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Abstract – The presence of an oscillation with a period of 5.9 yr in measured values of Newton’s
gravitational constant G over more than three decades, and of a correlation with a 5.9 year oscil-
lation in the length of day (LOD) variability, was recently reported by Anderson et al. (EPL, 110
(2015) 10002). A reanalysis based on an improved data set of measured G values was conducted
by Schlamminger et al. (Phys. Rev. D, 91 (2015) 121101(R)) with the result of supporting the
finding of a low-frequency oscillation present in the G measurements (with a period of ∼ 6 yr).
A subsequent reanalysis by Anderson et al. (arXiv:1505.01774 [gr-qc]) using the improved data
set of Schlamminger et al. confirmed the presence of the oscillation. However, the phase relation-
ship changed (G and LOD not in phase anymore). In an additional analysis, Pitkin showed by
Bayesian model selection that the oscillation is most probably due to chance since the data can
be modelled at best with the assumption that the scattering of values is caused by measurement
errors and an additional Gaussian noise term overlaid. In order to add to the analysis of possible
oscillation in G data sets the aim of our work was to reanalyze the data based on the data sets
compiled by Schlamminger et al. using the generalized Lomb-Scargle (GLS) periodogram (and
the Lomb-Scargle (LS) periodogram, as a control) with additional bootstrapping-based statistical
testing. We found periods of ∼ 6 yr and ∼ 0.8 yr in all the investigated data sets; however, the cor-
responding peaks in the spectra did not reach statistical significance. We therefore conclude that
there is not enough statistical evidence that these oscillations are not due to chance —a finding
in agreement with the work of Pitkin.

Copyright c© EPLA, 2016

Introduction. – Values of Newton’s gravitational con-
stant G measured with high-precision setups over the last
35 years by different groups show a large variability (in the
range of about 500 ppm), exceeding the experimental er-
rors in the single experiments (< 50 ppm). The origin of
the variability is not yet known. In general, it could be
due to an overlooked systematic effect, i.e., a disturbance
of the measurement procedure, or it might be a real phys-
ical effect indicating that the theory of gravity by itself
is incomplete at present. In both cases, new insights into
the origin are of high importance and significance.

Recently, Anderson et al. [1] showed that the long-term
variability in measured G values (i.e., values reported by
the 2010 CODATA report [2] and newer values obtained
by Quinn [3] (BIMP-13) as well by Rosi [4] (LENS-14))

can be modelled by a sinusoidal function with a period
length (T ) of 5.899 ± 0.062 yr and an amplitude (A) of
(1.619 ± 0.103) × 1014 m3kg−1s−2. In addition, Anderson
et al. hypothesized that this oscillation of G values could
be linked to a 5.9 yr oscillation present in the time series of
the length of day (LOD) [5] since both oscillations shared
approximately the same frequency and were in phase.

In a subsequent paper, Schlamminger et al. [6] pointed
out that the data set used by Anderson et al. [1] was im-
precise with respect to the timing of measured G values.
Schlamminger et al. presented a novel collection of G val-
ues measured over the last 35 years (i.e., the data also
used by Anderson et al. but with corrected measurement
times and additional data from another measurement [7]).
Fitting sine functions (based on minimizing the L1 or L2
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norms) to the novel data set revealed an oscillation with
T = 0.769 yr (strongest oscillation) and one similar to that
found by Anderson et al. with T = 6.1 yr (using the L1
norm minimization) and T = 6.2 yr (L2 norm), respec-
tively. In addition, Schlamminger et al. listed and an-
alyzed the measured values of Karagioz and Izmailov [8]
(TR&D-96) (number of measurements: n = 26) by fitting
a sine function with T = 5.9 yr to the data. The eval-
uation of the goodness of fit advised to reject the null
hypothesis that the measured and predicted values are
the same (degrees of freedom: 23, χ2 = 14.3, leading to
p = 0.917957 with a significance level of α = 0.05).

