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Abstract – One can implement fast two-qubit entangling gates by exploiting the Rydberg block-
ade. Although various theoretical schemes have been proposed, experimenters have not yet been
able to demonstrate two-atom gates of high fidelity due to experimental constraints. We propose
a novel scheme, which only uses a single Rydberg pulse illuminating both atoms, for the construc-
tion of neutral-atom controlled-phase gates. In contrast to the existing schemes, our approach
is simpler to implement and requires neither individual addressing of atoms nor adiabatic proce-
dures. With parameters estimated based on actual experimental scenarios, a gate fidelity higher
than 0.99 is achievable.

Copyright c© EPLA, 2016

Introduction. – Fueled by advances in the experi-
mental techniques of trapping, cooling, and manipulat-
ing neutral atoms, neutral-atom qubits are regarded as
one of the most promising approaches to quantum com-
puting [1,2]. One of the key challenges in this approach
is the realization of two-qubit entangling gates. In 2000,
Jaksch et al. [3] proposed schemes for fast neutral-atom
quantum gates via Rydberg blockade [4]. Since then,
much effort has been put into studies of implement-
ing controlled-NOT (CX) and controlled-phase (Cphase)
gates with the help of Rydberg blockade [5–17]. Rydberg
blockade and collective Rydberg excitation were observed
experimentally [7,18–20]; in addition, Rydberg gates and
entanglement of neutral-atom qubits were also demon-
strated [9,21–23]. However, for two neutral-atom qubits,
the highest measured entangling gate fidelity or the fidelity
of Bell state preparation is about 0.8 after correcting for
atom loss, a huge shortfall from the theoretically expected
error of 10−3 [17,24]. A practical scheme for a two-atom
entangling gate of high fidelity is still lacking.

In theory, with strong Rydberg blockade, the fidelity of
these Rydberg two-atom gates could be better than 0.99;
in practice, existing proposals suffer from experimental

constraints. For schemes that require individual address-
ing of the atoms, the gate is constructed by apply-
ing a sequence of Rydberg pulses, e.g., at least three
pulses are needed for a controlled-Z (CZ) gate. Other
than the technical challenge of individual addressabil-
ity —tackled by placing the atoms at least a few μm
from each other, which weakens the blockade effect as
an unavoidable consequence— the main error arises from
the dephasing and population loss of the Rydberg state
during the time gaps between the pulses addressing in-
dividual atoms [9,12]. For symmetric entangling gates
(such as Cphase gates), one expects to be able to im-
plement them without distinguishing between the two
atoms or individually addressing them. Indeed, various
schemes that do not require individual addressing have
been proposed, but they also suffer from a variety of
problems. A CZ gate can be constructed by exciting the
atoms coherently to the doubly excited Rydberg state [3],
but the resulting large mechanical force is difficult to
counter. In the proposals of refs. [6] and [25] for the
CZ gate, the Rydberg states are not substantially pop-
ulated; these schemes are challenging, however, as they
rely on exact knowledge of the Rydberg blockade energy
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or on efficient high-order multi-photon ground-state–to–
ground-state transitions via the doubly excited Rydberg
state. The adiabatic gate scheme of ref. [3] was also in-
vestigated [16,17,26]; with numerically optimized yet ex-
perimentally feasible parameters, the CZ gate fidelity is
limited to 0.983 due to population losses during the adi-
abatic processes (even when assuming perfect control at
zero temperature). To date, no Cphase gate scheme with-
out individual addressing of the atoms has been experi-
mentally demonstrated.

In this paper, we describe a novel scheme that is sim-
pler and more robust than earlier proposals. It imple-
ments a two-atom Cphase gate with a single Rydberg
pulse driving both atoms simultaneously and symmetri-
cally. This scheme neither relies on populating the doubly
excited Rydberg state nor requires very strong atom-light
couplings.

In the following, we first explain the principle behind
our proposal for a CZ gate. Then, the scheme is illus-
trated by examples with a list of the required parameter
values and the minimal achievable gate fidelities. One ex-
ample, which offers a minimum gate fidelity higher than
0.99, is described in detail. Finally, we demonstrate how
to generalize this scheme to an arbitrary Cphase gate. The
robustness of this implementation is discussed as well.

