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PACS 47.55.nb – Capillary and thermocapillary flows
PACS 82.70.Rr – Aerosols and foams

Abstract – We use experiments, modeling and numerics to study the imbibition dynamics from
a point source into a homogeneous dry aqueous foam. A distinctive feature of foams compared
to solid porous material is that imbibition occurs in the liquid microchannels of the foam called
Plateau borders, which have a volume varying in space and time. Dynamics is driven by the
capillary pressure and resisted by the viscous and gravity forces in the liquid microchannels.
Assuming a constant pressure in the imbibing liquid reservoir, we show that the imbibition front
advances and flattens out in time due to gravity, the effect of which is quantified by introducing
the Bond number B, which compares the gravitational effects to the capillary pressure using
the mean bubble radius as the characteristic length. This evolution describes both miscible and
immiscible imbibing liquids. For the latter, we introduce the idea of an effective interfacial tension
γeff to take the oil-water interfacial energy into account. The details of the imbibition process are
confirmed by experiments and numerics using foams with tangentially immobile interfaces in the
channel-dominated model.

Copyright c© EPLA, 2016

Introduction. – Aqueous foams have been used exten-
sively in many industrial applications to improve building
insulation, to enhance flavours in the food industry, to as-
sist the dismantlement of nuclear power plants, and to im-
prove oil recovery from underground reservoirs [1]. Among
their physical and structural properties [1–3], aqueous
foams can be modelled as soft porous media in which im-
bibition processes can occur.

In this paper, we study the imbibition into a foam from a
point source and highlight effects associated with different
liquid phases. When the liquid fraction (ratio between the
liquid volume and the total volume of the foam) is low, an
aqueous foam is a dense assembly of bubbles. The inter-
sections between the bubbles consist of films, vertices and
liquid microchannels called Plateau borders, which have a
curvature creating a capillary underpressure in the liquid
phase. Due to this pressure difference, an aqueous foam
has the ability to absorb liquids similar to a sponge. In-
deed, the interfacial energy of a wet foam is lower than the
interfacial energy of a dry foam since the bubbles are more
spherical than in a dry foam. Thus, when a dry aqueous
foam is put into contact with the same miscible liquid, im-
bibition is driven by the reduction of surface energy that
occurs when going from a dry to a wetter foam.

Not surprisingly, imbibition phenomena for unde-
formable and deformable solid porous media have been
studied extensively in the literature [4–11]. Also, im-
bibition of aqueous foams has been studied theoret-
ically and experimentally for different configurations:
one-dimensional imbibition of the same foaming liquid
at atmospheric pressure and pulsed imbibition at con-
stant volumes and 2D foam drainage at constant flow
rate [12–16]. With recent chemical formulations [17,18]
making the liquid/air interfaces more rigid, foams are not
destroyed when put into contact with miscible liquids [12],
nor with immiscible liquids [19,20], such as organic oils, for
the right oil-surfactant combination. This is of consider-
able interest in oil recovery and soil remediation processes.
For those potential applications, oil is generally trapped
into micropores at a defined pressure (generally lower than
the atmospheric pressure).

We develop a mathematical model and compare with
experimental results for the radial imbibition from a
point source (at imposed pressure), which mimics liq-
uid extraction from a micropore. Also, we develop a
model to explain why the imbibition of oil is possi-
ble in some cases despite the creation of new oil-water
interfaces.
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Table 1: Characteristics of the imbibing liquids. γow (mN/m)
is the oil-water interfacial tension, η (mPa · s) the dynamic
viscosity, ρ (g/cm3) the density, Rb (mm) the average bubble
radius of the foam and B the Bond number defined in (9).

