview of this topic.

Network geometry and topology. – Increasing
attention has been recently addressed to the geomet-
rical and topological characterization of networks. In
this field, scientific research interest has been follow-
ing four major directions: characterization of the hy-
perbolicity of networks, formulation of emergent network

56001-p3



Ginestra Bianconi

Fig. 3: (Color online) Visualization of the emergent network geometries generated by the non-equilibrium model presented in
ref. [35]. If at most m = 2 triangles are incident to a link, the model generates a 2d manifold, with small-world properties
and exponential degree distribution. If instead, every link can be incident to any number of triangles (m = ∞) the network
is scale free, small world, has high modularity and high clustering coefficient. The intermediate case m = 4 has broad degree
distribution, high clustering, high modularity and is small world. Figure from ref. [35].

geometry, characterization of brain geometry, and network
topology.

Characterization of the hyperbolicity of networks: The
characterization of the curvature of networks is a fun-
damental mathematical problem addressed by different
mathematicians providing different alternative defini-
tions [91–96]. Except for the combinatorial curvature [95]
of planar graphs there is no established consensus on the
most appropriate curvature definition for network struc-
tures. Despite this fact, several approaches are used
to characterize the geometry [97], the complexity [98],
and the hyperbolicity of networks. One way to achieve
this is to measure the Gromov δ-hyperbolicity [96,99,100],
other ways include embedding the network in hyper-
bolic spaces [27,28,101], or in general in a Riemannian
geometry [102,103].

It is believed that many complex networks have an un-
derlying “hidden geometry” [28] and that extracting this
geometry could be extremely useful. For example, the hid-
den hyperbolic geometry of the Internet could be used to
improve significantly the routing protocols, which would
send the packets on a path chosen accordingly to the dis-
tance between two nodes in this geometry [26–28].

A noticeable series of works [38,39] introduces equi-
librium and non-equilibrium modelling frameworks to
construct scale-free networks starting from a hidden
hyperbolic geometry. In these models, nodes are placed
on the hyperbolic plane, and neighbor nodes are more
likely to be linked to each other. The generated net-
works have at the same time large clustering coefficient,
small-world property, scale-free degree distribution, and
therefore reproduce the phenomenology observed in real
network structures. Interestingly these models can also be
used to extract the hidden hyperbolic metrics of networks.

Emergent network geometry : The field of emergent ge-
ometry aims at generating networks with hidden geometry
without using any information of this underlying space.

This field has its origins in quantum gravity where a gen-
eral problem is determining how the geometry of the con-
tinuous space-time emerges from the discrete structure
that the space-time has at the Planck scale. These mod-
els, also called pregeometric models, where space is an
emergent property of a network or of a simplicial complex,
have attracted large interest in quantum gravity over the
years [62,104,105]. In [68], quantum graphity has been pro-
posed as an equilibrium model for emergent space-time.
The model is Hamiltonian, and the low-temperature phase
of the network is a planar graph with some defects [68]
while the network corresponding to the high-temperature
regime is a complete network.

Recently, manifolds and scale-free networks [35] with
high clustering, small-world property, and a non-trivial
community structure have been generated using a non-
equilibrium model of emergent geometry (see fig. 3). This
model is based on a growing simplicial complex formed
by gluing together triangles. In this model each link can
be incident at most to m triangles. If m = 2 a two-
dimensional manifold with exponential degree distribution
is generated, if m = ∞ a scale-free network with high
clustering, high modularity and small-world distances is
generated. The model is able to generate an emergent
network geometry, particularly evident in the case of the
generation of the random manifold. Nevertheless further
investigations will be needed to specifically address the
characterization of the hidden geometry of these networks.
If instead of triangles, simplices of higher dimension, i.e.
tetrahedra etc., are glued together, the growing manifolds
are scale free for any dimension d > 2 [37].

Brain geometry : Geometry is fundamental to under-
stand the brain. This is particularly true at the structural
level [30], and can have an impact for developing fu-
ture cortex transplants [31]. Moreover, the study of the
interplay between structural and functional brain net-
works [14], has been recently attracting large attention.
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It is believed that modularity [32–34] plays a role of spe-
cial importance, together with the small-world property,
in generating a dynamical phase of frustrated synchro-
nization, where synchronization is sustained but not sta-
tionary. It is possible that in the future, advances in the
understanding of the geometrical organization of the brain
networks will allow to fully identify the structural proper-
ties that favour brain dynamics.

Topology of networks: The topology of networks is at-
tracting large attention [106,107] and the topological char-
acterization of network datasets and dynamical network
models is becoming a new tool of network theory. In
particular a new way to define a filtration on weighted
networks has been recently proposed [24,25], where the
filtrations correspond to different thresholds imposed to
the weights of the links. The topological analysis that
results is able to extract new information from network
datasets that is not possible to extract using other less re-
cent techniques of network theory. Finally the topological
analysis of dynamical processes as epidemic spreading, can
reveal the underlying topology of the network over which
the spreading occurs [108].

