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PACS 98.80.Cq – Particle-theory and field-theory models of the early Universe (including
cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe,
etc.)

PACS 98.62.En – Electric and magnetic fields

Abstract – We point out that a successful inflationary magnetogenesis could be realised if we
break the local U(1) gauge symmetry during inflation. The effective electric charge is fixed as
a fundamental constant, which allows us to obtain an almost scale-invariant magnetic spectrum
avoiding both the strong coupling and back reaction problems. We examine the corrections to the
primordial curvature perturbation due to these stochastic electromagnetic fields and find that, at
both linear and non-linear orders, the contributions from the electromagnetic field are negligible
compared to those created from vacuum fluctuations. Finally, the U(1) gauge symmetry is restored
at the end of inflation.

editor’s  choice Copyright c© EPLA, 2016

Introduction. – Magnetic fields are present through-
out the universe and play an important role in many as-
trophysical processes such as galaxy dynamics, pulsars,
white dwarfs, and even black holes. However, their ori-
gin is still not well understood. Interestingly, in 2010, it
was found by blazar observations that magnetic fields are
present even in inter-galactic void regions, with the co-
herence length of a few Mpc and the field strength larger
than 10−15 G [1–4]. The origin of such large scale cosmic
magnetic fields, has been a challenging problem for years.
It was suggested that inflation could be a prime candidate
for the production of large scale magnetic fields, provided
the conformal invariance of the U(1) gauge theory was
broken during inflation [5]. For example, this is easily the
case in higher dimensions, where the U(1) gauge field is
not conformally invariant. Many models are proposed so
far but none of them is convincing enough, see [6–8] for
recent reviews.

On the other hand, stochastic primordial magnetic fields
might also leave many imprints on CMB, such as spec-
tral distortions [9,10], modifications of temperature and
polarization spectra, Faraday rotation of CMB polariza-
tion [11–13], and so on. The most recent observational
constraint from CMB is roughly BMpc < 10−9 G by
Planck [14].

One of the simplest, gauge-invariant and well-studied
model is described by the Lagrangian [5,15]

LEM = −1
4
f2(φ)FμνFμν , (1)

where Fμν ≡ ∂μAν − ∂νAμ. This model is equivalent to
Bekenstein’s variable charge theory [16]. Unfortunately,
to produce large enough amplitude of magnetic field at
large scale, this model suffers from either back reaction or
strong coupling problem [17]. Furthermore, the primordial
stochastic electric and magnetic fields behave as isocurva-
ture perturbations, and hence they may also contribute to
the CMB temperature anisotropies at both linear and non-
linear orders. Requiring the absence of the back reaction
and strong coupling problems, as well as the absence of too
large isocurvature perturbations from the eletromagnetic
field, yields that inflation must happen at an extremely
low energy scale [18–24]. For instance, one of the most
stringent lower bounds was found in [24], in which only a
very fine tuned scenario at an energy scale of inflation as
low as 10−2 GeV can explain the observed void magnetic
field today. Basically it either rules out almost all mod-
els of inflation or rules out the inflationary origin of large
scale magnetic fields.
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Magnetogenesis with broken U(1) symmetry. –
In this letter, we point out that all of the above problems
could be avoided if the local U(1) gauge symmetry is bro-
ken during inflation. In contrast to Bekenstein’s variable
charge theory [16], we demote the electric charge as a fun-
damental coupling constant by considering the following
modified QED Lagrangian during inflation:

L = −1
4
f2(φ)FμνFμν − e0f(φ)Aμψ̄γμψ

+ iψ̄γμ (∂μ + Γμ) ψ − mψ̄ψ, (2)

where e0 is the value of the electric charge today, ψ is
a charged fermion and Γμ is the spin connection. See
refs. [25–27] for the related works in the literature. In our
model, the standard local U(1) gauge symmetry in QED
is broken. The residual symmetries are global symmetries:

ψ → ψeiα,

Aμ → λAμ,

f(φ) → λ−1f(φ), (3)

as well as the on-shell local gauge symmetry:

Aμ → Aμ + ∂μσ. (4)

The latter on-shell symmetry is particularly important.
First, it is more attractive than to break gauge invariance
on-shell and, in particular, an anomalous U(1) field could
have some interesting applications, e.g. see ref. [28]. Sec-
ond, it fixes the relation between the couplings in front
of F 2 and the interaction Aμψ̄γμψ, i.e. the former is the
square of the latter.

A possible origin within String Theory for the effective
action (2) is discussed in ref. [29], although in a very dif-
ferent set up. There, it is suggested that a three-form
field non-minimally coupled to a scalar field, which could
be a Higgs-like field, might help to solve the Hierarchy
problem. What is interesting for our purposes is that one
further needs to require that the three-form field interacts
with 2-branes, where the charge of the latter must be a
function of the scalar field.