Imbibing γow η ρ Rb B
liquid

CAPB+SLES 0 64 1.21 1 0.5
MAc+80% gly
CAPB+SLES 0 15 1.17 2 1.8
MAc+65% gly
CAPB+SLES 0 1.4 1.016 2 1.7
MAc+10% gly

Olive oil 1 6 61 0.88 1 1.5
Olive oil 2 6.2 68.5 0.88 2 5

Sunflower oil 4.5 55 0.91 2 3

Experiments. – We use a foaming solution of vis-
cosity η = 1.4 mPa · s and density ρ = 1.016 g · cm−3,
based on 0.66 wt.% of sodium lauryl-dioxyethylene sul-
fate (SLES; Stepan Co.), 0.34 wt.% cocoamidopropyl be-
taine (CAPB; Stepan Co. and Evonik), 0.04 wt.% myristic
acid (MAc; Sigma-Aldrich), and 10 wt.% glycerol [17,18].
The air/water interfacial tension of the foaming solution
is γow = 24.5±1 mN/m (measured with the pendant drop
method).

As imbibing liquids, we use olive oil and two glycerol so-
lution mixtures, whose wt.% of glycerol are different; the
properties (oil-water surface tension, dynamic viscosity,
density) are summarised in table 1. We also add a small
quantity of fluorescent dyes (1:50) to the imbibing liq-
uid (Yellow Black from Rohm and Haas, Fluorescein from
Sigma-Aldrich and Tracerline) to enhance the contrast be-
tween the foam and the imbibing liquid. We checked that
the addition of dyes does not change the value of γow.

We generate foams with a well-controlled average bub-
ble radius Rb = 1 - 2 mm by injecting nitrogen or com-
pressed air through a needle into the foaming solution.
The rigid interfaces owing to the type of surfactants used
yield a stable, monodisperse foam (deviations from the
mean bubble radius remain below 5%). After generating
the foam in a 20 cm high rectangular column with a 4.5 cm
wide square base, we let it drain and extract at random
times at the top of the column a foam sample for which
the volume V and the weight m are known. The sample
is turned upside down to invert the drainage process. The
initial liquid fraction of the foam sample is deduced from
εi = m/(ρV ).

For the imbibing reservoir, we use a polycarbonate plate
into which a 1 mm wide hole is drilled. A small capillary
tube of 1 mm diameter is inserted into the hole and slightly
displaced upwards into the foam to ensure complete con-
tact between the foam and the reservoir. This capillary
tube is connected to a 20 cm long and a 2 mm diameter
PTFE tube (fig. 1). This set of tubes is filled with the

Fig. 1: (Colour online) Experimental set-up. A 30 cm long
PTFE tube (2mm diameter) is filled with the imbibing liquid
(mixtures of foaming solution-glycerol or oil) and terminated
by a 1 cm long capillary tube (1mm diameter) that enables the
connection with the foam. A motion controller allows main-
tainence of the pressure of the liquid phase input at atmo-
spheric pressure patm.

Fig. 2: (Colour online) Snapshots of the imbibition front for
a 30-second timescale. The imbibing liquid (glycerol-foaming
solution) is fluorescent and the front is defined as the boundary
between the brighter and darker fluorescent areas. The liquid-
filled tube is displaced upwards by a millimeter in the first
snapshot to ensure contact between the source and the foam.

imbibing liquids, which completely wet the tubes. The
bigger tube is attached to a motion controller that allows
the adjustment of the input liquid level at the same height
as the output liquid level while the liquid flows through
the foam. This system sets a constant atmospheric pres-
sure patm at the outlet of the capillary tube. We also use
another system without feedback for comparison, by us-
ing a 5 cm wide funnel for which the output level does not
vary much when the liquid is imbibed. Both systems give
the same results as shown below.

At time t = 0, the bottom of the foam touches the point
source of the liquid. We record (at 24 frames per second
for 3 to 4 minutes) foam imbibition by using fluorescent
imaging. Figure 2 shows a typical image sequence of the
imbibition process. The same experiment is repeated for
the different imbibing liquids of table 1. Thus, different
liquids, different viscosities η, bubble radii Rb, air-water
(γaw) and oil-water (γow) interfacial tensions, and initial
liquid fractions εi are tested. We determine the imbibition
front by applying a threshold at the boundary between the
brighter and darker fluorescent areas. Using ImageJ soft-
ware for image processing, we plot the maximum vertical
position zf of the front with respect to time.

