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Abstract – A one-species time-delay reaction-diffusion system defined on a complex network is
studied. Traveling waves are predicted to occur following a symmetry-breaking instability of a
homogeneous stationary stable solution, subject to an external nonhomogeneous perturbation.
These are generalized Turing-like waves that materialize in a single-species populations dynamics
model, as the unexpected byproduct of the imposed delay in the diffusion part. Sufficient condi-
tions for the onset of the instability are mathematically provided by performing a linear stability
analysis adapted to time-delayed differential equations. The method here developed exploits the
properties of the Lambert W -function. The prediction of the theory are confirmed by direct nu-
merical simulation carried out for a modified version of the classical Fisher model, defined on a
Watts-Strogatz network and with the inclusion of the delay.

Copyright c© EPLA, 2015

Collective dynamics spontaneously emerge in a vast
plethora of physical systems and often play a role of
paramount importance for the efficient implementation
of dedicated functions. Traveling waves are among the
most studied phenomena for their ubiquitous and cross-
disciplinary interest. Periodic traveling waves are for ex-
ample encountered when describing self-oscillatory and
excitable systems in different realms, from chemistry to
biology, passing through physics. The Fisher [1,2] equa-
tion, introduced to characterize the spatial spread of an
advantageous allele, defines the paradigmatic arena for ad-
dressing the peculiarities of traveling wave solutions in a
reaction-diffusion system in a spatial continuous domain.
This is a one-species population dynamic model, which
assumes a logistic rule of replication and growth. The mi-
croscopic entities belonging to the scrutinized population
can also delocalize in space, following a standard diffusion
mechanism. The interplay between the aforementioned
processes yields stable traveling wave solutions, which are
selectively generated starting from a special class of initial
conditions [3]. More generally, it is however interesting
to speculate on the possibility for a system to yield self-
organized collective patterns of the traveling-wave type,

following a symmetry-breaking instability, seeded by dif-
fusion. Starting from a homogeneous solution subject to
a tiny, nonhomogeneous, initial perturbation, a reaction-
diffusion system can destabilize via a dynamical instabil-
ity, identified by Alan Turing in a seminal work [4]. The
Turing instability, as the process is nowadays called, can
drive the emergence of nonlinear stationary stable pat-
terns, if at least two species, the activator and inhibitors,
are diffusing and mutually interacting in the embedding
environment. Alternatively, the Turing mechanism can
instigate traveling wave solutions, provided that at least
three species, one of which mobile, are assumed to interact
via apt nonlinear couplings [5]. For a reaction-diffusion
system hosted on a discrete heterogeneous spatial sup-
port, namely a network, the instability can eventually set
in for a two-species model yielding stationary stable pat-
terns [6]. Also in the network framework, three coupled
species are the minimal request for a traveling wave to rise
from a stochastic perturbation of an initial homogeneous
stationary stable state. Observe, however, that taking into
account finite-size corrections, stochastic Turing patterns
can develop, even if just the inhibitor is allowed to crawl
from one node to its adjacent neighbors [7].
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Starting from these premises, the aim of this letter is
to tackle the above problem under a radically different
angle and thus introduce the simplest mathematical set-
ting for which traveling wave solutions are generated, on
a network, as a symmetry-breaking instability of the Tur-
ing type. To anticipate our finding, we will prove that a
one-species model endowed with a delay in the diffusion
can produce the sought instability. Note that this phe-
nomenon would not be possible on continuous domains
and thus it completely relies on the discrete nature of the
support [8]. The analysis holds in general, but to demon-
strate our conclusion we shall refer to a Fisher equation
defined on a complex network and modified with the in-
clusion of a constant delay term.

