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Abstract – A cooperative network model of sociological interest is examined to determine the
sensitivity of the global dynamics to having a fraction of the members behaving uncooperatively,
that is, being in conflict with the majority. We study a condition where in the absence of these
uncooperative individuals, the contrarians, the control parameter exceeds a critical value and the
network is frozen in a state of consensus. The network dynamics change with variations in the
percentage of contrarians, resulting in a balance between the value of the control parameter and
the percentage of those in conflict with the majority. We show that, as a finite-size effect, the
transmission of information from a network B to a network A, with a small fraction of lookout
members in A who adopt the behavior of B, becomes maximal when both networks are assigned
the same critical percentage of contrarians.

editor’s  choice Copyright c© EPLA, 2015

Introduction. – The regulatory dynamics of the
brain [1], the cardiovascular and other physiological sys-
tems [2], and indeed most biological/sociological networks
appear to be poised at criticality [3]. The existence of
phase transitions is so common, in part, because crit-
icality is the most parsimonious way for a many-body
system, with nonlinear interactions to exert self-control.
Inhibitory links in neurophysiology and contrarians in so-
ciology are the names given to interactions that evoke the
disruption of organization and consensus, thereby suggest-
ing that the well-being of either the brain or human so-
ciety requires the containment of those negative agents.
However, recent neurophysiological literature shows that
this perspective may be overly restrictive, and that a
sufficiently large concentration of inhibitory links may
counter-intuitively have the beneficial effect of promoting
a ceaseless activity [4], a characteristic that can provide
evolutionary advantage.

One of the first explanations of abrupt social transitions
in terms of criticality was made by Callen and Shapiro in
1974 [5]. They put together the concepts of social im-
itation and critical behavior a generation before Glad-
well popularized the concept of the tipping point [6]. It
is convenient to mention also ref. [7]. The authors of this

approach to strike in big companies, made also a call to the
creation of sociophysics. In the sociological phenomenon
of interest to us here the role of inhibitory links is played
by individuals called contrarians [8], yielding instabilities
produced by frustration [9], an interesting phenomenon
more recently discussed in refs. [10,11]. As the term frus-
tration suggests, the action of contrarians is found to
quench consensus or prevent its occurrence in accordance
with the sociological conclusions of Crokidakis et al. [12].
However, we reach a different conclusion and find value in
those individuals whose method of decision making are in
conflict with the majority.

Herein the observation made in neurophysiology [4] is
adapted to sociology using the decision making model
(DMM). The complex network described by the DMM
implements the echo response hypothesis, which assumes
that the dynamic properties of a network of identical indi-
viduals is determined by individuals imperfectly copying
the behavior of one another [13]. The effect of introducing
contrarians into a cooperative social network is analyzed
using a system of coupled two-state master equations.
Using analytical calculations we show that in the pres-
ence of contrarians, increased cooperation effort, in the
form of increased values of the DMM control parameter, is
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necessary to achieve consensus. At the same time, contrar-
ians may promote a condition of ceaseless activity similar
to that found in the cognitive context [4].

With the growing evidence of phase transitions in bio-
logical and sociological systems, recent studies have turned
to information-theoretic analyses of canonical models for
more insight. For instance, refs. [14–17] show that mutual
information between elements peaks at the phase tran-
sition, while ref. [18] shows that in the Ising model in-
formation flow between elements peaks in the disordered
regime. Following a different but related approach, we
study the transmission of information from one DMM net-
work to another through cross-correlation measurements.
Our approach is related to the pioneer work of Galam and
Moscovici [19], where the society individuals make a deci-
sion under the influence of both an internal and an exter-
nal field, with the basic difference that, in this letter, the
external influence is exerted by another network with the
same complexity. We demonstrate that information trans-
fer is maximally efficient when both systems are in a criti-
cal condition, as already found in earlier work [20,21]. The
interesting novelty is that the control parameter necessary
to yield criticality here is not the imitation strength, but
the concentration of contrarians that for a specific value,
hereby theoretically predicted, is proved to turn the su-
percritical condition into the critical condition.