Results and discussion. – Figure 3 shows two data
sets for the evolution of the vertical front position zf (t).
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Fig. 3: (Colour online) Evolution of the vertical front position
zf with respect to time t for two data sets. The round dots
correspond to a glycerol-foaming solution and the square dots
to olive oil. The bubble radius Rb, the initial liquid fraction εi,
and the viscosity ηo/w of the imbibing oil or aqueous solution
are indicated, respectively, in the legend.

The experimental data for two different liquids typically
have error bars of ±0.5 mm, owing to the determination of
the front, especially in the case of miscible liquids, where
light diffusion by the films can create a small front width.
For both types of liquid, the position of the front moves
faster at short times and slows down as time increases. For
similar viscosities, oil imbibition is slower than aqueous
imbibition.

Miscible liquids. – To explain the experimental ob-
servations, we recall the foam drainage equation [13,21,22],
which describes foam imbibition and drainage. We make
the following assumptions:

– We consider a dry foam with a constant mean bubble
radius Rb and a low liquid fraction εw < 5 × 10−3.

– The size of the point source is much smaller than the
typical dimensions of the foam and the foam domain
can be considered as an infinite space for imbibition.

– We assume isotropy of the foam. We use cylin-
drical coordinates (radial coordinate r and axial
coordinate z).

Using Darcy’s law, we relate the average liquid velocity
uDarcy to the pressure gradient,

uDarcy = εwuPB =
k

ηw
(−∇p + ρg), (1)

where uPB is the mean velocity of a liquid flowing into a
Plateau border in a Poiseuille-like flow, k the foam per-
meability (m2), εw the liquid fraction, ηw the dynamic
viscosity of the invading miscible liquid, p the pressure in
the Plateau borders and ∇ depends on r and z only.

To describe the pressure gradient, we resort to a mi-
croscopic analysis of the imbibition in the Plateau border.
When a dry aqueous foam is wetted by a miscible liquid,

Fig. 4: (Colour online) (a) Cross-section of a Plateau border
for a dry aqueous foam. (b) Cross-section of a Plateau border
filled with oil for a dry aqueous foam. SPB and Sf , respectively,
denote the areas of the side surfaces of the Plateau borders
and the surface of the films that are connected to the Plateau
borders. So represents the area of the oil-water interfaces.

the physical mechanism that enables the imbibition is the
reduction of the surface area of the air-water interfaces
inside the foam, i.e., the total energy of the system de-
creases [23]. The liquid flow swells the Plateau borders,
creating more surface area. However, if we assume a con-
stant volume of gas in the bubbles, the surface area of the
films needs to decrease.

The reduction of the interfacial energy is used by the
foam to pump a volume dV of liquid at the osmotic pres-
sure Π = patm − p (Π is identical to the capillary pressure
if we assume that the pressure in the bubbles is equal to
atmospheric pressure). Thus, we have

ΠdV = −γdS, dS < 0, (2)

where γ is the interfacial tension, dS = dSf +dSPB is the
variation of the air-water area, and Sf and SPB are the
film and Plateau border area, respectively (fig. 4(a)).

For a dry aqueous and an ordered monodisperse foam,
the radius of curvature of a Plateau border rPB is related
to the bubble radius Rb as rPB = δbRbε

1/2
w [2,24], where

δb = 1.74 is a numerical factor deduced from the geometry
of a Kelvin cell. As shown analytically in the limit of dry
foam in [24], the osmotic pressure can be written as

Π = patm − p ≈ pb − p ≈ γaw

rPB
≈ γaw

δbRbε
1/2
w

, (3)

where pb is the pressure in the bubbles and γaw the air-
water interfacial tension. For rigid interfaces, we consider
a channel-dominated model for the foam permeability
k [3,25–28]:

k =
δaδ2

bR2
bε

2
w

150
(4)

with δa =
√

3 − π
2 , a numerical factor deduced from the

cross-sectional area of a Plateau border A = δar2
PB .