The usage of time-delay differential equations (DDEs)
defined on complex networks [9–11] is nowadays very pop-
ular, from pure to applied sciences [12,13]. Delays are for
instance introduced to model finite communication or dis-
placement time of quantities across network links. The
imposed time-delay can nontrivially interfere with the re-
active dynamics, taking place on each node of the graph,
thus resulting in unexpected emergent properties. For
example, the classical paper [14] deals with time-delayed
systems made of two coupled phase oscillators and demon-
strates the existence of multistability of synchronized so-
lutions: an invariant manifold exists which attracts all
the solutions of the system, yielding global oscillatory
phenomena. Since this pioneering contribution, the sub-
ject has gained a lot of attention and several results have
been reported, assuming linear systems [15], coupled os-
cillators [16–18], oscillations death [19–21] and oscillations
control [22]. Theory has been fruitfully applied to tackle
real problems, see for instance [23–29].

The work of this letter moves from this reference con-
text to build an ideal bridge with the Turing-like theory
of pattern formation on complex networks. The discrete
Laplacian operator, that encodes for the diffusion of the
mobile population, incorporates a delay term. Our anal-
ysis of the DDEs exploits the properties of the Lambert
W -function [30,31] thus the solution of the linearized equa-
tion can be given in closed analytical form. Furthermore,
we have full access to the associated eigenvalues and their
dependence on the involved parameters is made explicit.
This allows us to go beyond the technique based on the
computation of the Hopf bifurcation, namely to determine
the parameters for which the eigenvalue with the largest
real part passes through a pure imaginary value.

We consider an undirected connected network composed
by n nodes and assume one species to diffuse, from node
to node, via the available links. Reactions also take place
on each node, as dictated by a specific nonlinear function
f of the local species concentration. Let us denote by xi(t)
the species concentration on node i, at time t. Then its
time evolution is governed by

ẋi(t) = f(xi(t − τr)) + D
∑

j

Lijxj(t − τd), (1)

where D stands for the diffusion coefficient, Lij = Gij −
kiδij is the Laplacian matrix of the network whose adja-
cency matrix is given by G and ki =

∑
j Gij identifies the

degree of the i-th node. τr is the delay involved in the re-
action occurring at each node, while τd is the delay due to
the displacement across nodes. For the sake of simplic-
ity we hereby assume the delay to be independent from
the link indices1. As mentioned earlier, it is well known
that the above one-species reaction-diffusion system can-
not exhibit Turing-like instability, in the limiting case for
τr = τd = 0. As we shall argue, the introduction of a
finite delay τr = τd = τ > 0, will significantly alter this
conclusion.

To proceed in the analysis we assume a stable homo-
geneous equilibrium, xi(t) = x̂ for all i = 1, . . . , n and
t ≥ 0 and look for sufficient conditions to destabilize such
equilibrium, following the introduction of a nonhomoge-
neous perturbation, which in turn activates the diffusion
part. To determine the preliminary conditions that have
to be met for the homogeneous equilibrium to be stable,
we linearize system (1) with D = 0, around x̂, and recall
that τr = τ > 0. Let A = f ′(x̂), then the characteristic
equation reads λ = Ae−λτ whose solutions are

λk =
1
τ

Wk(τA), k ∈ Z, (2)

Wk being the k-th branch of the Lambert W -function [30].
To guarantee the needed stability of the homogeneous
equilibrium x̂, one has to require that (A, τ) and an in-
teger k exist for which �λk(A, τ) < 0.

The Lambert W -function is the complex multivalued
function of the complex variable z ∈ C defined to be
solution of the equation z = W (z)eW (z). It has in-
finitely many branches [30] denoted by Wk(z), for k ∈ Z;
among them W0(x) —the principal branch— is obtained
by restricting z to lie on the real axis, more precisely on
�z ∈ (−e−1, +∞), and with the constraint W0(z) ≥ −1.
Hence the branch cut of W0 is defined by {z : −∞ < �z ≤
−e−1, �z = 0}. Let us observe that k = 0 and k = −1 are
the only branches for which the Lambert W -function can
assume real values. For all remaining k, �Wk(z) �= 0 for
all z (see fig. 1).

