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Perimeter Institute for Theoretical Physics - 31 Caroline St. N, N2L 2Y5, Waterloo, ON, Canada

received 15 July 2015; accepted in final form 21 September 2015
published online 8 October 2015

PACS 04.60.-m – Quantum gravity
PACS 11.10.-z – Field theory
PACS 11.10.Hi – Renormalization group evolution of parameters

Abstract – In this pedagogic letter we explain the combinatorics underlying the generic asymp-
totic freedom of tensor field theories. We focus on simple combinatorial models with a 1/p2

propagator and quartic interactions and on the comparison between the intermediate field repre-
sentations of the vector, matrix and tensor cases. The transition from asymptotic freedom (tensor
case) to asymptotic safety (matrix case) is related to the crossing symmetry of the matrix vertex,
whereas in the vector case, the lack of asymptotic freedom (“Landau ghost”), as in the ordinary
scalar φ4

4 case, is simply due to the absence of any wave function renormalization at one loop.

Copyright c© EPLA, 2015

Introduction. – The Grosse-Wulkenhaar model [1] is a
renormalizable non-commutative field theory of the Moyal
type which can also be considered as an abstract matrix
model with a propagator breaking unitary invariance. It
is asymptotically safe [2].

In contrast, asymptotic freedom is a generic feature of
renormalizable tensor field theories [3,4] discovered by Ben
Geloun and his collaborators [5,6]. This remarkable prop-
erty makes such tensor field theories attractive candidates
for quantizing gravity [7]. Just remember how the dis-
covery of asymptotic freedom in non-Abelian gauge theo-
ries was the key to our current understanding of particle
physics. However princeps papers such as [6] are difficult
to read, especially since models with sixth-order interac-
tions are treated, and computations are pushed up to four
loops, with subtle issues related to the stability domain
and the role of the relevant fourth-order interactions re-
cently underlined [8]. These issues are briefly discussed at
the end of this letter. However, our main purpose here is
to avoid such technicalities and to better clarify the mech-
anism responsible for this asymptotic freedom of tensor
models, concentrating for pedagogical reasons on the com-
putation of the one-loop β function of the simplest renor-
malizable combinatorial models with a 1/p2 propagator
and quartic interactions. We shall compare the interme-
diate field representation of such quartic models in the
vector, matrix and tensor case. Indeed this representa-
tion simplifies the combinatorics involved and illuminates
why the sign of the one-loop beta coefficient is positive for
vectors, zero for matrices and negative for tensors.

Quartic models and their intermediate field rep-
resentation. – Consider a pair of complex conjugate
fields φ(θ) and φ̄(θ̄) on the d-dimensional torus Td = Sd

1 ,
hence θ = (θ1, · · · , θd), θc ∈ S1. Their Fourier series
will be noted as φp and φ̄p̄ where p = (p1, · · · , pd), p̄ =
(p̄1, · · · , p̄d) ∈ Z

d. The corresponding Hilbert space is
Hd = L2(Sd

1 ) = �2(Zd) = ⊗d
c=1Hc, where each space

Hc = L2(S1) = �2(Z) corresponds to a given component
also called color in the tensorial context [9,10].

We introduce the familiar Laplacian-based normalized
Gaussian measure1 for d-dimensional Bosonic fields with
periodic boundary conditions

dμC(φ, φ̄) =

⎛
⎝ ∏

p,p̄∈Zd

dφpdφ̄p̄

2iπ

⎞
⎠Det(C)−1 e− ∑

p,p̄ φpC−1
pp̄ φ̄p̄

(1)
where the covariance C is, up to a field strength renor-
malization, the inverse of the Laplacian on Sd

1 plus a mass
term

Cp,p̄ =
1
Z

δp,p̄

p2 + m2 . (2)

Here p2 =
∑d

c=1 p2
c , m2 is the square of the bare mass, and

Z is the so-called wave function renormalization, which
can be absorbed into a (φ, φ̄) → (Z−1/2φ, Z−1/2φ̄) field
strength renormalization. If we restrict the indices p,
which should be thought as “momenta”, to lie in [−N, N ]d

1This propagator is the familiar one of ordinary local scalar
Bosonic field theory, but is also natural in the more abstract combi-
natorial context, see, e.g., [11].
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rather than in Z
d we have proper (finite-dimensional)

fields. We can consider N as the ultraviolet cutoff, and we
are interested in performing the ultraviolet limit N → ∞.

