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PACS 82.70.Uv – Surfactants, micellar solutions, vesicles, lamellae, amphiphilic systems,
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Abstract – The morphologies of genus-2 to -8 fluid vesicles are studied by using dynamically
triangulated membrane simulations with area-difference elasticity. It is revealed that the align-
ments of the membrane pores alter the vesicle shapes and the types of shape transitions for the
genus g ≥ 3. At a high reduced volume, a stomatocyte with a circular alignment of g + 1 pores
continuously transforms into a discocyte with a line of g pores with increasing intrinsic area
difference. In contrast, at a low volume, a stomatocyte transforms into a (g +1)-hedral shape and
subsequently exhibits a discrete phase transition to a discocyte.

Copyright c© EPLA, 2015

Introduction. – Cell organelles have a variety of
morphologies. In some organelles, lipidic necks or pores
connect biomembranes such that they hold a nonzero
genus. For example, a nuclear envelope consists of two bi-
layer membranes connected by many lipidic pores, which
is supported by protein complexes. The outer nuclear
membrane is also connected by the endoplasmic reticu-
lum, which consists of tubular networks and flat mem-
branes. The fusion and fission of the membrane tubes
change their genus. It is important to understand the
topology dependence of their morphologies.

Since lipid bilayer membranes are basic components of
biomembranes, lipid vesicles in a fluid phase are considered
a simple model of cells and organelles. The morphologies
of genus-0 vesicles have been intensively studied experi-
mentally and theoretically [1–9]. A red-blood-cell shape
(discocyte) as well as prolate and stomatocyte, can be re-
produced by minimization of the bending energy with area
and volume constraints. Other shapes such as a pear and
branched tubes are obtained by the addition of sponta-
neous curvature or area-difference elasticity (ADE) [3–5].
In particular, the ADE model can reproduce experimen-
tally observed liposome shapes very well [7]. In contrast
to the genus-0 vesicles, vesicles with a nonzero genus have
been much less explored.

Vesicle shapes with the genuses g = 1 and g = 2 were
studied in the 1990s [10–17]. For g = 1, a conformational
degeneracy was found in the ground state of the bending
energy, where the vesicles can transform their shapes if the
vesicle volume is allowed to freely vary [11]. For g ≥ 2, a

conformational degeneracy is obtained even with a fixed
volume [14,15,17]. Phase diagrams of genus-1 and genus-2
vesicles were constructed by Jülicher et al. [13–15] for sym-
metric shapes. Recently, we found that nonaxisymmetric
shapes such as elliptic and handled discocytes also exist
in equilibrium for genus-1 vesicles [18].

Vesicles with g � 1 were observed for polymersomes,
and the budding of hexagonally arranged pores was in-
vestigated in ref. [19]. To our knowledge, this paper is
the only previous study of the shape transition of vesicles
with g ≥ 3. Thus, vesicle shapes for g ≥ 3 have been little
explored. In this study, we investigate the vesicle shapes
for 2 ≤ g ≤ 8 by using dynamically triangulated mem-
brane simulations with the ADE model. In particular, we
focus on the genus-5 vesicles, where various shapes includ-
ing cubic and fivefold symmetrical shapes are formed. We
will show that the arrangements of the pores remarkably
change the shape transitions.

Simulation model and method. – The morphologies
of fluid vesicles are simulated by a dynamically triangu-
lated surface method [18,20,21]. Since the details of the
potentials are described in ref. [18] and the general features
of the triangulated membrane can be found in ref. [20],
the membrane model is briefly described here. A vesi-
cle consists of 4000 vertices with a hard-core excluded
volume of diameter σ0. The maximum bond length is
σ1 = 1.67σ0. The volume V and surface area A are main-
tained by harmonic potentials UV = (1/2)kV(V −V0)2 and
UA = (1/2)kA(A−A0)2 with kV = 4kBT and kA = 8kBT ,
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Fig. 1: (Colour online) Snapshots of genus-5 vesicles ob-
tained by the simulation (a) without the volume constraint
at k∗

ade = 0, ((b), (c)) with the volume constraint at k∗
ade = 0,

and ((d), (e)) with the volume constraint at k∗
ade = 1 and

Δa0 = 1.45. (a) Circular-cage stomatocyte at V ∗ = 0.63 and
Δa = 0.98. (b) Stomatocyte at V ∗ = 0.54 and Δa = 0.8.
(c) Spherical stomatocyte at V ∗ = 0.5 and Δa = 0.74.
(d) Cube at V ∗ = 0.4 and Δa = 1.41. (e) Discocyte at
V ∗ = 0.4 and Δa = 1.32. The top and front views are shown.
In the front view, the vesicles are cut along a plane shown as a
(red) straight line on the left side in the top view. Their front
halves are removed and the cross-sections are indicated by the
thick (red) lines.

where kBT is the thermal energy. The deviations in the re-
duced volume V ∗ = V/(4π/3)RA

3 from the target values
are less than 0.1%, where RA =

√
A/4π. A Metropolis

Monte Carlo (MC) method is used for vertex motion and
reconnection of the bonds (bond flip).