A note is in order. If the generation occurred above the
electroweak scale, one should deal with the U(1) hyper-
charge gauge field rather than the electromagnetic gauge
field for correctness sake. Nevertheless, the relation be-
tween these gauge fields is a linear relation determined
by the mixing angle after electroweak symmetry breaking.
Thus, the actual difference is an O(1) coefficient which we
drop for simplicity and without loss of generality.

We also mention that the above on-shell gauge sym-
metry resembles the case of the on-shell diffeomorphism
invariance in Einstein gravity. In contrast to the off-shell
gauge symmetry of standard QED, the action is invari-
ant under the above gauge transformation only when the
equation of motion is imposed. The equation of motion of

the gauge field reads

∇μ(f2Fμν) − e0fψ̄γνψ = 0. (5)

Taking the divergence of the above equation of motion, by
noting that ∇μ∇ν(f2Fμν) ≡ 0, we must have

∇μ

(
e0fψ̄γμψ

)
= 0. (6)

Under the gauge transformation (4), the variation of the
action reads

δgS = −
∫ √

−g e0f∂μσψ̄γμψ

= −
∫ √

−g
[
∇μ

(
e0fσψ̄γμψ

)
−σ∇μ

(
e0fψ̄γμψ

)]
,

(7)

where δg denotes the variation δgAμ = ∂μσ. The first term
is just the total derivative, and the second term gives the
generalised current conservation equation (6), and thus
we have δgS = 0. Similar to the case of GR, where the
gauge symmetry is also on-shell symmetry, the anomaly
would appear at the quantum level and spoil the gauge
symmetry (4). However, by imposing a more fundamen-
tal symmetry (such as SUSY), similar to what people did
in supergravity, in principle all loop corrections could be
cancelled out and thus the anomaly may be removed. In
this work we treat the Lagrangian (2) as an effective field
theory and we rely on an unknown gauge-invariant UV
completion of the theory. Although it is an interesting
topic, it is beyond the scope of the present paper and we
leave it for future work.

Another way to express our model is to do the scaling
Aμ → f−1Aμ. Our action is reduced to

L = −1
4
FμνFμν + iψ̄γμDμψ − mψ̄ψ

−FμνQμAν − 1
2
QμQμAνAν +

1
2

(QμAμ)2 , (8)

where Qμ ≡ −∂μ(ln f) and Dμ ≡ ∂μ + ie0Aμ + Γμ. Our
theory is the standard QED but the gauge symmetry is
explicitly broken by the scalar field φ. A related example
was studied in [30]. Note that our model is free from the
strong coupling problem because we have fixed the electric
charge as a fundamental constant, as clear from the above
form of the Lagrangian. On the other hand, it is also easy
to check that the coupling between inflaton scalar field
and gauge field also remain small during inflation.

The global symmetry between Aμ and f(φ) is also bro-
ken if we introduce a potential to the inflaton φ (which
may arise from the SUSY breaking), to generate the
well-behaved kinetic coupling function f(φ). It is known
that we can obtain a scale-invariant magnetic spectrum if
f2 ∼ a4 [17,31] (for a pedagogical review see [32]). How-
ever, in this case if we integrate over the whole momentum
space, the energy density of the magnetic field would di-
verge logarithmically [33]. The divergence becomes even
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much worse if we take into account the slow-roll correction.
Thus we relax the assumption on the coupling function as

f2 ∼ a4 · e(4ε+ν)N , (9)

where ε ≡ −Ḣ/H2 is the slow-roll parameter during infla-
tion, which is assumed to be constant for simplicity, ν is a
new parameter and we require ν � 1 to generate a nearly
scale-invariant magnetic spectrum. N is the number of
e-folds counted backward from the end of inflation, thus
N = 0 at the end of inflation.

In the momentum space, the action of the gauge field
reads

S =
1
2

∑
s

∫
dτ

∫
d3kf2(φ)

[
(As

k)′(As
−k)′ − k2As

kAs
−k

]
,

(10)

where s is the polarization index, τ is the conformal time,
and the prime (′) denotes the derivative w.r.t. the con-
formal time. The canonical conjugate momentum of the
gauge field is defined by

πk =
δS

δA′
k

= f2A′
−k, (11)

where we have omitted the polarization index for nota-
tional simplicity. We quantize our system by imposing
the following canonical commutation relation:

[Ak1 , πk2 ] = iδ(k1 − k2). (12)

In terms of the creation and annihilation operators, the
gauge field is expanded as

Ak = ukak + u∗
ka†

−k, (13)

where, due to the commutation relation (12), the mode
function uk is normalised as

uku∗
k
′ − u∗

kuk
′ =

i

f2
. (14)