The generating function for the moments of the model is

Z(g, J, J̄) =
1
Z

∫
eJ̄·φ+J·φ̄e− g

2 V (φ,φ̄)dμC(φ, φ̄), (3)

where Z = Z(g, J, J̄)|J=J̄=0 is the normalization, g is the
coupling constant2, and the sources J and J̄ are dual re-
spectively to φ̄ and φ. The generating function for the
connected moments is W = log Z(g, J, J̄).

The quartic vector, matrix and tensor combinatorial
field theories correspond to choices of the quartic interac-
tion V (φ, φ̄) which simply differ in the way the momenta
indices of the four fields branch at V . They correspond to
different symmetry groups, and are not local in the usual
sense on Sd

1 . For instance the tensorial case corresponds
to interactions invariant under U(2N +1)⊗d, hence under
independent change of basis in Hc for each color c [12,13].
Such combinatorial interactions are interesting in the con-
text of quantization of gravity, since the corresponding
Feynman graphs are dual to d-dimensional (colored) tri-
angulations [14] pondered by a discretized form of the
Einstein-Hilbert action [15].

The vector interaction is the square of the quadratic
(mass) term, hence is factorized3 (not connected). It
writes

VV = 〈φ̄, φ〉2 =
∑
p,q

(
φpφ̄p

) (
φqφ̄q

)
, (4)

and it is just renormalizable for d = 4.
The matrix interaction makes sense only for d = 2r even

and is obtained by splitting the initial index as a pair (p, q)
with p = (p1, · · · , pr), q = (q1, · · · , qr), hence splitting the
space Hd = Hr ⊗ Hr. The field φ is then interpreted as
the matrix φpq , with conjugate matrix φ� =t φ̄ and the
vertex VM is an invariant trace

VM = Tr φφ�φφ� =
∑

p,q,p′,q′
φpq φ̄p′qφp′q′ φ̄pq′ . (5)

It is just renormalizable for r = 4, hence d = 8.
Finally the simplest tensor interaction VT is the

color-symmetric sum of melonic [10,16] quartic interac-
tions [17,18]

VT =
∑

c

Vc, Vc(φ, φ̄) = Trc(Trĉφφ̄)2 (6)

=
∑

p,p̄,q,q̄

[
φpφ̄p̄

∏
c′ �=c

δpc′ p̄c′

]
δpc q̄cδqcp̄c

[
φqφ̄q̄

∏
c′ �=c

δqc′ q̄c′

]
,

where Trĉφφ̄ means partial trace in Hd = ⊗d
c=1Hc over all

colors except c, and Trc means trace over color c. The cor-
responding model is just renormalizable for d = 5 [19,20],

2The factor 1/2 in front of g takes care of the Z2 symmetry of the
quartic vertices considered below, hence simplifies their associated
intermediate field representation.

3There are no connected polynomial invariants for vectors beyond
the scalar product.

5

=

1

1

1
2 3 4

Fig. 1: (Color online) The vertex is cut in two by the inter-
mediate field representation. From top to bottom: the vector,
matrix and tensor (melonic, rank 5) case. Incoming and out-
going arrows distinguish φ and φ̄.

which we now assume in this case. One of the five mel-
onic interactions at rank 5 is pictured at the bottom of
fig. 1, with the particular color c = 1 (blue) emphasized.
The restriction to quartic melonic interactions is not so
important as one may think from the physical point of
view of quantizing gravity. Indeed the Feynman pertur-
bation expansion of such restricted models still sums over
all pseudo-manifolds and admits as boundaries all observ-
ables of the colored tensor theory [21].