The physical system. – Two degenerate ground
states of an atom, labelled by |0〉 and |1〉, form the ba-
sis of a qubit. We suppose that we can employ suitable
levels and light fields such that |1〉 is coupled to the Ryd-
berg state |r〉 with a coupling strength Ω, while |0〉 is not
coupled to any state; see fig. 1(a). Under these circum-
stances, each atom can be treated as a three-level system
with levels |0〉, |1〉 and |r〉. Denoting the effective coupling
strength between |1〉 and |r〉 by Ω and the detuning by δ,
the interaction Hamiltonian for this single-atom system is

H
(1)
I =̂

h̄

2

(−δ Ω
Ω∗ δ

)
, (1)

written in the basis {|1〉, |r〉} (as |0〉 is decoupled), un-
der the rotating-wave approximation. Depending on the
choice of the Rydberg state and the available experi-
mental set-ups, Rabi oscillations between the ground and
Rydberg states can be obtained by either a high-frequency
laser beam or a two-photon Raman transition with two
laser beams [27]. For simplicity, we omit this detail and
just consider the overall coupling strength between the
ground and Rydberg states denoted by Ω.

If two atoms in state |11〉 are excited to the Ryd-
berg state simultaneously and symmetrically, the relevant
states are {|11〉, (|r1〉+ |1r〉)/

√
2, |rr〉}; see fig. 1(b). The

interaction Hamiltonian in this basis is

H
(2)
I =̂

h̄

2

⎛
⎜⎝ −δ

√
2Ω 0√

2Ω∗ δ
√

2Ω
0

√
2Ω∗ 2Δrr + 3δ

⎞
⎟⎠, (2)

b)
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Fig. 1: (Colour online) The level-diagrams of the interaction
between the light field with (a) a single atom and (b) two
atoms. Note: this level-diagram is similar to that of Model A
in ref. [3].

where Δrr is the energy shift of the doubly excited
Rydberg state. In the strong Rydberg blockade limit,
when |Δrr| � |Ω|, the doubly excited Rydberg state is
so far-detuned that it is hardly populated. Thus, one can
use adiabatic elimination on the third state and neglect
terms of the order |Ω/Δrr| or higher, and obtain a 2 × 2
effective description. The final state, after a Rydberg ex-
citation pulse of duration t, is [28]

|ψ(t)〉(N)=̂

⎛
⎜⎜⎜⎝

cos
(

1
2
Ω(N)t

)
+ i

δ

Ω(N)
sin

(
1
2
Ω(N)t

)

−i
Ω∗√N

Ω(N)
sin

(
1
2
Ω(N)t

)
⎞
⎟⎟⎟⎠,

(3)
where N = 1, 2 is the number of atoms involved in
the transition. The column entries are the probability
amplitudes for the ground state and the singly excited
Rydberg state, respectively. The single-atom and two-
atom effective Rabi frequencies for the Rydberg excita-
tion are Ω(1) =

√
|Ω|2 + δ2 and Ω(2) =

√
2|Ω|2 + δ2. The

evolution for a collective single-Rydberg excitation of two
atoms is the same as the Rydberg excitation of one atom,
except for the

√
2 enhancement of the atom-light coupling

strength. The ratio between the two effective Rabi fre-
quencies is in the range 1 ≤ Ω(2)/Ω(1) ≤

√
2 for all values

of Ω and δ.
The two-atom system is governed by the full evolution

operator e−iHt/h̄ in the nine-dimensional Hilbert space.
The resulting gate operation in the subspace spanned by
the four ground states, |00〉, |10〉, |01〉, and |11〉, is

G(t)=̂

⎛
⎜⎜⎜⎜⎝

ei δ
2 t 0 0 0

0 〈1|e− i
h̄ H

(1)
I t|1〉 0 0

0 0 〈1|e− i
h̄ H

(1)
I t|1〉 0

0 0 0 〈11|e− i
h̄ H

(2)
I t|11〉

⎞
⎟⎟⎟⎟⎠.

(4)
A unitary G(t) would require exact phase factors for the
diagonal entries but, besides the first one, the amplitudes
of the other three diagonal entries oscillate with their re-
spective Rabi-oscillation frequencies. G(t) can, at best,
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be a good approximation of a unitary operator for some
particular time t. Note that the full evolution operator
has small non-zero off-diagonal elements not belonging to
this 4 × 4 subspace; the effect of those elements will be
addressed below.