Roughly speaking, W0 bends the z plane (cut along
�z < −e−1) into a parabolic-like domain in the w plane,
whose boundary curves �w 	→ �w = −�w cotan �w (blue
solid and dotted curves in fig. 1) are bounded by π and −π.
Moreover, W0 satisfies the following relevant condition
(Lemma 3 of [32]):

∀z ∈ C : max
k∈Z

�Wk(z) = �W0(z). (3)

The previous eq. (3) allows to restate the stability con-
dition of the homogeneous equilibrium as follows:

∃(A, τ) such that �W0(τA) < 0. (4)
1A more general description can be provided by taking into ac-

count the possibility that each link introduces a different delay [10].
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Fig. 1: (Colour on-line) The Lambert W -function: principal branch W0(z). Left panel: in the complex plane z ∈ C, we
represent the upper part of the branch cut {z : −∞ < �z ≤ −e−1, �z = 0+} by a solid line and the lower part of the branch cut
{z : −∞ < �z ≤ −e−1, �z = 0−} by a dashed line; the circle denotes the point (−1/e, 0) while the square refers to (−π/2, 0).
Right panel: the complex plane w ∈ C, where w = W0(z). The solid blue line is the image of the upper part of the branch
cut �w �→ �w = −�w cotan �w for 0 < �w < π, while the dashed blue line is the image of the lower branch cut via W0,
�w �→ �w = −�w cotan �w for −π < �w < 0. The circle at coordinates (−1, 0) is the image of the point (−1/e, 0) and
the squares positioned at (0, π/2), respectively at (0, −π/2), are the image of the point of coordinates (−π/2, 0+), respectively
(−π/2, 0−). The red dashed line is the image of the positive real axis while the green curved line is the image of the imaginary
axis �z = 0. Observe that if �z = 0 and −π/2 < �z < −1/e, then −1 ≤ �W0(z) < 0, |�W0(z)| < π/2 and �W0(z) 	= 0
(blue solid and dotted lines), if �z = 0 and −1/e ≤ �z ≤ 0, then −1 ≤ �W0(z) ≤ 0 and �W0(z) = 0 (blue dashed line), if
�z = 0 and �z < −π/2, then �W0(z) > 0 and |�W0(z)| > π/2 (blue solid and dotted lines) and if �z = 0 and �z > 0, then
�W0(z) > 0 and �W0(z) = 0 (red dashed line).

Hence, from the properties of the Lambert W -function
represented in fig. 1, this amounts to require

−π

2
< τA < 0. (5)

We now turn to considering the effect of a nonhomo-
geneous perturbation, superposed to the postulated ho-
mogeneous equilibrium. This implies studying the full
system (1), with τr = τd = τ > 0 and D > 0. Linearizing
as before, we get

δ̇xi(t) = Aδxi(t − τ) + D
∑

j

Lijδxj(t − τ). (6)

We then introduce as in [6] the Laplacian matrix and the
corresponding complete set of orthonormal eigenvectors
φα, associated to the topological eigenvalues 0 = Λ1 >
Λ2 ≥ . . . ≥ Λn,

∑
j Lijφ

α
j = Λαφα

i , for α = 1, . . . , n.
This approach has already been shown effective to study
pattern formation for reaction-diffusion system defined on
networks [6,33] but also on multiplex [34,35] allowing to
use this basis to decompose δxi(t) instead of the Fourier
basis used in the continuous setting. Employing once
again the ansatz of exponential growth

δxi(t) =
∑
α

cαeλαtφα
i , for all i = 1, . . . , n, (7)

we eventually get from (6) the characteristic equation

λα − (A + DΛα)e−λατ = 0, (8)

whose solutions are

λα,k =
1
τ

Wk (τ(A + DΛα)) , k ∈ Z and α = 1, . . . , n. (9)

Symmetry-breaking instabilities seeded by diffusion can
set in if at least a pair k and α exists such that �λα,k > 0,
provided −π

2 < τA < 0 (the homogeneous equilibrium
must be stable as a prerequisite of the analysis)2. When
a bounded family of k exists for which �λα,k > 0, the one
with the largest real part dominates the instability and
shapes the emerging pattern. Recalling again eq. (3), we
finally get the following sufficient condition for the onset of
Turing-like instability in a one-species DDE of the general
type (1):

∃α ∈ [2, . . . , n] such that
1
τ

�W0 (τ(A + DΛα)) > 0.