These three different combinatorial models have just
renormalizable power counting, like the ordinary “scalar”
φ4

4. But the class of divergent graphs is more restricted in
the combinatorial case.

Remark that in all cases the interactions V are posi-
tive for g > 0. Hence the models are stable for this sign
of the coupling constant, which we now assume. Their
perturbative series are certainly at least Borel summable
at finite cutoff N , and in some super-renormalizable cases
have been shown to remain Borel summable in the N → ∞
limit [22,23].

We shall now compare the one-loop beta function of
these models. For this we first pass to the intermediate
field representation4. Indeed quartic models, and espe-
cially quartic vector and tensor models, simplify in this
representation: their dominant graphs as N → ∞ sim-
ply become trees5. The guiding principle is to introduce
an intermediate field σ to split the quartic vertex in two
halves, as pictured in fig. 1, through the simple integral
representation

e− g
2 V (φ,φ̄) =

∫
dν(σ)ei

√
gφ̄φ·σ. (7)

4This representation is called the Hubbard-Stratonovic represen-
tation in condensed matter.

5More precisely, ordinary trees in the vector case and colored
trees in the tensorial case [17].
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In this formula dν is a Gaussian measure with covariance 1
on the intermediate field σ. The three cases (4)–(6) lead
to σ fields of different nature and to different combina-
torial “rules for the dot” in (7). In the vector case the
σ field is a scalar, reflecting the already factorized nature
of (4). In the matrix and tensor case (5), (6) σ is a matrix.
More precisely, in the matrix case (5), it is a single matrix
with its two arguments in Z

4. In the tensor case (6), it is
the sum of five different “colored matrices” σc with their
two arguments in Z, one for each color c, and should be
properly written as [17]

σ =
∑

c

σc ⊗ Iĉ = σ1 ⊗ I2 ⊗ I3 ⊗ I4 ⊗ I5 + · · ·

+ I1 ⊗ I2 ⊗ I3 ⊗ I4 ⊗ σ5. (8)

The advantage of this representation is that the func-
tional integral over (φ̄, φ) becomes quadratic, hence can
be performed explicitly, yielding

Z(g, J, J̄) =
1
Z

∫
dν(σ)

∫
dμC(φ, φ̄)ei

√
gφ̄φ·σeJ̄·φ+J·φ̄

=
1
Z

∫
dν(σ)e〈J̄ ,C1/2R(σ)C1/2J〉

× e−Tr log[I−i
√

gC1/2σC1/2], (9)

where R is the symmetric resolvent operator

R(σ) ≡ 1
I − i

√
gC1/2σC1/2 . (10)

Writing symmetrized expressions with C1/2’s is a bit heav-
ier but shows the Hermitian nature of C1/2σC1/2. It is
essential to ensure the non-perturbative existence of the
resolvent and logarithm for g in a cardioid domain of the
complex plane, see, e.g., [17,18,23].

One-loop β-function. – In all cases the one-loop beta
function boils down to the same computation, up to subtle
differences of purely combinatorial nature. Let us call Γ2p

the 2p-point vertex function, hence the sum of one-particle
irreducible amputated Feynman amplitudes with 2p exter-
nal legs. The renormalized BPHZ prescriptions are defined
by momentum space subtractions at zero momentum6,

gr

2
= −Γ4(0), Z − 1 =

[
∂

∂p2 Γ2

]
(0), (11)

where gr is the renormalized coupling. Performing the
field strength renormalization we can rescale to 1 the
wave function renormalization at high ultraviolet cutoff
at the cost of using a rescaled bare coupling g′

b = Z−2gb.
The one-loop β2 coefficient shows how this rescaled bare
coupling evolves at fixed gr when N → ∞. It writes

g′
b = gr[1 + β2gr(log N + finite) + O(g2

r)], (12)
6In fact we shall restrict these subtractions to divergent graphs

(e.g., planar in the matrix case, melonic in the tensor case), the
difference being a finite renormalization.