Anderson et al. updated their analysis by using the
new data set provided by Schlamminer et al. (but with-
out including the measurement results of Karagioz and
Izmailov [8], i.e., data set TR&D-96 containing data that
were generated by averaging over a large time span) and
published it as an appendix in the paper uploaded to
arXiv [9]. Employing a model of two sine waves for the
fitting revealed oscillations with T1 = 1.023087±0.000042
and T2 = 5.911615 ± 0.000028. While the fitting with
the new data set confirmed the presence of an oscillation
with T = 5.9 yr, it was recognized that the newly fitted
oscillation (with T1 and T2) is not in phase with the LOD
anymore (phase shift: 174 days).

By reanalyzing the data sets used by Anderson
et al. [1,9] and Schlamminger et al. [6] using the
Bayesian model selection concerning possible oscillations,
Pitkin [10] concluded that the best model is the one in
which there is an additional unknown Gaussian noise term
on top of the observed experimental errors and thus came
to the conclusion that the oscillations observed by Ander-
son et al. and Schlamminger et al. were due to chance.

Anderson et al. [11] criticized the analysis and conclu-
sion of Pitkin [10], and conjectured from a new reanalysis
that they stood by their conclusions of potential periodic
terms in the reported G measurements.

In a reply, Pitkin [10] pointed out that his result was
misinterpreted and that the novel analysis by Anderson
et al. did not take into account a penalty for overfitting
(as was done by his analysis) which would lead to an er-
roneous conclusion about the best fit being that with two
sinusoidal oscillations instead of a Gaussian noise term.
Pitkin defended his conclusion that the possible oscilla-
tions in the data found were results of two factors: ex-
perimental errors and an additional unknown Gaussian
noise term.

The present unsatisfying situation motivated us to re-
analyze the data by means of an additional method,
the generalized Lomb-Scargle periodogram (GLS) (a well-
established spectral analysis method in astrophysics), and
a statistical test in order to determine the statistical sig-
nificance of possible peaks in the periodogram.

Data and analysis methods. – For the present anal-
ysis three data sets were used: the data set collected
and published by Schlamminger in table II in [6] i) with

Fig. 1: (Colour online) (a) Data sets S-15 (n = 16)
and S-15woTR&D-96 (n = 15), according to Schlamminger
et al. [6]. The numbers near the single data points refer to the
single data sets as mentioned in the section “Data and analysis
methods” in the present paper. The single data set not used
in data set S-15woTR&D-96 (i.e., number 2) is highlighted in
green. (b) LS and GLS periodograms of the data sets S-15 and
S-15woTR&D-96. (c) Data set TR&D-96full according to [6].
(d) GLS and LS spectra of the TR&D-96full data set. The red
arrows in (b) and (d) indicate the peak at ∼ 0.8 yr. The red
line indicates the false-alarm probability (FAP) of 5% for the
spectra.

(data set: S-15, n = 16) and ii) without (data set:
S-15woTR&D-96, n = 15) the measurement results of
Karagioz and Izmailov (data set: TR&D-96) [8], and
iii) the single measurement of Karagioz and Izmailov by
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Table 1: Listing of studies investigating possible oscillations in data sets of high-precision G measurements. LSSF: least-squares
fitting of a sine wave; n: number of measurement values in the data set; T : period length; LS: Lomb-Scargle; GLS: generalized
Lomb-Scargle.

Study, data set and analysis method Detected high-frequency
oscillations

Detected low-frequency oscil-
lations

1) Anderson et al. [1]: n = 13 (CODATA 2010
table XVII, BIPM-13, LENS-14). Type of analysis:
LSSF

not analyzed T = 5.899 ± 0.062 yr, no stat.
analysis

2) Schlamminger et al. [6]: n = 17 (corrected data
also used by Anderson et al. [1] and additional data).
Type of analysis: LSSF