Decision making model. – DMM network dynamics
is a member of the Ising universality class and is found
to be useful for describing phenomena related to social
group behavior [13,22]. The network model is based on the
dynamics of single individuals selecting one of two options.
Denoting the two options as +1 and −1, the i-th individual
generates the stochastic time series s(i)(t) = ±1. Using
the Gibbs perspective this time series is analyzed using
the solution to the two-state master equation,

d
dt

p
(i)
1 (t) = −1

2
g
(i)
12 (t)p(i)

1 (t) +
1
2
g
(i)
21 (t)p(i)

2 (t),

d
dt

p
(i)
2 (t) = −1

2
g
(i)
21 (t)p(i)

2 (t) +
1
2
g
(i)
12 (t)p(i)

1 (t),
(1)

where the +1 and −1 options have been labeled 1 and 2,
respectively. The time-dependent transition rates g

(i)
12 (t)

and g
(i)
21 (t) determine the production of decision events for

the i-th individual. At the moment of making a decision
the single individual tosses a coin to decide whether to
keep the same opinion or to change her mind, hence the
factors of 1/2 present in the master equation. Although
this implies a random decision, the interaction with the
other individuals may prolong or shorten the time neces-
sary to make a decision, thereby generating a bias toward
one of the two choices.

For notational simplicity let us describe the behavior
of the i-th individual omitting the superscript i, while
keeping in mind for now that this is a single individual
and that there are N − 1 other individuals in the net-
work. The transition rate from state |1〉 to state |2〉 reads

g12 = g exp [−K (M1 − M2) /M ], where M is the number
of individuals linked to the i-th individual, M1 is the num-
ber of its neighbors in the state |1〉 and M2 the number of
its neighbors in the state |2〉. When the interaction cou-
pling parameter K vanishes, the i-th individual generates
a Poisson sequence s(t) with decision events generated at
the fixed rate g. When K > 0 the i-th individual cooper-
ates with her neighbors. That is, when the i-th individual
is in the state |1〉 and the majority of her neighbors share
this state, the rate of her decision event productions de-
creases, thereby indicating that the i-th individual is likely
to remain in the state |1〉 for a more extended time than in
the absence of interaction. The same cooperative prescrip-
tion holds true when the i-th individual is in the state |2〉,
leading in this case to g21 = g exp [−K (M2 − M1) /M ]
and indicating that if the majority of her neighbors are
in the state |1〉 the i-th individual makes decisions with
a faster rate, thereby reducing her sojourn time in the
state |2〉.

All-to-all coupling condition. – In this paper we
adopt the all-to-all (ATA) coupling condition, which as-
signs to all the individuals the same number of neighbors,
M = N −1, where N denotes the total number of network
members. Since the total number of members usually sat-
isfies N � 1, we set M = N . Under the ATA coupling
condition all the individuals are described by only two
transition rates.

The mean field of the network,

ξ (t) =
1
N

N∑
i=1

s(i)(t) =
N1 (t) − N2 (t)

N
, (2)

becomes identical to a probability difference in the limit
N → ∞ where pi = Ni/N ; i = 1, 2. Defining this prob-
ability difference as x ≡ p1 − p2, the master equation
describing the mean-field behavior of an ATA DMM, con-
sisting of an infinite number of cooperative individuals,
becomes

dx

dt
=

g

2
(eKx − e−Kx) − g

2
(e−Kx + eKx)x. (3)

The equilibrium value of the mean field can be determined
by setting the left-hand side of eq. (3) equal to zero, which
yields the equation for the equilibrium value of the mean
field: xeq = tanh (Kxeq). A second-order phase transition
occurring in the cooperative system at K = 1 can be pre-
dicted as follows. If we make the assumption that at the
phase transition the equilibrium value of x is very close to
zero, then using the Taylor series expansion of the hyper-
bolic tangent gives us xeq = Kxeq, which is compatible
with a small but non-vanishing solution only for K = 1.

An individual is a contrarian if she is inclined to make a
decision that is the opposite of the one made by her neigh-
bors [8]. Thus, for instance, the g12 transition rate would
become g12 = g exp [K (M1 − M2) /M ], and the g21 transi-
tion rate would become g21 = g exp [−K (M1 − M2) /M ].
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Fig. 1: (Color online) Mean fields of the ATA DMM networks.
The diamonds refer to the mean field of cooperators (x), the
circles to the mean field of contrarians (y), and the triangles
to the global mean field (z). N = 103 units, g = 0.01, and
q = 0.15. Note that the mean field of contrarians is opposite
to the mean field of cooperators.

By following the same line of reasoning as that generating
eq. (3) we obtain for an ATA DMM of contrarians

dy

dt
=

g

2
(e−Ky − eKy) − g

2
(eKy + e−Ky)y. (4)

We use the variable y to denote the mean field of con-
trarians for the purpose of distinguishing contrarians from
cooperators. Recall that the variable x is associated with
individuals that are cooperators.