The bending energy of a single-component fluid vesicle
is given by [1,2]

Ucv =
∫

κ

2
(C1 + C2)2dA, (1)

where C1 and C2 are the principal curvatures at each point
in the membrane. The coefficient κ is the bending rigidity.
The spontaneous curvature and Gaussian bending energy
are not taken into account since the spontaneous curva-
ture vanishes for a homogeneous bilayer membrane and
the integral over the Gaussian curvature C1C2 is invariant
for a fixed topology.

In the ADE model, the ADE energy UADE is added as
follows [3–5]:

UADE =
πkade

2Ah2 (ΔA − ΔA0)2. (2)
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Fig. 2: (Colour online) Phase diagram of genus-5 vesicles.
The (red) solid line represents the mean area difference 〈Δa〉
obtained from the simulation with the volume constraint at
k∗
ade = 0. The contour lines of the probability distribution

P (V ∗, Δa) = 0.00001, 0.0001, 0.001 are obtained by the simu-
lation without the volume constraint at k∗

ade = 0. The circles
and squares with the dashed lines represent the phase bound-
aries of Δa0 for stable and metastable discocytes, respectively.
The error bars are shown at several data points for 〈Δa〉 and
at all data points for the phase boundaries.

The areas of the outer and inner monolayers of a bilayer
vesicle differ by ΔA = h

∫
(C1 +C2)dA, where h is the dis-

tance between the two monolayers. The area differences
are normalized by a spherical vesicle as Δa = ΔA/8πhRA
and Δa0 = ΔA0/8πhRA to display our results. The spher-
ical vesicle with Δa0 = 0 has Δa = 1 and UADE = 8π2kade.
The mean curvature at each vertex is discretized using
dual lattices [18,20,22,23].

In the present simulations, we use κ = 20kBT and
k∗
ade = kade/κ = 1. These are typical values for phospho-

lipids [5,7]. Most of the simulations are performed with
the bending and ADE potentials under the volume and
area constraints. In some of the simulations, k∗

ade = 0 and
kV = 0 are employed in order to simulate the vesicles with-
out the ADE energy and volume constraints, respectively.
In the long-time limit, the area difference is relaxed to
Δa = Δa0, although it does not occur on a typical exper-
imental time scale. The canonical MC simulations of the
ADE model are performed from different initial conforma-
tions for various values of V ∗ and Δa0. To obtain the ther-
mal equilibrium states, a replica exchange MC (REMC)
method [24,25] with 8 to 24 replicas is employed for the
genus-5 vesicles. Different replicas have different values of
Δa0 or V0 and neighboring replicas exchange them by the
Metropolis method.

Genus-5 vesicles. – We intensively investigate vesi-
cles with the genus g = 5 (figs. 1–4). We categorize the
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Fig. 3: (Colour online) Dependence of the vesicle shapes
on Δa0 for genus-5 vesicles at V ∗ = 0.6 and k∗

ade = 1.
(a), (b): snapshots at Δa0 = 1.16 (a) and Δa0 = 1.45 (b).
(c) Free-energy profile F . (d) Mean asphericity 〈αsp〉. (e) Mean
area difference 〈Δa〉 compared to the intrinsic area difference
Δa0. The error bars are shown at several data points.

vesicle shapes as stomatocyte and discocyte. A spheri-
cal invagination with a narrow neck into the inside of a
spherical vesicle is a typical stomatocyte. Here, we also
include a nonspherical invagination (see fig. 1(a)) and an
invagination with wide necks (see fig. 1(d)) into the stom-
atocyte. On the discocyte, five pores can be aligned in
circular, straight, or branched lines (see figs. 1(e), 3(b),
and 4(c)).