where N is the ultraviolet cutoff, and “finite” means a
function which is bounded as N → ∞. As is well known,
β2 > 0 corresponds to a coupling constant which flows
out of the perturbative regime in the ultraviolet (Landau
ghost). β2 < 0 corresponds to the nice physical situa-
tion of asymptotic freedom: the (rescaled) bare coupling
flows to zero as N → ∞, hence the (rescaled) theory
tends towards a Gaussian (free) quantum free theory in
the ultraviolet regime. β2 = 0 indicates the possibility of
asymptotic safety (non-trivial ultraviolet fixed point close
to the Gaussian one), but is inconclusive as the analysis
of the renormalization group flow must be pushed further.

It is easier to compute the bare perturbation theory, as
it does not involve any subtraction. Starting from (11), we
find that Γ4 and Z − 1 always involve the same logarith-
mically divergent sum, namely (using, e.g., the standard
parametric representation [20])

∑
q∈[−N,N ]4

1
(q2 + m2

r)2
= 2π2 log N + finite, (13)

where m2
r = Zm2 −Γ2(0) is the renormalized mass. How-

ever this sum arises with various combinatoric coefficients.
More precisely

Γ4(0) = −gb

2

[
1 − agb

∑
q∈[−N,N ]4

1
(q2 + m2

r)2
+ O(g2

b )

]
,

(14)

Z = 1 +
∂Γ2

∂p2

∣∣∣
p=0

= 1 + bgb

∑
q∈[−N,N ]4

1
(q2 + m2

r)2
+ O(g2

b ), (15)

where a and b are combinatoric coefficients that depend on
the particular case (vector, matrix or tensor) considered.

Since g′
b = Z−2gb, multiplying (12) by Z2 and taking

into account (11)–(15), which imply gr = gb + O(g2
b ) and

Z = 1 + O(gb), we find

Z2Γ4(0) = −gb

2
[1 − β2gb(log N + finite) + O(g2

b )], (16)

hence in all cases we find that

β2 = (a − 2b)2π2, (17)

and we are left with the simple problem of computing the
coefficients a and b of the one-loop leading diagrams for
Γ4 and Z.

– In the vector case, a = 1. Indeed in the paramet-
ric representation the only divergent graph is the one
on the left of fig. 2. Resolvents (derivatives with re-
spect to J and J̄), also represented as ciliated vertices
in [17], come up with a factor 1 and no symmetry
factorial, whether terms from the Tr log expansion,
also called loop vertices [24] and pictured as uncili-
ated vertices in [17] come up with a factor 1/n for
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Fig. 2: The (single) one-loop melonic graphs in the tensor case
for Γ4 and Γ2 are trees for the intermediate field (dashed) lines.

a Tr(i
√

gC1/2�σC1/2)n (because of the Taylor series
of the logarithm), plus a symmetry factor 1/k! if
there are k of them (this factor comes from expan-
sion of the exponential). The combinatoric weight
for the tree graph at order g2 for Γ4 is therefore
1, which decomposes into a 1/2 for the single-loop
vertex (n = 2, k = 1) times a 2 for the two Wick
contractions.

In this vector case b = 0 since the one-loop tadpole on
the right of fig. 2, the only contributing graph at order
g, does not have any external momentum dependence.
Hence [

∂

∂p2 Γ2

]
(0) = O(g2) ⇒ b = 0. (18)

Hence β2 = 2π2 and the theory has no UV fixed point,
at least in this approximation.

– In the tensor case, a = 1 for the same reasons as in
the vector case. Indeed for any of the five melonic
interactions there is a single divergent graph of the
corresponding color of the type pictured on the left
of fig. 2.