When all the people in the network are contrarians, the
network remains close to the condition of a vanishing mean
field. In fact, the Taylor series expansion of the hyperbolic
tangent in the solution now yields yeq = −Kyeq, which
implies that the network remains fixed at the equilibrium
value yeq = 0, independently of the value K of the inter-
action strength.

We note however, see fig. 1, that in a network with only
a small concentration of contrarians a phase transition oc-
curs with the important symmetry property y = −x, in-
dicating that the mean field of contrarians y has the same
intensity as the mean field of cooperators x, but with the
opposite sign. We are thus led to examining the condition
where the global field z, with a fraction q of the individ-
uals being contrarians, is expressed by z = (1 − q)x + qy,
which, using symmetry, becomes z = (1− 2q)x. The mas-
ter equation for the cooperators can then be written as

dx

dt
= g sinh [K(1 − 2q)x] − gx cosh [K(1 − 2q)x] , (5)

and the master equation for the contrarians as

dy

dt
= −g sinh [K(1 − 2q)x] − gy cosh [K(1 − 2q)x] . (6)

Note that the arguments of the exponential functions
coincide with the global field z, which is perceived by both

Fig. 2: (Color online) The mean field of cooperators (x) with
different fractions of contrarians (q) in the ATA DMM net-
work of 103 units with g = 0.01. Increasing the fraction of
contrarians has the effect of turning the supercritical into crit-
ical condition for a convenient fraction of contrarians.

cooperators and contrarians, but contrarians react oppo-
sitely to that of the majority reaction to the global field
z. In fact, eq. (6), determining the time evolution of y, is
obtained by replacing K with −K in the exponential func-
tions of eq. (5) representing the influence of the neighbors
on the decisions of single individuals.

We see that, as expected, the equilibrium condition gen-
erated by eqs. (5) and (6) is xeq = tanh (K ′xeq) = −yeq,
where K ′ ≡ K(1 − 2q). It is evident that a phase transi-
tion occurs following the same mathematical prescription
as in the absence of contrarians with the main difference
being that the critical value of K is now given by

Kc(q) =
1

1 − 2q
. (7)

Consequently, the critical control parameter increases in
value as the fraction of contrarians increases and the in-
teraction effort necessary to make a social decision in
the presence of 50% contrarians becomes infinitely large.
Therefore, consensus cannot be reached beyond the limit
of 50% contrarians.

Figure 2 illustrates the formation of a social decision in
a diverse social network, having a mixture of cooperators
and contrarians, and the required strength of interaction
coupling is in agreement with eq. (7). The figure shows
that when the network is in the supercritical condition
in the absence of contrarians, the action of an increasing
number of contrarians has the effect of shifting the net-
work dynamics down towards the critical point. Inverting
eq. (7) to obtain q yields

qc(K) =
1
2

(
1 − 1

K

)
, (8)

indicating that if the interaction strength K is a fixed
property of the network, there exists a specific fraction
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of contrarians qc that will bring the network to the criti-
cal point. Thus, the network dynamics can be adjusted
to operate at the critical point in three distinct ways:
1) with no contrarians, a subcritical interaction strength
can be increased to a critical value; 2) with no contrari-
ans, a supercritical interaction strength can be decreased
to a critical value; and 3) for a fixed interaction strength
above the critical value, the fraction of contrarians can be
increased to the critical point for the network dynamics.

Network-network interaction. – At criticality the
DMM mean field fluctuates around the vanishing equilib-
rium value and the time distance between two consecu-
tive regressions to this “free-will” [20] condition has an
inverse power law distribution density with index μ = 1.5
making the free-will events renewal. This is the temporal-
complexity [23] property making the transmission of in-
formation from a driving complex network B to a driven
network A maximally efficient [21].

We consider two identical ATA DMM social networks
each with N = 103 individuals, with their interaction
strength fixed at K = 1.25. Note, that eq. (8) predicts
that an interaction strength with 10% contrarians is neces-
sary to realize criticality. To connect the driving network
B to the driven network A, we introduce into network
A an additional 20 “lookout” individuals that track the
global field of network B. This choice of coupling between
the two networks was inspired by a recent experiment [24]
where the signal from a few electrodes implanted in the
brain of a rat B is the information transmitted directly
to the brain of rat A. The fraction of lookout individuals
is determined by the theoretical arguments discussed in
ref. [21] so as to make the correlation between A and B
emerge at the level of a single realization.