T = 0.769 yr (with L1
and L2 norm), no stat.
analysis

T = 6.1 yr (L1 norm), T =
6.2 yr (T2 norm), no stat.
analysis

3) Anderson et al. [9]: n = 18 (all data of table II
of Schlamminger et al. [6] except the TR&D-96
data set. Type of analysis: LSSF (with two sinus
functions)

T = 1.023087 yr, no stat.
analysis

T = 5.911615 yr, no stat.
analysis

4) Pitkin [10]: n = 12 (data set used by Ander-
son et al. [1], excluding TR&D-96) and alternatively
n = 17 (data set used by Schlamminger et al. [6].
Type of analysis: LSSF and Bayesian model selection

T ≈ 5.9 yr (not statistically
significant)

5) This study: i) S-15 data set: n = 16 (Schlam-
minger et al. [6]; ii) S-15woTR&D-96 data set:
n = 15 (S-15 data set except for the values of TR&D-
96); iii) TR&D-96 data set: n = 26) (data of Kara-
gioz and Izmailov as listed by Schlamminger [6]).
Type of analysis: LS and GLS periodograms, and
statistical analysis

S-15: T = 0.77 yr (GLS
and LS); S-15woTR&D-
96: T = 0.79 yr (GLS
and LS) (all statistically
not significant)

S-15: T = 6.16 yr (GLS), T =
5.98 yr (LS); S-15woTR&D-96:
T = 6.05 yr (GLS); TR&D-
96full: T = 6.69 yr (GLS) (all
statistically not significant)

itself as published by Schlamminger et al. in table I in [6]
(data set: TR&D-96full, n = 26).

Data set S-15 represents the data set analyzed by
Schlamminger et al. [6], whereas data set S-15woTR&D-96
was initially used by Anderson et al. [9] in their updated
analysis. Anderson explained not using the TR&D-96
data by arguing that this data set spans a time period
of 3835 days, possibly introducing a bias in the fitting.

For data set S-15 the following single data sets were em-
ployed (for a description of the single data sets according
to the identifiers see [6]): 1) NIRS-82, 2) TR&D-96,
3) LANL-97, 4) UW-00, 5) BIPM-01sc, 6) UWUP-02,
7) MSL-03, 8) HUST-05, 9) UZH-06, 10) HUST-091,
11) HUST-09b, 12) JILA-10, 13) BIPM-13sc, 14) UCI-
14a, 15) UCI-14b, and 16) LENS-14.

In order to detect possible oscillations in the data sets
S-15, S-15woTR&D-96 and TR&D-96full, the general-
ized Lomb-Scargle (GLS) periodogram [12] was applied.
The GLS periodogram is a further development of the
Lomb-Scargle (LS) periodogram [13,14] in that for the
least-squares fitting the measurement errors (i.e., the vari-
ability in the y-axis) are also taken into account, and that
the input data do not need to have a mean value of zero.
The function used in the GLS approach to fit the data
is y = a cos(ωt) + b sin(ωt) + c, with ω the frequency (or
period length T = 2π/ω) and c a constant accounting
for the offset of the data. Both methods, LS and GLS,
are methods of least-squares spectral analysis (LSSA)

enabling the detection of periodicities in non-equidistantly
sampled data. GLS is widely applied in astrophysics, e.g.,
to detect exoplanets (e.g., [15]) or to analyze space maser
signals [16]. In order to compare the GLS spectra with
the less accurate LS spectra, both were calculated.

The GLS periodogram was calculated for data sets
S-15, S-15woTR&D-96 and TR&D-96full, whereas the
LS periodogram was calculated for data sets S-15 and
TR&D-96full. For the calculation the astroML package
in Phython [17,18] was employed. The period range inves-
tigated was [0.1, 10] yr.

The statistical significance of the detected peaks was
evaluated by calculating the false-alarm probability (FAP)
for the frequency range investigated based on boot-
strapping significance testing. To this end, the data
were shuffled while keeping the observational times fixed.
Ten thousand bootstraps were calculated for the testing.
A FAP value of 0.05 was chosen as a threshold value for
evaluation of the statistical significance of the detected
peak. FAP = 0.05 corresponds to a change of 5% that
the peak in the spectrum is due to random, Gaussian,
noise.