Quantum theory of networks. – Characterizing the
behaviour of quantum dynamics on networks is attract-
ing increasing attention because it is relevant for new
quantum technologies using cold atoms or light-matter in-
teraction. Extensive research has been addressed to the
characterization of quantum walks on complex networks
(see fig. 4) [41,42,50] and to quantum transport [109].
Other critical phenomena studied on networks are the
quantum Ising model, the Bose Hubbard model, An-
derson localization, Bose-Einstein condensation among
others [43–49]. It has been found that network struc-
ture strongly affect the phase diagram of quantum dy-
namical processes. These results could open the venue
for exploring optimal design of networks for obtaining
the desired dynamical properties of the quantum process
under investigation.

From the quantum information perspective, construct-
ing quantum networks for quantum communications [40]
is certainly one of the major long-term goals. For this
purpose quantum networks where the nodes are entan-
gled, provide the ideal setup to establish quantum commu-
nication over large distances guaranteeing more security
and efficiency than classical communication technologies.
In this context, the properties of quantum random net-
works [51] have been investigated and the effect of complex
networks topologies in favouring the possibility to estab-
lish entanglement between long-distance nodes, has been
characterized [52].

Quantum information methods have been also used to
propose new quantum information entropy measures for
assessing the complexity of networks [53–56]. In particular,
the von Neumann entropy of networks [53] is defined by
interpreting the Laplacian matrix of the networks, normal-
ized by the total number of links, as a density matrix of

Fig. 4: The average transition probability 〈πkj(t)〉 of a
continuous-time quantum random walk on a small-world net-
work as a function of time. The initial node is node j = 50,
the small-world networks is formed by 100 nodes placed on a
ring and by B of additional random links. From ref. [42].

a quantum state. Interestingly this entropy measure, for
random scale-free networks, can be mapped to the Shan-
non entropy of scale-free network ensembles [54]. In the
same spirit, with the goal of characterizing classical com-
plex networks with quantum methods, a series of works
has been devoted to the proposal of quantum algorithms
for ranking nodes [57,58,110,111].

Finally there is evidence for a surprising relation be-
tween the evolution of complex growing networks and
quantum statistics. This relation was found already in
the early days of the field of network science in the frame-
work of the Bianconi-Barabási model [112,113]. In fact
complex networks growing according to preferential at-
tachment and energies of the nodes (related to their fit-
ness) might display a Bose-Einstein condensation, where
one node grabs a finite fraction of all the links. A similar
phase transition can occur also on weighted networks [114]
undergoing also the condensation of the weight of the
links. Growing Cayley trees with energies of the nodes,
can be mapped to Fermi gas and follows Fermi-Dirac
statistics [115]. The models in [113] and [115] following,
respectively, Bose and Fermi distributions have underly-
ing symmetries as discussed in [116]. Moreover, simple
or weighted networks described by equilibrium statistical
mechanics follow quantum statistics [117]. Recently, using
models formulated for describing emergent geometry [35],
it was found that the relation between network and quan-
tum statistics extends also to manifolds and to networks
built starting from simplicial complexes [36,37]. Interest-
ingly, with similar methods to the one used in [68], it has
been shown that these network evolutions represent sin-
gle histories of the evolution of quantum network states.
These are quantum network states that can be decom-
posed in states associated to the nodes, and to the faces
of the simplicial complex. These results deepen the un-
derstanding about the relation between complex networks
and quantum statistics. In fact, the quantum network
states include fermionic and bosonic occupation numbers,
and their average over the networks follow, respectively,
Bose and Fermi statistics, also if the networks and the
quantum network states do not obey equilibrium statisti-
cal mechanics.
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Conclusions. – Network science has had a fabulous
development in the last twenty years, and is having a
huge impact on a multitude of fields, from neuroscience
and cell biology to economics, and social sciences. It is
now crucial for network scientists to investigate multilayer
networks, characterizing the interactions between different
networks. This field will have an impact on a number of
applications because most networks in biology, technology,
economics, engineering, or social sciences are not isolated
but interacting. Moreover, an important new challenge
for network science is the full development of a network
geometry and network topology, that will represent not
only a big step ahead in the comprehension of discrete
geometries, but will also have important practical impli-
cations for data mining, community detection and routing
problems. Finally, novel quantum technologies will require
a full control of quantum dynamics on network structure,
and it is likely that they will require sophisticated net-
work design to achieve desired properties. It is therefore
of fundamental importance to fully characterize quantum
dynamics on networks. Finally, combining network ge-
ometry with quantum theory of networks could open new
venues for cross-fertilization between network theory and
quantum gravity.
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