Differential equation for the cross-sectional area A of a
Plateau border. By combining (1), (3) and (4) with the
unit vector ez directed upwards, we have

uPB = −γawδaδbRb

300ηwε
1/2
w

∇εw − δaδ2
bR2

bρgεw

150ηw
ez. (5)
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We consider mass conservation in the Plateau border
for the liquid phase, which is expressed as

∂εw

∂t
+ ∇ · (εwuPB) = 0. (6)

From (5), (6) and εw = A/(δaδ2
bR2

b), we deduce a non-
linear partial differential equation for the time-space evo-
lution of the cross-sectional area of a Plateau border [13],

∂A

∂t
=

γawδ
1/2
a

300ηw
∇ ·

(
A1/2∇A

)
+

ρg

150ηw

∂A2

∂z
. (7)

For the initial condition, we assume that the foam is
dry, εw = 0. For the boundary conditions, we assume that
the liquid fraction and thus the cross-sectional area of a
Plateau border far from the point-source is close to 0. At
the point-source, A = δaR2

b , which is the cross-sectional
area for the maximum packing of undeformed bubbles.
Thus, we have the initial and boundary conditions:

A(r > 0, z > 0, 0) = 0, A(r, z → +∞, t) = 0,

A(r → +∞, z, t) = 0, A(0, 0, t) = δaR2
b (8)

and the no-flux condition at z = 0: ∂A
∂z = − 2ρg

δ
1/2
a γaw

A3/2.

Solution to the partial differential equation (PDE).
We non-dimensionalize A, r, z and t as α = A/(δaR2

b),
R = r/Rb, Z = z/Rb and τ = (δa/150)t/(ηwRb/γaw), and
introduce the Bond number B = ρgR2

b/γaw, transform-
ing (7) into

∂α

∂τ
= B

∂α2

∂Z
+

1
2

(
1
R

∂

∂R

(
Rα1/2 ∂α

∂R

)
+

∂

∂Z

(
α1/2 ∂α

∂Z

))

(9)
with the initial and boundary conditions:

α(R > 0, Z > 0, 0) = 0, α(R, Z → +∞, τ) = 0,

α(R → +∞, Z, τ) = 0, α(0, 0, τ) = 1 (10)

and the no-flux condition in Z = 0: ∂α
∂Z = −2Bα3/2.

To solve eq. (9) with the conditions (10), we use a dis-
cretization by finite differences on a 2D spatial mesh and
solve the PDE with Matlab. The numerical solution gives
α(R, Z, τ), as shown in fig. 5(a). The front position is
determined when α = 0 as α decreases from the point
source to the outer boundary of the mesh, which gives
the front profile for different times and Bond numbers
(fig. 5(b)–(d)). The simulations show that the front profile
flattens out as B and τ increase.

Immiscible liquids. – For miscible liquids, the de-
crease of the interfacial energy drives the imbibition into
a dry aqueous foam. For immiscible liquids, such as or-
ganic oils, we sketch the liquid flow (in the dry limit) by
an oil slug that penetrates the Plateau border, as shown in
fig. 4(b); new air-water surfaces in the Plateau border are
created and the surface area of the films decreases. How-
ever, new oil-water interfaces are also created, which are

Fig. 5: (Colour online) (a) Typical numerical solution of (9)
for the dimensionless Plateau border area α for B = 0 and
τ = 1000. (b)–(d) Numerical solutions of the imbibition front
for different times τ = 10, 50, 100 and 500 with Bond numbers
B = 0, 1.6 and 5.

energetically costly. Therefore, we develop another model
to add the influence of these oil-water interfaces.

Rewriting the osmotic pressure from (2), by using the
interfaces dSw and dSo for the variations of the air-water
and oil-water interfaces, respectively, yields

ΠdV = − (γawdSw + γowdSo)
with dSw < 0 and dSo > 0.

