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Abstract – We experimentally investigate fluctuations of entropy production in a coupled driven-
RC circuit. In particular, we focus on the hidden-variable problem, where part of the circuit
is neglected intentionally. In the two versions of the reduced descriptions we provide for the
system, the fluctuation theorem (FT) is valid in all timescales for weak coupling. However, FT
fails in the strong-coupling regime, in the short-time limit for one version, and in the long-time
limit for the other. In these timescales where FT fails, both descriptions still give FT-like behavior.
The failure of FT implies non-Markovian dynamics, meaning there exists a hidden variable that
cannot be incorporated into the heat bath. We argue that FT can be restored with the introduction
of a timescale-dependent effective noise.

Copyright c© EPLA, 2016

Introduction. – In the studies of statistical mechani-
cal systems, it is often necessary to analyze the behavior
of a microscopic or mesoscopic object which is assumed to
be thermalized by a heat reservoir. Simple examples are
Brownian motions of colloids and relaxation dynamics of
polymers. The object of interest keeps exchanging energy
with its environment, which facilitates dynamic or config-
urational transitions. Despite the success often achieved
via such scenarios, one is still tempted to ask: under what
circumstances would this heat-bath assumption become
invalid? In particular, if the surrounding bath consists
of entities which are scalewise similar to the subject of
interest, could the exchanged energy simply be regarded
as heat? The answer lies in how one classifies the in-
teractions within the system-surroundings dynamics into
fast and slow modes, or equivalently, effective behaviors
in Markovian and non-Markovian regimes.

In this work we consider a simple example, i.e., a net-
work of two resistor-capacitor (RC) circuits (see fig. 1(a)).
The interaction between the two RC circuits is intro-
duced through a coupling capacitor, and thermal fluc-
tuations are presented through Johnson-Nyquist noises
on both resistors. Our aim is to explore the role of
the second RC circuit, especially when it can be re-
garded as part of the heat bath. For this network we
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investigate its thermal-equilibrium and- non-equilibrium
steady states (NESS), the latter providing hints for the
statistical mechanics of driven particles. Specifically, for
both the complete and reduced descriptions of the net-
work, we examine experimentally the fluctuation theorem
(FT) [1,2], whose validity, if exists, states that the en-
tropy production distribution should follow the relation
P (ΔStot = +a)/P (ΔStot = −a) = exp(a/kB), where kB

is Boltzmann’s constant.
The entropy production inferred from a reduced descrip-

tion, namely, the apparent entropy [3,4], is derived from
measurements with incomplete information, and may be
distinct from the real entropy production. Theoretically,
the characteristics of apparent entropy have been stud-
ied extensively. For example, FT was verified by a system
with coarse-grained description [5] or partially masked dy-
namics [6]; the excessive part of entropy production in
NESS was reported to be invariant over descriptions of
different timescales [7]; the relation between the hidden
entropy production and fast variables was discussed in a
harmonic system of two coupled Brownian particles [8];
a simulated work performed in coupled two-level systems
demonstrated that entropy production based on observ-
ing merely one system can deviate from FT [9]. Despite
the theoretical progresses, relevant experimental works
are very limited. As a pivot example, a system of two
magnetically coupled colloidal particles is investigated in
ref. [3], where the role of the masked slow variables is
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Fig. 1: (Colour online) (a) Diagram of the coupled-RC system.
The signals V1 and V2 are extracted by low-noise amplifiers
A1 and A2. The values R1 = 9.10 MΩ, C1 = 429 pF, and
R2 = 9.18 MΩ, C2 = 352 pF are derived experimentally via
the power spectra of isolated RC circuits. Various values of
Cc are used in our study. The circuit can be driven away from
thermal equilibrium via constant injected currents. (b) Masked
description. The shadowed part of (a) and the signal V2 are
neglected intentionally. Note that the reduced parameters (R̃1,
C̃1, and Ĩ1) can be different from the original ones. (c) Joint
probability log Pss(V1, V2) with Cc = 620 pF and I1 = I2 = 0.
(d) Measured correlation coefficient of V1 and V2 vs. Cc. The
value of Cc is measured by a LCR meter. The solid curve shows
the theoretical prediction by ref. [15].

addressed. The apparent entropy production was found
to follow a FT-like behavior. Nevertheless, the form of
coupling is complicated, and further mathematical analy-
sis lacks therein.