Keeping an equal fraction of contrarians q in both net-
works, we evaluate the cross-correlation between network
A and network B for various q values. Figure 3 shows
that the transmission of information from network B to
network A becomes maximally efficient at q = 0.09. The
numerical value for the peak of the cross-correlation curve
is near the theoretical value qc = 0.1, predicted by eq. (8)
on the basis of the conjecture that criticality maximizes
the efficiency of the information transport. One possible
reason for the slight discrepancy between the numerical
results and the value expected from theory is that eq. (8)
does not account for the presence of lookout individuals in
the DMM network. A fraction of lookout individuals p cre-
ates the effective interaction strength Kp = K(1− p) (see
eq. (18) below). For the numerical simulations we have
p = 20/1020 leading to Kp ≈ 1.225. Replacing K by Kp

in eq. (8) yields qc = 0.092 for the critical fraction of con-
trarians, refining the agreement with the results depicted
in fig. 3.

We also see from fig. 3, that when the concentration of
contrarians tends to vanish, the transmission of informa-
tion between networks becomes very small. This is so be-
cause the social system falls in the supercritical condition,

Fig. 3: The average cross-correlation function (〈C〉) between
two predominantly cooperative networks (the ATA DMM net-
works with g = 0.01 and K = 1.25) peaks when there is a
critical fraction of contrarians present in both networks. Sim-
ilar behavior, not shown here, is obtained by assigning to K
different values larger than 1.

which is not resilient and is unsuitable to address crucial
issues. On the other hand, a fraction of contrarians larger
than the critical concentration qc of eq. (8), realizing the
subcritical condition, is still compatible with a significant
transmission of information, due to the distinctly asym-
metric shape of 〈C〉 as a function of q.

The process of calculating the cross-correlation involves
first generating the mean-field trajectory of the driving
system B, ξB(t), and then using ξB(t) to generate the
corresponding mean-field trajectory of the driven system
ξA(t). Note that each lookout individual in system A
adopts the time series ξl(t) = sign {ξB(t)}, influencing the
rest of the individuals in system A; but we do not count
the lookout individuals when calculating ξA(t). Since we
are interested in fluctuations around equilibrium, from the
mean-field trajectories we calculate the deviation from
their time-averaged mean values, X̃(t) = |ξ(t)| − |ξ(t)|,
where the overline indicates a time-averaged quantity and
| · | the absolute value. Finally, the cross-correlation (with
zero delay) is expressed as

C =
X̃A(t)X̃B(t)(

X̃A(t)2X̃B(t)2
)1/2

. (9)

The time averages are calculated over a finite time T =
107, resulting in the cross-correlation C being a fluctuating
quantity. For this reason, in fig. 3 we plot 〈C〉, where
the ensemble average indicated by the brackets was taken
over 10 independent realizations of networks A and B,
and the error bars represent the standard deviation in the
ensemble.

Although C fluctuates, it is important to note that the
observation time of T = 107 is much longer than the time
it takes an isolated all-to-all system of size N = 103 to
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reach equilibrium [25]. In fact, according to ref. [26] the
time necessary to reach equilibrium, Teq, is given by

Teq =
1

1.4
√

(γD)
, (10)

where D is the intensity of finite-size–induced fluctuations.
This theoretical prediction is related to the decision mak-
ing model in the all-to-all condition by setting [25]

γ =
g

3
(11)

and

D ∝ g2

N
. (12)

With these values we obtain Teq ≈ 4 × 104. Note that
the exact proportionality factor of eq. (12) is unknown,
thereby making this estimate of Teq reliable only as far
as the order of magnitude is concerned. This leads us to
conclude that the adopted value of T is much larger than
Teq and that, consequently, we are operating the network
dynamics in the ergodic regime where the statistical valid-
ity of time averages is ensured. The theory of this paper
can be extended to the case T < Teq, where important
non-ergodic effects have to be taken into account, but this
is left as a subject of future investigation.

Considering again the case of an infinite number of
units, we notice that when there are l lookout individuals,
the mean field of the complete network is

ξ =
N1 − N2

N
=

n1 − n2 + lξl

N
, (13)

where n1 and n2 are the number of ordinary individuals
in states |1〉 and |2〉, and ξl is the state that the lookout
individuals adopt. Introducing p = l/N for the fraction
of lookout individuals, the mean field becomes ξ = (1 −
p)z + pξl, where we retain the notion that z is the mean
field of the ordinary individuals, consisting of a generic
mixture of cooperators and contrarians. Recalling that
z = (1 − q)x + qy, we have that

dz

dt
= (1 − q)

dx

dt
+ q

dy

dt
. (14)