(11)

Equation (11) can also be expressed as

ΠdV = −γawdSw

(
1 +

γow

γaw

dSo

dSw

)
= −γeff dSw (12)

with γeff an effective interfacial tension:

γeff = γaw

(
1 +

γow

γaw

dSo

dSw

)
. (13)

For miscible liquids, γow = 0, so γeff = γaw and the os-
motic pressure is related to the curvature of the Plateau
borders by (3). However, if γow �= 0, then γeff accounts
for the oil-water interfacial tension and the creation of
oil-water interfaces. The osmotic pressure becomes Π =
γeff/rPB ≈ γeff/(δbRbε

1/2) where ε is the combined liquid
fraction for oil and water. Since dSw < 0, then γeff < γaw.
With immiscible liquids, the osmotic pressure is reduced
compared to miscible liquids, i.e., the driving force for im-
bibition is weaker. The value of γeff can be estimated. In
particular, the variation of the air-water interfaces dSw

can be decomposed into two contributions, one from the
films dSf , and the other from the Plateau borders dSPB

(fig. 4(b)).
Pitois et al. [29] and Hilgenfeldt et al. [30] provide

estimates of the film and Plateau border surface areas
with regard to the liquid fraction in the foam, Sf ≈
3.3
Rb

Vfoam(1− ε)(1−1.52ε1/2)2 and SPB ≈ Vfoam
1.5Rb

( π√
3δa

)ε1/2,
where Vfoam is a volume of foam. Differentiating Sf and
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SPB with respect to ε in the dry limit yields

dSf ≈ −Vfoam

Rb

(3.3)(3.04)
2ε1/2 dε, (14a)

dSPB ≈ Vfoam

Rb

π

3
√

3δaε1/2
dε. (14b)

In the dry limit, we can assume as a first approximation
that dSo ≈ dSPB and neglect the oil-water interface at
the top of the oil slug (fig. 4(b)). This assumption is in
agreement with recent Surface Evolver simulations of the
shape of an oil slug in a single Plateau border [27]. In our
case, the ratio γow/γaw ≈ 0.2 is low and the ratio between
the equivalent spherical radius for an oil slug embedded
within the Plateau border and the radius of curvature of
the Plateau border is close to 1 due to the very low liquid
fraction. Thus, by using (14a) and (14b), we have

γeff ≈ γaw + γow
dSPB

dSf + dSPB
≈ γaw

(
1 − 3

γow

γaw

)
. (15)

With this effective interfacial tension, the osmotic pressure
is reduced by a factor that depends on the ratio between
the oil-water and the air-water interfacial tensions. More
precisely, the governing equation for A is the same as de-
veloped previously for aqueous liquids in (7) with A, the
cross-sectional area of the Plateau border for both oil and
water phases, γeff, instead of γaw, and ηo the oil viscosity:

∂A

∂t
=

γeffδ
1/2
a

300ηo
∇ ·

(
A1/2∇A

)
+

ρg

150ηo

∂A2

∂z
. (16)

We only use ηo because the viscous dissipation oc-
curs predominantly in the oil phase as shown by Piroird
et al. [19] in the limit of ηo/ηw � 1. Equation (16) is iden-
tical to (7) and can be solved numerically, except with a
smaller air-water interfacial tension. The smaller capillary
pressure induced by the oil phase is in agreement with our
experiments: for the same elapsed time, the vertical front
position of the oil is smaller than the aqueous case, as
shown in fig. 3.

In fig. 6, we rescale zf by Rb and t by the capillary
time (150/δa)ηo/wRb/γeff, which is the same scaling as
in (9) written with γeff instead of γaw, and the viscosity
of oil or aqueous solutions ηo/w. The log-log plot in the
dimensionless variables displays a reasonable collapse be-
tween the experimental data and the numerical solution
for all miscible and immiscible imbibing liquids for the
range of non-zero Bond numbers between 0.5 and 5. The
collapse occurs at shorter τ for immiscible liquids, due to
the smaller scaling in time induced by γeff.