The electric circuit can serve as one of the simplest
templates in the studies of small-scale non-equilibrium
thermodynamics [10,11]. In a single-RC circuit, FT is sat-
isfied if heat and Shannon entropy are both considered in
the total entropy production [12]. In ref. [13], NESS of
a coupled-RC system were studied where a net heat flow
exists due to the temperature difference between the re-
sistors. Furthermore, a quantum version of heat exchange
between two coupled resistors owing to photon scattering
was investigated theoretically [14].

In the present work, we investigate the hidden-variable
problem via the consideration of a simple coupled network
of two RC circuits, where the coupling form is well un-
derstood. As the corresponding coupled stochastic equa-
tions are linear, theoretical analysis can be applied using
the fluctuation-dissipation theorem (FDT) and compared
with our experimental observations.

Experimental setup. – Figure 1(a) illustrates our ex-
perimental system. Two RC circuits R1C1 and R2C2, with
driven currents I1 and I2, are coupled through a capaci-
tor Cc of varying strength. The resistors and capacitors

have nominal values R1 = R2 = 10.0 MΩ and C1 = C2 =
300 pF, respectively, and these elements remain unchanged
throughout our study. The experiments are performed at
room temperature T = 298 K. For each experimental run,
we record time traces of 5× 105 timesteps for the voltages
V1 and V2 across R1 and R2, respectively, with a sampling
rate of 1024 Hz. The exact values of the electric elements
are determined from fitting the measured power spectral
densities of the voltage time series V1(t) and V2(t), done at
Cc = 0, to Lorentzian functions as suggested by FDT [11].
Relevant physical quantities, such as injected power, dis-
sipation heat, and entropy production, are derived subse-
quently using the voltage time series.

The coupling capacitance Cc introduces a positive corre-
lation between V1 and V2, which can be visualized through
the steady-state joint probability distribution Pss(V1, V2)
in fig. 1(c) (for the case of Cc = 620 pF). Quantitatively, we
can study the correlation using the correlation coefficient
corr(V1, V2), which is the normalized covariance between
the voltages such that corr(V1, V2) = 1 for the maximal
correlated case. Figure 1(d) shows that the correlation in-
creases with Cc, as the experimental data agree well with
the prediction from FDT (solid line). In the masked cir-
cuit, this correlation hints that the energy exchange with
the second RC circuit does not merely serve as a back-
ground thermal noise, and its contribution can alter the
validity of FT under reduced descriptions.

Entropy production evaluated from the complete
description. – We first consider the entropy produc-
tion of the entire circuit. The total entropy production
from time t to t + τ is ΔStot,τ = ΔSQ,τ + ΔSSh,τ ,
where ΔSQ,τ = 1

T

∫ t+τ

t
(V1iR1 + V2iR2) dt′ is the en-

tropy production due to the net heat dissipation, and
ΔSSh,τ = −kB ln Pss(V1(t+τ),V2(t+τ))

Pss(V1(t),V2(t))
is the change in Shan-

non entropy. Experimentally, the currents through the re-
sistors iR1 and iR2 can be derived utilizing Kirchoff’s law,
as the currents through capacitors can be obtained from
the time derivatives of V1 and V2. Note that under the
complete description, the net heat dissipation used here is
identical to the dissipation function derived utilizing the
ratio of forward– and time-reversed–transition probabili-
ties in the FDT analysis [15]. Theoretically, one can prove
that FT for the complete description holds for all time
intervals under NESS.