(10)
Exploiting the properties of the Lambert W -function

represented in fig. 1, eq. (10) is satisfied whenever3 there
exists ᾱ > 1 such that τDΛᾱ < −π

2 − τA.
Observe also that for such ᾱ, �λ0,ᾱ �= 0. Hence, the in-

stability materialize in the appearance of traveling waves.
Since �W0(x) is increasing, for decreasing real x < −π/2,
the dispersion relation attains its maximum at α = n,
the Laplacian eigenvalues being ordered for decreasing real
parts. Hence, the Turing-like instabilities cannot develop
if τDΛn > −π

2 − τA. Summing up, traveling waves are
expected to develop, for a fixed network topology, and suf-
ficently large values of τ and D. Conversely, for a fixed
choice of the parameters (τ , D and A), one should make

2Remark that α > 2: in fact, for α = 1 we have Λ1 = 0 and thus,
by assumption, �λ1,k = �Wk(τA) < 0.

3It is worth emphasizing that, in principle, one could also satisfy
eq. (10) with τ(A+DΛα) > 0. This alternative condition is however
not compatible with the stability request (5) and the negativeness
of Λα for all α.
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the network big and so force Λn to be large enough, in
absolute value.

As our goal is to determine the minimal model for which
the aforementioned instability sets in, we now consider
the reduced case for τr = 0 and τd = τ > 0, that is the
delay is only associated to the diffusion part. For D = 0
the homogeneous equilibrium x̂, is stable if and only if
A < 0. By repeating the procedure highlighted above we
end up with the following characteristic equation: λα −
A − DΛαe−λατ = 0, whose solution reads

λα,k =
1
τ
Wk(τDΛαe−τA) + A, k ∈ Z. (11)

The equilibrium x̂ is hence destabilized by diffusion if there
exist α > 1 for which

�W0(τDΛαe−τA) > −Aτ. (12)

Let us observe that −Aτ is positive and τDΛαe−τA is neg-
ative. Moreover, we have already remarked that �W0(x)
is positive and increasing for decreasing negative x. Hence,
a critical xc < 0 exists4 for which �W0(xc) = −Aτ and
eq. (12) is satisfied for all τDΛαe−τA < xc. Traveling
waves are hence predicted to manifest, for sufficiently large
Λᾱ, in absolute value. We again stress that �λ0,ᾱ �= 0.

To complete the general discussion we consider the dual
problem, where τr = τ > 0 and τd = 0. As already ob-
served, the homogeneous equilibrium x̂ is stable if −π/2 <
τA < 0. The characteristic equation associated to this
problem can be cast in the form λα −Ae−λατ −DΛα = 0,
whose solution is

λα,k = DΛα +
1
τ

Wk(τAe−τDΛα

), k ∈ Z. (13)

One can prove5 that DΛα + 1
τ W0(τAe−τDΛα

) < 0 for all
Λα, α > 1. We are consequently led to conclude that
the stable homogeneous equilibrium cannot undergo a dif-
fusion driven Turing-like instability, if the delay term is
solely confined in the reaction part.

As an application of the previous theory, we take f in
eq. (1) to be the logistic function f(x) = ax(1 − x), as
in the spirit of the Fisher model. At variance with the
Fisher equation [1,2], we now imagine the species to be
hosted on a discrete support, rather than on a continuum
segment. In the original Fisher scheme the emerging wave
relates to the heteroclinic orbit of the system and requires
a specific, step-like, initial profile. In our case the traveling
wave will originate following a symmetry-breaking insta-
bility of an initial random perturbation. To carry out the
analysis, we select the homogeneous equilibrium solution
x̂ = 1 and after look at its associated stability proper-
ties, as a function of a, τ , D and the network topology.
Silencing the diffusion, D = 0, the stability condition in
eq. (5) rewrites 0 < aτ < π

2 . In demonstrating our find-
ings, we consider a Watts-Strogatz network [36] made of

4See appendix A for the explicit computation of xc.
5See appendix B for a rigorous proof of the claim.
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Fig. 2: (Colour on-line) Numerical solution of the system under
scrutiny with parameters a = 1.4, D = 0.05 and τ = 1. Initial
conditions are set equal to xi(t) = 1 + δi for all t ∈ [−τ, 0)
where δi are random Gaussian numbers drawn from N(0, 0.01).
The underlying network is a Watts-Strogatz network [36] made
of 100 nodes, with average degree 〈k〉 = 6 and probability to
rewire a link p = 0.03.