When the volume constraint and the ADE potential
are removed (kV = 0 and k∗

ade = 0), the vesicle shape
is determined by the bending energy with the topolog-
ical constraint. As mentioned in the Introduction, the
lowest bending-energy states of the vesicles with g ≥ 1
are not a single conformation but the vesicles transform
shapes without changing the bending energy [14,15,17]. At
g = 5, the lowest energy states are a circular-cage stoma-
tocyte, where g +1 pores are aligned in a circular line and
the pore size largely fluctuates (see fig. 1(a)). The vesicle
shapes are distributed around V ∗ � 0.63 and Δa � 1 as
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Fig. 4: (Colour online) Dependence of the vesicle shapes on
Δa0 for genus-5 vesicles at V ∗ = 0.5 and k∗

ade = 1. (a) Snap-
shot of a pentagonal pyramid at Δa0 = 1.3. (b) Snapshot of
a concave pentagonal pyramid at Δa0 = 1.6. (c) Snapshot
of a discocyte at Δa0 = 1.6. (d) Free-energy profile F . The
(blue) solid line represents F of the spherical and pyramidal
stomatocytes; the (black) dashed line represents F of the dis-
cocyte. (e) Mean asphericity 〈αsp〉. (f) Mean area difference
〈Δa〉 compared to the intrinsic area difference Δa0. The solid
lines in (e) and (f) represent the data in equilibrium and the
dashed lines represent the data averaged for either pyramid or
discocyte. The error bars are shown at several data points.

shown in fig. 2. Note that the simulations are performed
at a finite temperature (κ = 20kBT ) so that the obtained
shapes contain thermally excited states around the lowest
energy states.

Stomatocytes are stable shapes with the volume con-
straint for k∗

ade = 0. A valley in the free-energy landscape
in the V ∗–Δa space is extended from the lowest energy
state to low reduced volumes along the solid (red) line in
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fig. 2. This line is calculated using the REMC method for
V ∗ with kV = 0.0001 without the ADE potential. With
decreasing V ∗, it is found that the vesicle transforms from
the circular-cage shape to a spherical stomatocyte (see
fig. 1(c)), where g + 1 pores are distributed on the vesi-
cle surface. This transformation occurs as a continuous
change. In the transient region at 0.52 � V ∗ � 0.55, the
vesicle has intermediate shapes, in which the positions of
one or two pores often deviate from a plane (see fig. 1(b)).
This shape transformation in the stomatocytes is char-
acteristic for vesicles with g ≥ 3 but is not obtained for
g ≤ 2. Thus, the arrangement of the pores appears as a
new factor for the high-genus vesicles.

Next, we describe the stomatocyte-discocyte transition
as a function of Δa0 using the ADE model. It drasti-
cally changes above or below the critical reduced volume
V ∗ � 0.54 of the change in the pore arrangement on the
stomatocyte. Figure 3 shows the free energy and shapes
of the vesicles at V ∗ = 0.6 calculated by the REMC sim-
ulation. The lowest free-energy state is the circular-cage
stomatocyte at Δa0 = 0.9 (see fig. 3(c)). We take this to
be the origin of the free energy, F = 0, in this study. With
increasing Δa0, one of the pores in the cage stomatocyte
gradually opens (see fig. 3(a)), and subsequently, a disco-
cyte with a straight line of g pores is formed (see fig. 3(b)).

The vesicle shapes are quantified by a shape parameter,
asphericity αsp, and the area difference Δa. The aspheric-
ity αsp is defined as [26]

αsp =
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

2(λ1 + λ2 + λ3)2
, (3)

where λ1 ≤ λ2 ≤ λ3 are the eigenvalues of the gyra-
tion tensor of the vesicle. The asphericity is the degree
of deviation from a spherical shape: αsp = 0 for spheres,
αsp = 1 for thin rods, and αsp = 0.25 for thin disks [18,23].
The spherical stomatocyte and discocyte have αsp � 0
and 0.2, respectively. The circular-cage stomatocyte has
αsp � 0.05. As the stomatocyte transforms into the dis-
cocyte, αsp and Δa change abruptly. The transition point
(Δa0 = 1.146 ± 0.004) is estimated from the maximum
slope of the αsp curves in fig. 3(d). When the discocyte
vesicle transforms into the open stomatocyte, the mirror
symmetry breaks, and the slope of F (Δa0) changes. This
is a second-order type of transition, but it is rounded by
the thermal fluctuations. This characteristic of the tran-
sition is the same as the stomatocyte-discocyte transition
at g = 0 and 1.