The thermal-equilibrium result of ΔStot,τ (where I1 =
I2 = 0) shown in fig. 2(a) exhibits a narrow, delta-
function–like distribution for all observed values of
Cc. It is consistent with the theoretical expectation
ΔStot,τ = 0 [15] (and hence ΔSQ,τ and ΔSSh,τ are per-
fectly anti-correlated). As a comparison, while the average
of ΔSQ,τ is zero owing to no injected currents, its corre-
sponding distribution is much broader and non-Gaussian
(please refer to the dark-red diamonds in fig. 2(a)). In
NESS, where at least one injected current exists, ΔSQ,τ

and ΔSSh,τ no longer compensate each other perfectly. As
a result, ΔStot,τ is broadened into a Gaussian distribution
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Fig. 2: (Colour online) Entropy production of the circuit with
complete information. (a) Equilibrium cases (I1 = I2 = 0):
probability distribution functions P (ΔStot,τ ) with τ = 48.8 ms
and Cc = 98.8 pF (blue circles), 308 pF (green triangles),
620 pF (red squares), and 9.71 nF (purple crosses). As a
comparison, dark-red diamonds show P (ΔSQ,τ ) for the case
Cc = 620 pF and τ = 48.8 ms. NESS cases (I1 = I2 = 108 fA):
(b) P (ΔStot,τ ). (c) Symmetry functions of ΔStot,τ with τ =
48.8 ms. (d) Slopes of symmetry function vs. τ . (In (b), (c),
and (d) we use the same values of Cc and symbol illustrations
as in (a).)

as shown in fig. 2(b). Note that 〈ΔStot,τ 〉 = 〈ΔSQ,τ 〉 =∑
m I2

mRmτ/T > 0 in NESS. To examine the valid-
ity of FT, one uses a symmetry function Sym(a) ≡
kB ln[P (ΔStot,τ = +a)/P (ΔStot,τ = −a)]. In figs. 2(c)
and (d) FT for the complete circuit is demonstrated by
the linearity in the symmetry function with slopes close
to unity [2].

Entropy production inferred from reduced de-
scriptions. – Experimentally, to derive an effective
entropy production ΔS̃1tot,τ from the masked circuit as
described in figs. 1(a) and (b), we intentionally ignore
the measured time series of V2, while the measured V1 is
interpreted as that of an effective single-RC circuit. In
this work we use two descriptions towards the deriva-
tion of effective parameters as well as ΔS̃1tot,τ . First
we use a naive description (description (A)), where one
treats R2 as a part of the uncorrelated thermal noise
and neglect it in the circuit. Thus, we have R̃1 = R1,
Ĩ1 = I1, and C̃1 = C1 + CcC2/(Cc + C2) is the effec-
tive capacitance. The adoption of these effective param-
eters is supported by the experimental observations in
the white-noise level of V1(t) at low frequencies, 4kBR1T ,
and its variance, kBT/C̃1. Under this reduced descrip-
tion, the inferred current through R̃1 is ĩR1 = Ĩ1 − ĩC1,
where ĩC1 = C̃1V̇1. And the heat dissipation in R̃1

over time τ is derived as Q̃
(A)
1,τ =

∫ t+τ

t ĩR1V1dt′. There-
fore, one can define an apparent entropy production [3]
ΔS̃

(A)
1tot,τ = Q̃

(A)
1,τ /T − kB ln[Pss(V1(t + τ))/Pss(V1(t))].

Fig. 3: (Colour online) Entropy production derived from in-
complete information. The circuit is driven out of equilibrium
by I1 = 108 fA. Naive description (description (A)): (a) sym-
metry function of ΔS̃

(A)
1tot,τ with I2 = 0, Cc = 98.8 pF (blue cir-

cles), 308 pF (green triangles), 620 pF (red squares) and 9.71 nF
(purple crosses); τ = 48.8 ms for all data; (b) slope of symmetry
function vs. τ . Trace-out method (description (B)): (c) symme-
try function of ΔS̃

(B)
1tot,τ ; (d) corresponding slope in (c) vs. τ .

(In (b), (c) and (d) we follow the same symbol illustrations
as in (a). The solid lines represent theoretical predictions by
ref. [15].)