100 nodes, with average degree 〈k〉 = 6 and probability to
rewire a link p = 0.03. Other network topologies can be
in principle assumed, returning similar qualitative conclu-
sions. The chosen network is large enough so to have one
eigenvalue for which the dispersion relation has positive
real part (see left panel of fig. 3): thus Turing-like waves
do exist. In fig. 2 we report the result of a numerical so-
lution of the system under scrutiny obtained with a RK4
method adapted to deal with constant delay differential
equation. The parameters are set to the values a = 1.4,
D = 0.05 and τ = 1. The DDE should be complemented
with the value of the function on the delay interval [−τ, 0).
In the spirit of a perturbation of the stable equilibrium,
we decided to set xi(t) = 1 + δi for all t ∈ [−τ, 0) where
δi are random Gaussian numbers drawn from N(0, 0.01).
Observe that aτ = 1.4 < π/2 and thus the equilibrium
x̂ = 1 is stable in the absence of diffusion. On the other
hand, one can clearly appreciate that after a transient pe-
riod, patterns do manifest as stable oscillations around the
solution x̂ = 1.

In fig. 3 the dispersion relation is displayed. In the left
panel the quantity

max
k

�λα,k = �λα,0 =
1
τ

�W0 (−τa + τDΛα) , (14)

is plotted as a function of Λα, for fixed a, D and τ (as
specified in fig. 2), and for the same Watts-Strogatz net-
work. One can clearly identify several eigenvalues for
which �λα,0 > 0. The right panel reports the maximum
of the dispersion relation as a function of the eigenval-
ues, i.e. maxα �λα,k, vs. (a, τ) for fixed D = 0.05 and
for the same Wattz-Strogatz network. The stability do-
main of the equilibrium without diffusion is bounded by
a > 0 (τ > 0, for physical reasons) and aτ < π/2 (dash-
dotted black curve). The Turing-like waves can emerge
for all pairs (a, τ), inside such limited domain, for which
maxα �λα,0 > 0.
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Fig. 3: (Colour on-line) Dispersion relation. Left panel: �λα,0 as a function of Λα, for fixed a, D and τ , as specified in fig. 2
and for the same Wattz-Strogatz network. Blue dots represent the values of λα,0 computed for a given Λα, while the solid black
line is the continuous approximation. The horizontal dotted black line stands for the 0-th level. Right panel: maxα �λα,0, as
a function of (a, τ ), for fixed D = 0.05 using the same Wattz-Strogatz network as employed in fig. 2. The dash-dotted curve
aτ = π/2 delineates the boundary (together with a > 0 and τ > 0) of the stability region of the homogeneous solution x̂ = 1.
Hence, all pairs (a, τ ) for which 0 < aτ < π/2 correspond to stable solution of the homogeneous equilibrium. Turing-like
instabilities are thus allowed to develop for all pairs (a, τ ) inside such domain, for which maxα �λα,0 > 0. The star refers to
the setting of the simulation reported in fig. 2.

In conclusion, we have hereby shown that a one-species
time-delay reaction-diffusion system defined on a com-
plex network can exhibit traveling waves, following a
symmetry-breaking instability of a homogeneous station-
ary stable solution, subject to an external nonhomoge-
neous perturbation. These are Turing-like waves which
emerge in a minimal model of single-species population
dynamics, as the unintuitive byproduct of the imposed
delay. Based on a linear-stability analysis adapted to
time-delayed differential equations, we provided sufficient
conditions for the onset of the instability, as a function
of key quantities, such as the reaction parameters, the
delay, the diffusion coefficient and the network topology.
The wave possesses multiple fronts and persists in time,
without fading away as it occurs for the customary Fisher
equation. The observation that Turing-like instability can
originate for a one-species model evolving on a heteroge-
neous graph, provided a delay is included in the transport
term, enables us to significantly relax the classical con-
straints for the patterns to emerge and opens up the per-
spective for intriguing developments in a direction so far
unexplored.
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the Belgian Network DYSCO (Dynamical Systems, Con-
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Appendix A: Turing-like instability when the
delay is confined in the diffusion term. – To study
the stability of the equilibrium x̂ in the case the delay
is present only in the diffusion part, we have to look for