But now we also have b = 1. Indeed let us remark
first that b > 0 because two minus signs compensate,
one in front of g in (3) and the other coming from the
mass subtraction, since[

1
p2

c

( 1
q2 + p2

c + m2
r

− 1
q2 + m2

r

)]
pc=0

=

− 1
(q2 + m2

r)2
. (19)

The combinatorics is then 1 because there is a single-
loop vertex with n = 1, k = 1 and a single Wick
contraction to branch it on the external resolvent as
shown for the graph on the right of fig. 2. Summing
over the colors c of this contraction simply recon-
structs

∑
c p2

c = p2. In conclusion β2 = −2π2 and
the theory is asymptotically free, in agreement with
[5,19,25]. Wave function, or field strength renormal-
ization won over coupling constant renormalization
because of the square power in Z2.

– In the matrix case, the vertex crossing symmetry
means that more terms diverge logarithmically than

Fig. 3: The dominant one-loop graphs in the matrix case for
Γ4 and Γ2 are planar in the intermediate field representation.

in the vector and tensor cases, namely those corre-
sponding to planar maps7 in the intermediate repre-
sentation. The crossing symmetry is a Z2 symmetry,
but it acts differently on Γ4 and Γ2. Since the one-
loop graph for Γ4 has two vertices, hence two (dotted)
σ propagators, the crossing symmetry acts twice inde-
pendently and generates an orbit of four planar maps,
represented in the top part of fig. 3. In contrast the
crossing symmetry acts only once on the orbit of the
Γ2 term, generating only the two planar maps pic-
tured in the bottom part of fig. 3. Hence a = 4 and
b = 2 which leads to β2 = 0! This “miracle” per-
sists at all orders: in fact the logarithmically diver-
gent part of Z2Γ4(0) is exactly 0 at all orders in g,
as can be shown through combining a Ward identity
with the Schwinger-Dyson equations of the theory [2].
The corresponding theory is asymptotically safe.

In conclusion the asymptotic freedom of quartic mel-
onic renormalizable tensor field theories can be traced
back to the same combinatorial weight 1 for the melonic
terms (rooted trees in the IF representation) contributing
to Γ4(0) and Z. It leads to Z2 winning over Γ4(0). In con-
trast asymptotic safety for matrix models comes from the
crucial crossing symmetry of the vertex. This symmetry
boosts the contribution of Z by a factor 2, but the contri-
bution of Γ4(0) by a factor 4, since it acts independently
on its two vertices. This restores perfect equilibrium be-
tween Γ4(0) and Z2.

Some further remarks. – The reader could ask where
in this picture sits the ordinary scalar (complex) φ4

4 theory.
It corresponds to a vertex which is local in the direct θ rep-
resentation, hence momentum conserving in the n indices.
This vertex in the language of the previous section is there-
fore, at d = 4, hence for p, p̄, q, q̄ ∈ Z

4

VS =
∑

p,p̄,q,q̄

φpφ̄p̄φqφ̄q̄δ(p − p̄ + q − q̄). (20)

The symmetry of the vertex no longer distinguishes planar
from non-planar Wick contractions. Moreover, b = 0, like
in the vector case, because the tadpole in this theory is
purely local. Again there is no way to have asymptotic
freedom or even safety for a stable g > 0 coupling, because
there is no one-loop wave function renormalization.

7As is by now well known, intermediate field graphs are really
what mathematicians nowadays call combinatorial maps.
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One could also consider real rather than complex mod-
els. Again here there are some changes, for instance the
crossing symmetry of the scalar vertex has a symmetry
of order three, since there are three ways to divide the
four equivalent real fields into two pairs. But the con-
clusions do not change: real scalar and real vector theo-
ries are neither asymptotically free nor safe since there is
still no one-loop wave function renormalization, whether
renormalizable real matrix theories remain asymptotically
safe (the combinatorics being the same than for the real
matrix Groose-Wulkenhaar model). We expect also real
tensor theories to remain asymptotically free, since the
quartic vertex pairing still has only one melonic channel.