Constructing a CZ gate. – For G(t) to be a good
Cphase gate, the primary requirement is that the abso-
lute values of its diagonal entries are close to unity. This
is easy to fulfill in the far-off-resonant coupling regime,
where |δ|�|Ω| and Ω(2)/Ω(1)→1. In this regime, the
population mostly remains in the ground states, and
the states |11〉 and |10〉 (or |01〉) pick up phase factors
exp[i sgn(δ)(Ω(2) − |δ|)t/2] and exp[i sgn(δ)(Ω(1) − |δ|)t/2]
relative to |00〉. However, the ratio of the two phases is
close to two for |δ|� |Ω|, so that the phase accumulated
by |11〉 is twice that of |01〉 (or |10〉). Therefore, the CZ
gate cannot be realized in the regime where |δ|�|Ω|.

In the regime where the coupling is not far-off-resonant
(i.e., |δ/Ω| ≤ 1), the populations of the states oscillate. To
prevent leakage of the total population from the subspace
spanned by the four ground states, we need precise control
on the applied pulse duration t such that sin

(
Ω(1)t/2

)
=

sin
(
Ω(2)t/2

)
= 0, i.e., no population is left in the Rydberg

states. Under this condition, the gate is

G(t)=̂

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

e
i
2 δt 0 0 0

0 cos
(

1
2
Ω(1)t

)
0 0

0 0 cos
(

1
2
Ω(1)t

)
0

0 0 0 cos
(

1
2
Ω(2)t

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5)
We restrict the gate operation time to

TG = 2mπ/|δ| (6)

for any positive integer m. This allows two different real-
izations of a CZ gate: CZ = diag{1, 1, 1,−1}, where the
sign flip is on |11〉, which requires

cos(mπΩ(1)/δ) = − cos(mπΩ(2)/δ) = (−1)m; (7)

or CZ = diag{−1, 1, 1, 1}, where the sign flip is on |00〉,
which requires

cos(mπΩ(1)/δ) = cos(mπΩ(2)/δ) = (−1)m+1. (8)

We note that instead of coupling |1〉 to |r〉 while leaving |0〉
decoupled, one can couple |0〉 to a Rydberg state |r′〉 while
leaving |1〉 decoupled. By doing so, the conditions for the
two CZ gates are swapped. Thereby, fulfilling either one
of the conditions, both CZ operations can be realized (the
labelling of the computational basis states |0〉 and |1〉 is
anyway, very often, interchangeable). Hence, the hunt for
solutions follows one simple rule,

f(m, ξ) ≡
[
cos

(
mπΩ(1)/δ

)]2

cos
(
mπΩ(2)/δ

)
= (−1)m+1,

(9)
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Fig. 2: (Colour online) Plots of f (m, ξ) against ξ for m =
2, 3, 4, and 7. The circled points denote locations where good
approximations of a CZ gate can be obtained; these are detailed
in table 1.

Table 1: A list of five good approximate solutions for the CZ
gate. τj = 2π/|Ω(j)| are the Rabi-oscillation periods for the ex-

citation of one or two atoms. Fmin and eFmin are the minimum
gate fidelities over all initial two-qubit states with Δrr → ∞
and Δrr = 8 GHz, respectively. eFD,min is the estimated mini-
mum fidelity with Δrr = 8 GHz and a Doppler shift of stan-
dard deviation ΔD = 100 kHz for each of the two atoms1. The
fourth digit in ξ corresponds to a variation of ∼10 kHz in δ. In
an experiment with fluctuating values of Ω and δ, the average
values of Ω and δ should be adjusted according to ξ.

m ξ f (m, ξ) TG/τ1 TG/τ2 Fmin F̃min F̃D,min

2 3.840 −0.9707 7.94 11.00 0.9633 0.9633 0.9598
3 1.743 0.9941 6.03 7.98 0.9938 0.9938 0.9920
4 1.428 −0.9955 6.98 9.02 0.9948 0.9948 0.9921
4 2.558 −0.9983 10.99 15.01 0.9979 0.9969 0.9898
7 1.894 0.9985 14.99 20.01 0.9990 0.9973 0.9853

where ξ ≡ |Ω|/|δ|. There are no exact solution to this
equation, but one can find approximate solutions that are
good enough for practical use.