α > 1 for which

�W0(τDΛαe−τA) > −Aτ. (A.1)

Let z = x+iy and w = ξ+iη, then the following relation
is recovered once we impose z = wew , namely w = W0(z):

x = eξ(ξ cos η − η sin η), (A.2)
y = eξ(η cos η + ξ sin η). (A.3)

Let us introduce xc = τDΛᾱ and ξc = −τA, values for
which the equality holds in (A.1). Observe that xc < 0
and ξc > 0. Rewriting eq. (A.2) for zc = xc (namely
yc = 0) and wc = ξc + iηc we get

xc = eξc(ξc cos ηc − ηc sin ηc), (A.4)
0 = eξc(ηc cos ηc + ξc sin ηc). (A.5)

From the second equation one can obtain (implicitly) ηc as
a function of ξc: ηc = −ξc tan ηc. Because ξc < 0 one can
find a unique solution ηc(ξc) ∈ (π/2, π) (and the opposite
one). Inserting this result into the first equation we get

xc(ξc) = −e−ηc(ξc) cotan ηc(ξc) ηc(ξc)
sin ηc(ξc)

. (A.6)

So in conclusion given −τA one can obtain the critical
xc(−τA) for which we have equality in eq. (A.1), and thus
conclude, by invoking the scaling properties of W0, that
for all Λα < xc(−τA)/(τD) the strict inequality sign holds
in eq. (A.1).

Appendix B: Turing-like instability are impeded
when the delay only appears in the reaction term.
– Let us consider system (1) once the delay dependence
is given only through the reaction term. The condition
for the stability of the homogeneous equilibrium without
diffusion is given by eq. (5). Following the same procedure

58002-p5
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outlined in the main body of the paper —linearizing, then
expanding the perturbation on the basis of the eigenvec-
tors of the Laplacian— one obtains the following charac-
teristic equation: λα − Ae−λατ − DΛα = 0, that can be
solved using the W -Lambert function to give

λα,k = DΛα +
1
τ
Wk(τAe−τDΛα

), k ∈ Z. (B.1)

Turing-like instability can emerge if the homogeneous
equilibrium becomes unstable in the presence of the dif-
fusion. We then look for α and k such that �λα,k > 0.
Using Lemma 3 of [32] this is equivalent to

�W0(τAe−τDΛα

) > −τDΛα. (B.2)

Let us observe that −τDΛα ≥ 0. Because τA < 0,
one cannot solve the previous equation with
�W0(τAe−τDΛα

) = 0 (in this case one should have
the argument of W0 to be positive). Hence we look for
τAe−τDΛα

< −π/2.
Let us introduce s = −DΛα > 0, u = τA ∈ (−π/2, 0)

and the function

g(s) = −s + �W0(ues), (B.3)

our goal is to prove that g(s) < 0 for all s > 0 which is
in turn equivalent to stating that Turing-like instability
cannot develop.

Let us rewrite eq. (A.2) for x = ues and y = 0:

ues = eξ(ξ cos η − η sin η), (B.4)
0 = eξ(η cos η + ξ sin η). (B.5)

Isolating ξ in the second equation and inserting it in the
first one, we get es = − η

u sin η eξ. One can thus rewrite g(s)
as follows:

g(s) = −s + �W0(ues) = −s + ξ (B.6)

= −ξ − log
(

− η

u sinη

)
+ ξ (B.7)

= − log
(

− η

u sinη

)
. (B.8)

Because u > −π/2 and π/2 < η < π we obtain
−η/(u sin η) > 1 and thus log(− η

u sin η ) > 0.
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