The stomatocyte-discocyte transformation becomes a
discrete transition below the critical reduced volume
V ∗ � 0.54. We obtained the coexistence of the stoma-
tocyte and discocyte using canonical MC simulations in
the right region of the dashed (gray) line with squares in
fig. 2. The final shapes are determined by hysteresis from
the initial conformations. For example, cubic and disco-
cyte vesicles are obtained at V ∗ = 0.4 and Δa0 = 1.45
(see figs. 1(d) and (e)). However, the canonical simulation

cannot determine which shape is more stable. Both shapes
can be maintained without transformation into the other
shape in this region. When we use the REMC simula-
tion for Δa0, the exchange between the stomatocyte and
the discocyte does not occur in equilibrium owing to a
large free-energy barrier. To overcome such an energy
barrier, one more order parameter is often added and the
REMC or alternative generalized ensemble method is per-
formed in a partially or fully two-dimensional parameter
space. Previously, we employed the asphericity as an ad-
ditional order parameter for a constant radius of gyra-
tion in order to overcome the energy barrier between the
two free-energy valleys of the discocyte and prolate of a
genus-0 vesicle [23]. For the current transition, however,
we did not succeed with similar strategies. Therefore,
we take a detour via the stomatocyte-discocyte contin-
uous transition at V ∗ = 0.6. This type of detour has
been used in free-energy calculations [27,28]. For liquid-
gas phase transitions the barrier can be avoided via su-
percritical fluids. For membranes, an external order field
was used to investigate the formation energy of a fusion
intermediate [27].

Here, we use three REMC simulations to estimate
the free-energy difference ΔFv5 between the stomato-
cyte at Δa0 = 0.75 and the discocyte at Δa0 = 1.55
for V ∗ = 0.5. First, the free-energy difference between
the stomatocytes at V ∗ = 0.5 and 0.6 is calculated as
ΔFst/kBT = 15.1 ± 0.1 from the REMC simulation used
for calculating the solid line in fig. 2. Second, the differ-
ence ΔFv6/kBT = 192.1 ± 0.1 between the stomatocyte
at Δa0 = 0.9 (the free-energy minimum for kade = 0) and
the discocyte at Δa0 = 1.55 for V ∗ = 0.6 is calculated
as shown in fig. 3(c). Third, the difference ΔFdis/kBT =
62.5 ± 0.1 between the discocytes at V ∗ = 0.5 and 0.6
for Δa0 = 1.55 is calculated from the REMC simula-
tion for V ∗ with kV = 0.0001 and Δa0 = 1.55. Hence,
the free-energy difference at V ∗ = 0.5 is calculated as
ΔFv5 = ΔFv6 + ΔFdis − ΔFst = 239.5kBT ± 0.3kBT . We
simulate the stomatocyte and discocyte at V ∗ = 0.5 sep-
arately using the REMC simulations (see the lower (blue)
and upper (black) dashed lines in figs. 4(e) and (f)) and
obtain the equilibrium states by averaging them with the
weight exp(−ΔF/kBT ) as shown in fig. 4(d). This cal-
culation clarifies that the stomatocyte-discocyte transfor-
mation is a discrete transition at Δa0 = 1.146 ± 0.004 for
V ∗ = 0.5 (see the solid (red) lines in figs. 4(e) and (f)).

Next, we investigate the vesicle shapes in detail for V ∗ =
0.5. With an increase in Δa0, the spherical stomatocyte
transforms into a pentagonal pyramid (see fig. 4(a)). With
a further increase, the side faces of the pyramid become
concave, and the vesicle shape is represented by a circular
toroid connected to a sphere via five narrow necks (see
fig. 4(b)). This concave necked shape prevents the open-
ing of the bottom pore into a discocyte. On the discocytes,
pores are aligned in circular, straight, or branched lines
(see figs. 1(e), 3(b), and 4(c)). At V ∗ = 0.5, these three
alignments coexist. As V ∗ decreases and increases, the
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Fig. 5: (Colour online) Snapshots of the genus-5 vesicles at
V ∗ = 0.5 and k∗

ade = 1. (a), (b): budded stomatocytes at
Δa0 = 2 (a) and Δa0 = 2.2 (b). The bird’s eye and front
views are shown. (c) Budded discocyte at Δa0 = 2.2.

circular and straight pore alignments appear more fre-
quently, and the circular and straight alignments only
exist for V ∗ = 0.4 and 0.6, respectively.

Our simulations have revealed that the stomatocyte-
discocyte transformation changes from a continuous to a
discrete transition as the stomatocyte changes from the
circular-cage to the spherical shape. The crucial differ-
ence between these two transitions is the change in the
pore alignments. During the circular-cage to discocyte
transformation, the pore alignment does not change (see
figs. 1(a) and 3(a), (b)). In contrast, the transformation
from the cubic to discoidal shapes at V ∗ = 0.4 is accom-
panied by the realignment of the pores from cubic sym-
metry to fivefold symmetry (see figs. 1(d) and (e)). The
transformation from the pyramidal to the discoidal shape
at V ∗ = 0.5 is not accompanied by pore realignment, but
the circular alignment of five pores stabilizes the half-open
stomatocyte (see fig. 4(b)). Thus, the pore alignments are
the origin of the discrete transitions.