These features also do not depend as much as one could
think of the particular form of the propagator. In partic-
ular if we replace Z by N and consider linear-type inverse
propagators 1

n+m2 , the conclusions remain similar. The
Grosse-Wulkenhaar model is a matrix model with such
an inverse-linear propagator and is asymptotically safe at
all orders [2], and the quartic melonic tensor model with
an inverse-linear propagator is asymptotically free in the
dimension d = 3 where it is just renormalizable [5].

Finally let us remark that adding Boulatov-type gauge
projectors to the tensor propagators, as is natural in ten-
sor group field theory [26–30], enhances rather than sup-
presses their asymptotic safety. In the simplest model of
this type which is just renormalizable, namely the quar-
tic melonic d = 6 model with propagator δ(

∑6
c=1 pc)(p2 +

m2)−1 [29] the basic one-loop integral (13) is changed into

∑
q∈[−N,N ]5

δ(
∑5

c=1 qc)
(q2 + m2

r)2
=

2π2
√

5
log N + finite. (21)

The derivative contributing to Z is also enhanced, so that
the ratio between b and a is now 6/5 instead of 1 (see
footnote 8). As a result Z2 wins even more over Γ4. In
the normalization used in the previous section we have for
that model

β2 = a − 2b =
(

1 − 12
5

)
2π2
√

5
= −14π2

5
√

5
. (22)

The asymptotic freedom of renormalizable tensor the-
ories with higher-order interactions (such as the models
with sixth-order interactions considered in [3] and in [27])
is a much more delicate issue. First of all, in contrast
with the matrix case, and even for models which are sym-
metric under color permutations, there are at higher order
several different tensor invariants, and even several differ-
ent melonic tensor invariants. In particular at order six
there are two different melonic invariants B1 and B2 with
coupling constants g1 and g2 (see fig. 4). The computa-
tions of [6] show that in the quadrant g1 > 0 and g2 > 0
the two beta-function coefficients for g1 and g2 have the
right sign for asymptotic freedom. However, in [8] a more

8Beware of a missing factor 2 in the initial version of that com-
putation [29].

Fig. 4: (Color online) The two melonic observables B1 and B2

of order 6 (at rank 3, with a particular coloring).

careful analysis of the RG flow, better including the effect
of the fourth-order relevant coupling, showed that in that
quadrant, the ultraviolet fixed point is only approximate.
After closing towards the Gaussian point, the ultraviolet
RG trajectory slightly misses it and apparently enters an
unstable region.

However, two important remarks are in order. Firstly,
an analog of the Wilson-Fisher ε expansion suggests that
this type of theories could have an asymptotically safe
fixed point [31]. Secondly, the true stability region for
sixth-order interactions is certainly larger than the quad-
rant g1 > 0 and g2 > 0. We should expect the exis-
tence of some constants K1 and K2 such that B1 ≤ K1B2
and B2 ≤ K2B1. The stability region is therefore not re-
stricted to the quadrant g1 > 0 and g2 > 0, but includes
other regions such as g1 < 0, g2 > 0 and |g1|K1 < g2 or
g1 > 0, g2 < 0 and |g2|K2 < g1. These regions may contain
asymptotically free trajectories emerging from the ultra-
violet Gaussian fixed point.

In conclusion, although the jury is still out on the deli-
cate issue of the ultraviolet RG flow for tensor field theo-
ries with several marginal couplings of order higher than
four, which clearly requires more analytic and numerical
work, the asymptotic freedom of such theories with quartic
interactions is a solid mathematical fact, relatively inde-
pendent of the details of the model. It is deeply rooted
in the tensor combinatorics, which is different from the
one of matrix models. It would be interesting to study
whether, like for non-Abelian gauge theories, this asymp-
totic freedom survives only to the addition of a bounded
number of matter fields.
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