In thermal equilibrium (Ĩ1 = 0), we find again that
ΔS̃

(A)
1tot,τ = 0 for all cases, which is supported by our FDT

analysis [15]. We next study ΔS̃
(A)
1tot,τ in NESS (using

Ĩ1 = 108 fA), where 〈ΔS̃
(A)
1tot,τ 〉 = I2

1R1τ/T . As shown in
fig. 3(a), most symmetry functions exhibit a linear behav-
ior with slopes close to 1. However, large deviation occurs
for Cc = 9.71 nF, where the slope is about 1.5. The slopes
vs. τ are plotted in fig. 3(b), which are in remarkable
agreement with our theoretical prediction [15] (solid lines).
The slope asymptotically converges to 1 as τ increases, and
for smaller Cc the convergence becomes faster. Our result
indicates that although ΔS̃

(A)
1tot,τ is physically distinct from

the complete entropy production ΔStot,τ , FT in this re-
duced description is nevertheless obeyed approximately in
small-Cc and large-τ regimes.

In addition to the naive description, one can re-
sort to the steady-state (Pss(V1)) and forward-transition
(PF (V1(t + dt)|V1(t))) probabilities of V1 (defined as de-
scription (B)). The reduced probabilities can be derived
via tracing out the V2 degree of freedom. We find
that these probability distributions are exactly identical
to those from an effective single-RC circuit [15], with
renormalized elements R̃1 = R1/

[
1 + R1Cc

2

R2(C2+Cc)2

]
, C̃1 =

C1 + CcC2
Cc+C2

, and Ĩ1 = I1

(
1 + R1Cc

2

R2(C2+Cc)2

)
. Note that

R2 contributes explicitly in this reduced description. On
this effective single-RC circuit, the heat dissipating func-
tion is Q̃

(B)
1,dt = (−C̃1V̇1 + Ĩ1)V1 dt. We then evaluate
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the reduced entropy production ΔS̃
(B)
1tot,τ using the new

heat dissipation function and unmodified Shannon en-
tropy. The resulting symmetry function and its slope
are plotted in figs. 3(c) and (d), respectively. We find
that for small τ the slope gets considerably closer to 1
for all cases. However, in contrast to description (A),
the slope in description (B) deviates from 1 at large τ .
The deviation becomes much less prominent at our mini-
mal value of Cc (98.8 pF), while a non-monotonic trend
occurs over the increasing of Cc. Again all these fea-
tures are well captured by the theoretical predictions
in ref. [15].

Discussion. – From figs. 3(a) and (c) we find the sym-
metry functions to be linear in all observed cases with our
reduced descriptions. This results from the fact that the
total entropies in these reduced descriptions have Gaus-
sian distributions [15]. However, our results indicate that
FT in the masked circuit is not strictly obeyed in all our
reduced descriptions. The deviation gives a hint that
the coupling circuit (R2C2) does not simply serve as a
background noise, as demonstrated by the voltage corre-
lations in figs. 1(c) and (d). Hence information of the
unrecognized circuit can contribute to the characteristics
of V1(t), in contrast with the time trace generated by an
ideal single-RC circuit.

To be more specific, the relaxation dynamics of a single-
RC circuit is Markovian, in the sense that its transition
probability (over time dt) and steady-state distribution
suffice to describe the dynamics. Moreover, the com-
plete description of the coupled-RC system fulfills FT,
too, owing to the Markovian nature of its full dynamics,
which exhibits two intrinsic relaxation timescales. How-
ever, the dynamics of V1(t) only under a reduced descrip-
tion, strictly speaking, is not Markovian. Both relaxation
timescales of the full circuit may appear in its characteris-
tics, in contrast to the behavior of an authentic single-RC
circuit. This dynamical distinction is evidenced by the
failure of FT. However, in the failed cases one can still
observe a FT-like behavior, featuring a linear symmetry
function with a non-unity slope.

In fig. 4 we present the autocorrelation and spectral
density of our measured V1(t) for the small- (98.8 pF) and
large-Cc (9.71 nF) cases, respectively, along with three the-
oretical expectations from ref. [15]. The solid line, which
displays the theoretical expectation from the considera-
tion of the full circuit, agrees very well with our exper-
imental data in all cases. The dashed and dash-dotted
lines represent theoretical expectations by a reduced cir-
cuit with descriptions (A) and (B), respectively. In the
weak-coupling case (see figs. 4(a) and (b)), the expecta-
tions exhibit little difference, and the dynamics reveals a
single relaxation only. Thus, the dynamics in the reduced
descriptions is nearly Markovian, and FT remains valid for
all τ . Under such regime, V2 serves as a fast environment
variable, which can be integrated as a part of the thermal
background.