In both miscible and immiscible cases, the numerical
solutions that include the capillary pressure gradient and
gravity are comparable to the experimental data. The nu-
merical solution with B = 0 largely deviates from the ex-
perimental data, and gravitational effects flatten out the
imbibition profiles very quickly as shown in fig. 5. How-
ever, our numerical solution also deviates from the data
at short times. Indeed when the front position is of the

Fig. 6: (Colour online) Vertical front position zf with respect
to time in dimensionless coordinates for immiscible oils (open
dots) and miscible aqueous liquids (closed dots). The experi-
mental curves are obtained for two Rb = 1 and 2mm, different
εi, ηo/w and B. The numerical solutions of (9) for Bond num-
bers B = 0, 1.6 and 5, deduced from (9), are plotted by the
dashed lines. The self-similar power law evolution in τ 1/2 in
the no-gravity case (eq. (18)) is shown.

order of magnitude of one bubble size (R∗ < 2), the Darcy
model for the average velocity is not adequate, as imbibi-
tion occurs in individual Plateau borders. Also, ε �= 0
around the point source.

Analytical solution with B = 0. An analytical scal-
ing for the front position in the no-gravity case (B = 0),
which is encountered in microgravity conditions, can be
found by assuming spherical symmetry with the dimen-
sionless spherical distance R̃. We introduce the dimen-
sionless self-similar variable ζ = R̃/τ1/2. Substituting ζ
into (9), written with γeff and ηo/w, we find that α is the
solution of the ordinary differential equation:

ζ3 dα

dζ
+

d
dζ

(
ζ2α1/2 dα

dζ

)
= 0. (17)

The first boundary condition is α(ζf ) = 0, where ζf =
(150ηo/w

γeffδaRb
)1/2 rf

t1/2 is a constant which then yields the spheri-
cal front radius rf (t). A local analysis at the front provides
a second boundary condition and uniquely determines the
solution.

Setting ζ4
fα∗ = α yields the same equation as (17) ex-

cept with ζf = 1. Therefore, we can take ζf = 1 without
loss of generality. The wetting front rf is given by

rf (t)
Rb

=
(

δaγeff

150ηo/wRb
t

)1/2

. (18)

This solution is plotted in fig. 6. The t1/2 power law
result recalls the 1D diffusive imbibition in a Hele-Shaw
cell observed in [12,31]. However, the collapse between
the PDE solution with B = 0 and the self-similar solution
in t1/2 occurs at long times for τ > 104. The solution
to eq. (17) has a singularity at the point source, where
α diverges to +∞ [32]. However, the solution to eq. (9)

44002-p5
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has a finite boundary condition α = 1 at the point source.
Furthermore, the point source has the finite size of the
inlet tip (half a bubble radius). Thus, the introduction of a
source value and a length scale at the origin causes the lack
of agreement between the PDE solution and the t1/2 power
law. Given sufficient time (beyond our experimental time)
to lose the effect of the initial and boundary conditions,
the collapse of both solutions should occur. Also, due to
the values of the Bond numbers from 0.5 to 5, the diffusive
solution (and thus the no-gravity approximation) is not
valid over our experimental range.

Conclusions. – The radial imbibition from a point
source for different types of liquid into a dry aqueous foam
has been studied theoretically, numerically and experi-
mentally. Theory, numerics and experiments are in good
agreement. The results demonstrate that gravitational ef-
fects are comparable to the capillary pressure. Our re-
sult differs from the t1/3 power law developed by Xiao
et al. [33] for radial imbibition in undeformable porous
media with a constant permeability k. We account for the
deformability of the Plateau borders (time variations and
non-constant k) and the slope of the numerical solution
depends on B in fig. 6, which produces a non-constant
power law from one Bond number to another. We as-
sume that viscous dissipation occurs in the Plateau bor-
ders and adopt a channel-dominated model for the liquid
flow through the foam. Also, we consider gravity effects,
which are neglected in [33], since B � 1 due to the micron
size of the glass beads in their porous matrix.

From our results, we identify two criteria that define
the imbibition efficiency. The first one is the ratio be-
tween the oil-water and the air-water interfacial tension
that predicts the imbibition strength. The second one is
the Bond number B. The lower B, the less the effect of
gravity and the more liquid is imbibed. Decreasing the
bubble radius is the main option for reducing B (apart
from microgravity). In conclusion, our system mimics the
ability of a foam to remove liquids from a point source,
such as a pore or a fracture, and complements the wetting
theories in foam engineering.
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