We search for approximate solutions of eq. (9) by first
fixing the integer m, and then for each fixed m, finding
values of ξ such that f(m, ξ) is very close to (−1)m+1;
see fig. 2. Five of the good approximate solutions are
listed in table 1. For m = 3, a gate fidelity Fmin > 0.99
can be achieved with a pulse duration of about six Rabi-
oscillation cycles of the |01〉 ↔ |0r〉 transition. Without
extending the pulse duration by much, higher gate fideli-
ties can be achieved for m = 4. The last row of the table

1The Doppler shift changes the detuning δ → δ + δ
(1)
D and δ →

δ + δ
(2)
D in eq. (1) for the two single-atom excitations, respectively,

and δ → δ + δ
(1)
D + δ

(2)
D in eq. (2) for a two-atom collective Rydberg

excitation. Here, δ
(1)
D and δ

(2)
D are the Doppler shifts for each of

the atoms generated from a Gaussian distribution with standard
deviation ΔD.

40001-p3



Rui Han et al.

0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

1.0

2 4 6 8 10

0.980

0.985

0.990

0.995

t(μs)

histogram of gate fidelity

a)
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˜Fmin = 0.9948

TG

˜Favg
˜Fmin

Δrr(GHz)

(i)(ii)

Fig. 3: (Colour online) (a) Population of states using the third
solution listed in table 1 with Ω = 5(2π)MHz, δ = 3.5(2π) MHz
and Δrr = 8 GHz. The blue (i) and red (ii) curves show the

population of |1〉 and |11〉 under Hamiltonians H
(1)
I and H

(2)
I

for a pulse duration of TG = 1.143 μs. (b) For the same pa-
rameters as in (a), the histogram of the gate fidelity for 2000
randomly generated initial states. (c) A plot of the minimum

fidelity eFmin and the average fidelity eFavg against the Rydberg
blockade energy Δrr.

lists an excellent solution for m = 7 that offers a gate
fidelity of 0.9990 in the ideal case. Solutions with even
higher gate fidelities can be found for larger m and/or
ξ. However, because of their correspondingly longer pulse
durations, it might not be practical to use some of these
solutions that offer marginally higher fidelity. In practice,
the choice of solution will depend on the specific experi-
mental set-up and the type of noise encountered.

An example. – We now take a closer look at the third
solution in table 1 with m = 4 and ξ = 1.428. As-
suming coupling strength Ω = 5(2π)MHz and Rydberg
blockade energy Δrr = 8GHz, the required detuning is
δ = Ω/1.428 = 3.50(2π)MHz and the gate operation time
is TG = 1.143μs. Because the transition is off-resonant,
the amplitude of the Rabi oscillation between |1〉 and
|r〉 is less than 1; see fig. 3(a). The simulated gate
operator is

G(TG)=̂−

0

B

B

B

@

−1 0 0 0

0 0.997 + 0.045i 0 0

0 0 0.997 + 0.045i 0

0 0 0 0.998 + 0.051i

1

C

C

C

A

.

(10)
This gate is not unitary mainly because, for all approxi-
mate solutions, the light pulse does not stop exactly at full
Rabi cycles and a tiny fraction of population is left in the

Rydberg states, contributing to the imperfection of the
gate. By choosing a suitable Rydberg state, the blockade
energy Δrr can be a few GHz, which is much larger than
the atom-field coupling Ω, so that the net effect of the
imperfect Rydberg blockade is negligible.

The fidelity histogram of the gate G(TG) in eq. (10) for
a sample of 2000 randomly generated initial states (pure
states with numerically generated random complex popu-
lation amplitudes from uniform distributions) is shown in
fig. 3(b). The average gate fidelity is F̃avg = 0.9962 and
the minimum fidelity is F̃min = 0.9948.

Extension to an arbitrary Cphase gate.
– With the general expression in eq. (5), the
scheme can be adapted to an arbitrary Cphase gate
Cph(φ) = diag{eiφ, 1, 1, 1}. To do this, we set the
gate operation time TG = 2(mπ + φ)/|δ|, where m is
a positive integer. The gate is obtained if g(m, ξ) ≡
cos[(mπ+φ)Ω(1)/δ]+cos[(mπ+φ)Ω(2)/δ] = 2(−1)m. The
construction of such gates is similar to that of a CZ gate
(a special case of a Cphase gate), thus we omit the details
and just illustrate it by an example. For φ = 2π/3, one
approximate solution is m = 2 and ξ = 2.00. With the
parameters for the example in fig. 3 (i.e., Ω = 5(2π)MHz
and Δrr = 8GHz), we need the detuning δ = 2.5(2π)MHz
and the gate operation time TG = 1.069μs. In this case,
the average gate fidelity is F̃avg = 0.9960 and the minimum
fidelity is F̃min = 0.9944. Better approximate solutions
can be found with larger m values. Following the same
procedure, such high gate fidelity can be obtained for any
value of φ.