Fig. 4: (Colour online) Autocorrelation function and spectral
density of V1(t). (a) Autocorrelation and (b) spectral density
for Cc = 98.8 pF. (c) Autocorrelation and (d) spectral density
for Cc = 9.71 nF. Experimental data are shown in symbols,
and the solid, dashed, and dash-dotted lines represent theoret-
ical predictions from the full description, reduced descriptions
(A) and (B), respectively. The inset in (c) reveals a second
exponential decay in the observed data at larger τ .

In the strong-coupling case (see figs. 4(c) and (d) for
Cc = 9.71 nF), the measured noise level (shown by the
plateau in fig. 4(d)) is seemingly reduced. Theoretically,
the complete-description prediction reveals the existence
of a second plateau at even smaller frequencies, while its
noise level reaches the full magnitude. This implies a sec-
ond, slow relaxation in V1, which is evidenced remark-
ably by our experimental data in fig. 4(d). As a contrast,
our reduced descriptions fail to depict the two-exponential
relaxation. Nevertheless, the trace-out method (descrip-
tion (B)) succeeds in capturing the short-time, large-
frequency relaxation precisely, while the naive description
(description (A)) can faithfully represent the long-time,
low-frequency result. As a result, FT of the entropy pro-
duction holds for these two reduced descriptions only in
the corresponding regimes where the reduced dynamics
can be faithful. Note that the incorrect prediction of the
entropy production 〈ΔS̃

(B)
1tot,τ 〉 = I2

1R1
T τ

[
1 + R1Cc

2

R2(C2+Cc)2

]

in description (B) is also hinted by its failure to pre-
dict a real (smaller) noise level at low frequencies (see in
fig. 4(d)).

The reduced effective noise in the masked circuit, as
can be suggested from fig. 4(d), is caused by the corre-
lation effect from the hidden variable V2. In fact, in the
regimes where FT fails, the linearity of symmetry func-
tions suggests that it is possible to restore FT through the
introduction of an effective noise strength. However, the
effective noise strength can be dependent on the observa-
tion time τ . For example, in the small-τ limit, the effective
noise strength is simply equal to that in description (B).
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Moreover, in the large-τ regime, since the correlation effect
diminishes, V2 can be simply regarded as a part of thermal
noises. The effective noise strength in such regime is equal
to that of a single-RC circuit with resistance R1 and thus
coincides with that in description (A). We speculate that
with the introduction of this effective noise strength, one
can develop yet another reduced description which inter-
polates between descriptions (A) and (B), and FT can be
valid in this reduced description for all values of τ .

As a comparison, in the system of ref. [3], FT has also
been observed for small τ , and FT-like behavior was found
for other ranges of τ . The apparent entropy production
used in their work is in some sense similar to our descrip-
tion (B). Both approaches share the same spirit that the
hidden degree of freedom is traced out from the probabil-
ity distribution of the complete description. However, our
effective dissipation function in description (B) is derived
from the logarithm of the ratio of (traced-out) transition
probabilities between forward and backward processes.
On the other hand, the authors in ref. [3] started from
the physical dissipation over the observed particle and es-
timated the force through the use of a “mean local ve-
locity”. The mathematical expressions derived from these
two reduced descriptions are also distinct.

Conclusion. – In this work we use the argument of
FT as a lever to open up an insight into the hidden-
variable problem in statistical mechanics. In the reduced
descriptions, we conclude that FT is approximately valid
in the weak-coupling regime, where one can hardly dif-
ferentiate between the two relaxation times of the sys-
tem. Moreover, the failure of FT in the strong-coupling
regime is itself a signature of non-Markovian dynamics.
On the other hand, the observed FT-like behavior hints
that even in the strong-coupling regime, this failure can
be repaired through the redefinition of an effective noise
strength. While our analysis is founded on the linearity
of equations for the coupled network of RC circuits, the

FT-like behavior has also been observed in the system
of magnetically coupled particles [3] with a more compli-
cated pairwise interaction. These observations lead us to
the speculation that the heat-bath assumption, if properly
adapted, can be considered in a broader range of studies.
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