Results. – For data sets S-15 and S-15woTR&D-96
the largest peak in the GLS spectra is at T = 0.77 yr. The
LS spectrum of data set S-15 exhibits the largest peak at
T = 0.77 yr, too. For data set TR&D-96full a peak in the
similar period range is present at T = 0.79 yr (for both
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the GLS and LS spectra). In the period range 3–10 yr
the largest peak in the GLS spectra of data sets S-15
and S-15woTR&D-96 is at T = 6.16 yr and T = 6.05 yr,
respectively. The LS spectrum of data set S-15 shows a
corresponding peak at T = 5.98 yr. For data set TR&D-
96full a peak is observable at T = 6.69 yr in the GLS
spectrum.

Neither the peaks in the GLS and LS spectra of the data
sets S-15 and S-15woTR&D-96 nor the peaks in the GLS
spectra of data set TR&D-96full are statistically signifi-
cantly different from Gaussian noise (i.e., peak amplitudes
do not cross the threshold of the FDR).

Discussion and conclusion. – Our results and how
they related to the previous findings from the groups can
be summarized as follows:

1) All three analyzed data sets exhibit an oscillation
with a period length of ∼ 6 yr in the LS and GLS
spectra.

2) The ∼ 6 yr peak is stronger in the GLS spectrum
compared to the LS one indicating the importance
of taking the measurement errors into account for
the fitting. Also the period length is slightly in-
creased in the GLS spectra (T = 6.16 yr (S-15) and
T = 6.05 yr (S-15woTR&D-96) compared to the LS
spectrum (T = 5.98 yr (S-15)).

3) The ∼ 6 yr oscillation detected is in agreement with
the findings of Anderson et al. [1,9], Schlamminger
et al. [6] and Pitkin [10] (see table 1).

4) The fit of a ∼ 6 yr oscillation to all of the data sets
is not statistically significantly different from a fit of
the time-shuffled data, i.e., there is no evidence that
the ∼ 6 yr oscillation is not due to chance. This is in
agreement with the findings of Pitkin [10].

5) The strongest oscillation present in data sets S-15 and
S-15woTR&D-96 has a period of ∼ 0.8 yr (based on
the LS and GLS analyses), in agreement with the find-
ings of Schlamminger et al. [6]. The period of the
oscillation is similar to that (i.e., T = 1.023087 yr)
found by Anderson et al. [9].

6) Data set TR&D-96full also exhibits a ∼ 0.8 yr oscil-
lation —a finding that was not reported yet.

7) An oscillation with a period of ∼ 1 yr in G data
was discussed in some older papers; for example,
Stephenson [19] mentioned an indication that an an-
nual cyclical variation of G may be present by rean-
alyzing the temporal variability of the data sets of
Heyl [20] and Heyl and Chrzanowski [21]. Theoreti-
cal predictions of an annual oscillation of G were pub-
lished (e.g., [22–24]). In addition, a possible annual
oscillation in the fine structure constant alpha was
reported [25]. It is unknown whether the observed

∼ 1 yr oscillation in the present analysis is related to
these observations and works.

Based on our findings we conclude that both oscillations
(with a period of ∼ 6 yr and ∼ 0.8 yr) could be found in
the data. However, there is not enough statistical evidence
that the findings are not due to chance implying that they
are Gaussian noise. Our finding is in agreement with the
finding of Pitkin. In addition, we agree with the conclu-
sion of Pitkin that for evaluating the goodness of fit, the
complexity of the fitted model has to be taken into account
(as, unfortunately, was not done by Anderson et al. [11]).

Besides our conclusion, we support the initiative of
Anderson et al. to investigate possible oscillations in G
data measurements and to perform a correlation anal-
ysis with novel parameters (like the LOD time series)
in order to find the origin of the inter-measurement
variability.
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