Robustness. – The imperfections of practical quan-
tum gates arise from errors of two kinds: intrinsic er-
rors and technical errors. The average and minimum gate
fidelities given in the previous sections take the intrinsic
errors into account. These intrinsic errors are due to the
choice of approximate solutions and finite Rydberg block-
ade. The former error (∼10−3 in the given examples)
can be further reduced by choosing better solutions of
the equations; in practice, this might not be worth the
trouble. The latter error can be below 10−4 for Rydberg
levels with principal quantum number n > 100 and a large
Rydberg blockade energy [12,29]. Table 1 shows that the
effect of finite Rydberg blockade is slightly stronger for
the solutions with higher m values. One only requires
|Δrr| � |Ω|, i.e., |Δrr| should be at least about a hun-
dred times larger than Ω for it to be completely negligi-
ble; see fig. 3(c). For the solution with Ω = 5(2π)MHz and
δ = 3.5(2π)MHz, a Rydberg blockade energy Δrr greater
than 2GHz is required to achieve a minimum gate fidelity
of higher than 0.99. With small interatomic distance, a
Rydberg blockade energy of this order is experimentally
achievable [29–31], and, if necessary, the atoms can be
pulled apart to implement single-qubit gates [23].

Technical errors arise from spontaneous emission dur-
ing the Rydberg excitation, Doppler broadening, and

40001-p4



Implementing a neutral-atom controlled-phase gate with a single Rydberg pulse
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Fig. 4: (Colour online) Robustness of the CZ gate for
the third solution listed in table 1 with Ω = 5(2π) MHz,
δ = 3.5(2π) MHz, Δrr = 8 GHz and TG = 1.143 μs. (a) The

histogram of the estimated minimum gate fidelity eFD,min for
2000 simulations. For each simulation, the Doppler shift is
randomly generated from a Gaussian distribution with stan-
dard deviation ΔD = 100 kHz; the estimated minimum gate
fidelity is the average of 2000 values obtained for the individual
simulations. (b) The estimated minimum gate fidelity eFD,min

and the average gate fidelity eFD,avg (averaged over random ini-
tial states) against the standard deviation ΔD of the Doppler
shift. For each ΔD, the values are averaged over 2000 sim-
ulations. (c) The histogram of the estimated minimum gate

fidelity eFD,min for 2000 simulations with stochastic noise in δ,
Ω and the Doppler shift. The distributions of the noise are
Gaussian with standard deviation Δδ = 20 kHz, ΔΩ = 100 kHz
and ΔD = 50 kHz, respectively. (d) The simulated minimum
and average gate fidelities against ΔΩ.

other experimental imperfections. For a Rydberg π pulse,
the error due to spontaneous emission is of the order of
10−4 [10]. Although in our scheme the atoms undergo
a few Rabi cycles during the gate operation time, the
probability of Rydberg excitation is largely suppressed by
the off-resonant light field (|Ω/δ| ∼ O(1)); see fig. 3(a).
Thus, the error due to spontaneous emission should be
no more than 10−4. Doppler broadening affects the de-
tuning δ, and thus the gate fidelity. For a 87Rb atom
at 75μK, the energy shift due to the Doppler effect is
about 40 kHz, if the Rydberg excitation is achieved by
two counter-propagating Raman beams via the 5p state.

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0 1.2
t(μs)

(i)

(ii)

f(t) = Ω(t)/Ω TG

Fig. 5: (Colour online) Population of states with time-
dependent switching-one-and-off Rabi coupling. The blue (i)
and red (ii) curves show the population of |1〉 and |11〉 under

Hamiltonians H
(1)
I and H

(2)
I . The dashed black curve shows

the time-dependent function of the Rabi coupling strength:
f(t) = Ω(t)/Ω, where Ω(t) is given in eq. (11). The param-
eters used for this simulation are Ω = 5(2π) MHz, ξ = 1.430,
Δrr = 8 GHz, ΔT = 10 ns and TG = 1.228 μs, and a gate
fidelity eFmin = 0.994 is obtained.