Going back to eq. (5) and eq. (6), in the arguments of
the exponential functions we replace z = (1 − 2q)x with
ξ for a diverse network, because the transition rates of
the ordinary individuals now depend on the mean field of
the full network, with lookout individuals included. We
substitute the result into eq. (14) to obtain the master
equation

dz

dt
= (1 − 2q)g sinh(Kξ) − gz cosh(Kξ) (15)

describing the mean-field behavior of the ordinary units
in the presence of lookout individuals. The equilibrium
mean field is defined by the equation

z = (1− 2q) tanh(Kξ) ≈ (1− 2q) tanh (K(1 − p)z) , (16)

where the approximation ignores the contribution to ξ
from pξl, under the assumption that there are only a few
lookout individuals so that p 
 1. Evaluating the value of
the interaction strength at the critical point by a Taylor
expansion gives

Kc(q, p) =
1

1 − p

1
1 − 2q

. (17)

Alternatively, inverting the expression to obtain the frac-
tion of contrarians yields

qc(K, p) =
1
2

(
1 − 1

K(1 − p)

)
. (18)

Looking back to eq. (8), we see that the effects of intro-
ducing lookout individuals into the network can be ac-
counted for by redefining an effective interaction strength
Kp = K(1 − p) among the ordinary people.

Finite-size effect. – The recent work of ref. [27] raised
the important issue of the effects that a finite size may
have on the statistical prediction. The model under study
in this case is the q-voter model [28]. The authors of this
paper noticed that three different groups [29–31] got ana-
lytically and numerically a continuous function for the exit
probability, namely, the probability that in the long-time
limit all the units of the social system share the opinion of
a small fraction of units with a given opinion. The q-voter
model shares the DMM assumption that each unit is led
to adopting the opinion of the majority of its neighbors.
The authors of refs. [29–31] found for the exit probabil-
ity a continuous function in sharp contrast with the step
function predicted in the earlier work of ref. [32]. The
authors of ref. [27] pointed out that this striking differ-
ence is a consequence of the fact that the numerical work
is limited to finite-size systems, the number of units of
numerical simulation being limited to N = 103, which is
also the number of units considered in this letter. On the
other hand, these authors stress that the social systems
do not fit the condition of physical systems, with N be-
ing the Avogadro number, thereby advocating the need to
understand the finite-size effects. The importance of un-
derstanding the finite-size influence, as well as the effects
of the structure of the network, has been supported also
by the authors of ref. [33]. We want to stress that the cen-
tral result of this manuscript is a consequence of the finite
size of the system. In fact, as made clear by eq. (12), in
the ideal case of infinite size the stochastic force responsi-
ble for temporal complexity [23] vanishes, and with it the
transfer of information from one social network to another
is annihilated. As explained in ref. [26], as a consequence
of finite size, the correlation of the mean-field fluctuations
around equilibrium is not stationary and this departure
from the ordinary Poisson condition is the source of the
efficiency of information transport [20,21].

Concluding remarks. – While the results of the
present paper lend support to the attractive discovery of
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the neural benefits of inhibitory links in cognitive net-
works [4], our findings have a distinct sociological signifi-
cance as well. They suggest a kind of equivalence between
two apparently quite different forms of complexity, one of
neurophysiological interest [4] and the other of sociologi-
cal interest, the latter pertaining to the ATA DMM used
herein.

The peaking of the cross-correlation function in fig. 3
indicates that the concentration of contrarians within a
network can be used to establish a form of resonance be-
tween a driven and a driving network, a central result
of this paper. When the concentration q is assigned the
critical value forcing the network to transition from a dis-
ordered state to the condition when consensus is possible,
the two networks establish a kind of synchronization.

As a potential impact of the results of this paper, we
notice that the intensity of the cross-correlation becomes
negligible for values of q smaller than the critical value,
with the network freezing in a rigid consensus with a
locked-in dependence among individuals, this being a con-
dition of flawed democracy [34]. We believe that criticality
corresponds to the condition of full democracy that, ac-
cording to the authors of ref. [34], would be necessary to
promote the energy sustainability of future generations.

As earlier pointed out, finite-size–induced temporal
complexity is the main ingredient behind the transfer of
information from one to another social network, this being
in fact the main difference compared to the pioneer work
of Galam and Moscovici [19]. We hope that this letter may
attract the attention of the researchers on this important
finite-size effect.
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Bossomaier T., Phys. Rev. Lett., 111 (2013) 177203.

[19] Galam S. and Moscovici S., Eur. J. Soc. Psychol., 21
(1991) 49.
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