At Δa0 � 2, outward buddings occur for both stoma-
tocytes and discocytes. Since the buds can be connected
by multiple membrane necks, the bud shapes are not al-
ways spherical. For the stomatocytes, the circular-toroidal
and spherical compartments are divided and the toroidal
compartment elongates at Δa0 = 2 (see fig. 5(a)). With
increasing Δa0, budding occurs in narrow regions of the
toroid (see fig. 5(b)). Discocytes become divided along
the pore alignments (see fig. 5(c)). With further increas-
ing Δa0, more buds are formed. These budded shapes
coexist in a wide range of Δa0 because of the free-energy
barrier for the formation and removal of the narrow necks.

Dependence on genus. – The discrete transitions
from stomatocytes to discocytes are obtained for g ≥ 3
(see fig. 6). The features described in the previous sec-
tion for g = 5 are general for g ≥ 3. A g-fold pyramid-
shaped vesicle coexists with a discocyte (see the triangular
and concave octagonal pyramids in figs. 6(a) and (b)).
For g = 3, stomatocytes transform into discocytes at
Δa0 � 1.6 for V ∗ = 0.5. For g ≥ 4, the coexistence

1

1.5

2 4 6 8

Δa
0

g

(c)

Fig. 6: (Colour online) Genus g dependence of the vesicle
shapes at V ∗ = 0.5 and k∗

ade = 1. (a) Snapshots of genus-3
vesicles at Δa0 = 1.5. (b) Snapshots of genus-8 vesicles at
Δa0 = 1.5. (c) Upper (�) and lower (◦) boundaries of the co-
existence regions as a function of the genus g. The error bars
are shown at all data points.

region has no upper Δa0 limit. At Δa0 � 2, the vesicles
exhibit budding, as for g = 5.

Summary. – We revealed that the stomatocyte-
discocyte transformation is a discrete shape transition at
low reduced volumes V ∗ for 3 ≤ g ≤ 8, while it is a con-
tinuous transformation at high V ∗. This discreteness is
caused by the alignment of g + 1 pores in the stomato-
cytes. At high V ∗, the pores are aligned in a circular line,
while the pores are distributed on the entire surface at low
V ∗. As the intrinsic area difference Δa0 increases, this
spherical stomatocyte transforms into polyhedral shapes.
The transformations of these vesicles from polyhedral to
discoidal shapes are the first-order transition.

We found a continuous transformation from circular-
cage to spherical stomatocytes. However, for vesicles with
g � 1, this transformation may be a discrete transition
since the symmetry of the pores is changed. The phase
behavior at g � 1 is an interesting problem for further
studies.

Polyhedral vesicles are formed under various condi-
tions: gel-phase membranes [29], phase-separated mem-
branes [30–33], the assembly of protein rods [34], and fluid
membranes with the accumulation of specific lipids or de-
fects on the polyhedral edges or vertices [35–37]. How-
ever, such vesicles typically have multiple (meta-)stable
shapes and it is difficult to produce only a specific type
of polyhedral shape. For high-genus vesicles, a polyhe-
dral vesicle has g + 1 faces. The vesicles can only form
a triangular pyramid for g = 3 and a cube and pen-
tagonal pyramid for g = 5. Thus, the possible polyhe-
dra are limited and the shape can be controlled by V ∗

and Δa0. Recently, the assembly and packing of polyhe-
dral objects have received growing attention [38]. Cubic
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and other polyhedral vesicles can be interesting building
blocks, since their shapes are deformable and can be con-
trolled by the osmotic pressure.

A mitochondrion consists of two bilayer membranes.
The inner membrane has a much larger surface area than
the outer one and forms many invaginations called cristae.
As a model of such a confinement of an outer vesicle,
the morphology of a genus-0 vesicle under spherical con-
finement has been recently studied [8,9]. The confine-
ment induces various shapes such as double and quadruple
stomatocytes, a slit vesicle, and vesicles of two or three
compartments. Very recently, Bouzar et al. reported
that the confinement transforms axisymmetric toroids into
asymmetric shapes for genus-1 vesicles [39]. For higher-
genus vesicles, the confinement should similarly stabilize
the stomatocytes with respect to the discocytes since the
stomatocytes are more compact.
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