As shown by fig. 4(a), our scheme is not very sensi-
tive to Doppler shift errors because of the large detun-
ing |δ| � ΔD. An average gate fidelity higher than 0.99
can be achieved at 75μK for a stochastic Doppler shift
with standard deviation ΔD = 100 kHz, while the gate
fidelity for the adiabatic scheme of ref. [3] is below 96%
because of the Doppler effect [16]. Even for a Doppler-free
configuration, the decoherence of the adiabatic scheme is
dominated by the interatomic dipole forces of an imperfect
blockade and population loss owing to the non-adiabatic
evolution [17], which are not pertinent issues for our
scheme.

Other experimental imperfections may also affect the
accuracies of δ, Ω and the gate duration TG. Although
δ can be controlled with an accuracy of 10 kHz or even
smaller, controlling the Rabi frequency at this level is not
easy. The Rabi frequency Ω depends on the spatial uni-
formity and stability of the lasers as well as the distance
between the two atoms, which are, in practice, more chal-
lenging to control precisely than the laser detuning. Yet,
our scheme is not so sensitive to errors in δ and Ω: Nu-
merical simulations show that an average fidelity of 0.99
can be maintained when δ, Ω and the Doppler shift have
stochastic deviations drawn from Gaussian distributions
with standard deviations of 20 kHz, 100 kHz and 50 kHz,
respectively; see fig. 4(b).

In this analysis, the gate time TG is estimated us-
ing square pulses with instantaneous switching-on-and-off.
However, experimental laser pulses have time-dependent
switching profiles depending on the AOM/EOM appara-
tus. Since the actual pulse shape is the same from realiza-
tion to realization with very high precision, the parameters
can be optimized for the time-dependent pulse profile to
achieve high gate fidelities. Figure 5 shows an example
where the time-dependent atom-light coupling strength is
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modelled by

Ω(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2
Ω

[
1 + erf

(
t√

2ΔT

− 3
)]

for t <
1
2
TG,

1
2
Ω

[
1 + erf

(
TG − t√

2ΔT

− 3
)]

for t ≥ 1
2
TG.

(11)

For ΔT = 10ns —giving rise to a switching time of
about 60 ns— a gate fidelity F̃min = 0.994 can be ob-
tained with Ω = 5(2π)MHz, ξ = 1.430, Δrr = 8GHz and
TG = 1.228μs. Such an optimization can also be done for
other types of time-dependent pulses.

All existing schemes, including the scheme presented in
this letter, require the two atoms to be uniformly cou-
pled to the addressing lasers. The uniformity of the Rabi
frequencies for the two atoms depends on the atomic dis-
tance and the laser configuration. Since our scheme does
not require individual addressing of the atoms, we do
not have any constraint on the atomic distance —other
than that the atoms remain within the Rydberg block-
ade radius— and a spatially uniform Rabi coupling can
be achieved when the atoms are close to each other. The
laser configuration depends on the experimental choice of
the Rydberg coupling scheme. Rydberg excitation can be
achieved by a direct coupling where Doppler shifts can
be suppressed when using two lasers [17], by a two-photon
Raman transition where the Doppler error is reduced with
counter-propagating beams, or by a three-photon transi-
tion where a Doppler-free configuration can be obtained by
adjusting the angles between the laser beams [32]. Differ-
ent laser configurations have different sensitivity to beam
pointing and intensity fluctuations, and each configuration
must be assessed on its own. Moreover, the presence of the
intermediate states for multi-photon transitions would af-
fect slightly the phases accumulated during the transition,
especially when the detuning to the intermediate states is
not large enough. We shall report a more detailed error
analysis in a technical article.

Conclusion. – Our novel scheme for neutral-atom
Cphase gates employs only a single Rydberg pulse, which
addresses the two atoms simultaneously and symmetri-
cally and operates for a duration of a few Rabi-oscillation
cycles. All other schemes are designed to give perfect
gates under ideal circumstances and, as a consequence,
are complicated and suffer much when the circumstances
are non-ideal. In marked contrast, we accept right away
that any implementation will have imperfections and de-
sign a slightly imperfect but much more robust scheme
which is also relatively easy to implement. An analysis
of both intrinsic errors and technical errors shows that
Cphase gates with fidelities higher than 0.99 can be con-
structed with current technology.
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