Taking the variation of the action w.r.t the gauge field,
the equation of motion reads

u′′
k +

2f ′

f
u′

k + k2uk = 0. (15)

At the subhorizon limit kτ → −∞, the spacetime is
asymptotically Minkowskian, and the term 2f ′

f is much
smaller than k. Thus we may assume the standard
Minkowski vacuum, and the mode function can be given
by the WKB solution,

uk =
1

f
√

2k
e−ikτ , (16)

where the pre-factor 1/f
√

2k is fixed by the Klein-Gordon
normalisation condition (14). Due to the nearly expo-
nential expansion of the background, the physical scale

eventually exceeds the Hubble horizon and since f ′/f =
O(a′/a), we can neglect the k2 term in the superhorizon
limit kτ → 0. In this limit, the solution is

uk = c1 + c2

∫ τ

0

dτ

f2
, (17)

where c1 represents the amplitude of the constant mode,
and c2 the decaying mode. Given the coupling func-
tion (9), it implies that the energy density of the electric
field, which is dominated by the decaying mode, is much
smaller than that of the magnetic field. Hereafter we ig-
nore the decaying mode c2 and hence the electric field.
The c1 may be computed by matching the subhorizon and
superhorizon solutions at horizon crossing,

c1 	 1
fk

√
2k

, (18)

where fk is the coupling function at horizon crossing time
of the wave number k. Thus the power spectrum of the
magnetic field can be calculated as

PB(k) =
k5f2

π2a4
|uk|2 =

k4

2π2a4
· f2

f2
k

. (19)

At horizon crossing, we have k = a∗H∗ = a∗HfeεN , where
Hf is the Hubble constant at the end of inflation. Setting

f2(N) = exp[−4N + (4ε + ν)N ] ; N > 0 , (20)

and f2 = 1 at and after the end of inflation, the power
spectrum is found as

PB(k;N) =
H(N)4

2π2
eν(N−Nk). (21)

We assume that ν > 0 so that we can have a convergent
energy density of the magnetic field. The total energy
density of the magnetic field is given by integrating over
the whole momentum space (with UV cutoff at k = aH ≡
k∗(N)),

ρB(N) =
1
2

∫ k∗(N)

0

dk

k
PB

=
H4(N)

4π2
eνN

∫ ∞

N

dNke−νNk

=
H4(N)
4π2ν

. (22)

Note that in the limit of a scale-invariant power spectrum,
i.e. ν → 0, the integral diverges. We required a small de-
parture from the scale invariance so as to have the energy
density of the magnetic field finite. Now, by requiring that
the energy density of the magnetic field is much smaller
than background energy density, we have a constraint on
the parameter ν,

H2
f

M2
p

� ν � 1, (23)
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where the upper bound is set to ensure a nearly scale-
invariant magnetic spectrum, and Hf is the Hubble con-
stant at the end of inflation. We see that this is actually
a very week constraint.

The current magnetic strength could be estimated as
follows. Assume that inflation happened at GUT scale,
Hf ∼ 10−6Mp, we have

B ∼ H2
fν−1/2 ∼ ν−1/210−12M2

p ∼ ν−1/21046 G (24)

at the end of inflation. Assuming that all the energy of
the inflaton is transfered to radiation at once at the end
of inflation, we have

T 4
CMB ∼

M2
p H2

f

g
4/3
∗

(
af

a0

)4

, (25)

where TCMB is the CMB temperature today, g∗ is the
effective relativistic degrees of freedom at decoupling, af

is the scale factor at the end of inflation and a0 is the
scale factor today. The energy density of the magnetic
field evolves also as radiation, ρB ∼ a−4, and its strength
today reads

B0 ∼ B

(
af

a0

)2

∼ ν−1/2 10−11 G
(

H

10−6Mpl

)
, (26)

which is sufficiently large to explain the large scale mag-
netic field in the void. The most recent observational
constraint from CMB is roughly BMpc < 10−9 G by
Planck [10], and it translates to the constraint,

10−4 < ν � 1. (27)

Let us end this section with a remark. We assume that
after inflation, the inflaton φ is trapped at the bottom of
potential and we recover the standard U(1) gauge theory.
In the radiation dominant phase, the presence of the high
conductivity would only dissipate the electric field, and
keep the magnetic field frozen at super horizon scale.

The corrections to the primordial perturbations.
– The primordial curvature perturbation also receives
contributions from the electromagnetic field. The contri-
butions to both linear and non-linear perturbations may
be estimated by the δN formalism [34–38]. The δN for-
malism is a very powerful tool for the understanding of
the perturbative physics on cosmological scales. It is es-
sentially equivalent to focusing on the leading-order terms
in spatial gradient expansion, called the separate universe
approach. According to it, the evolution of the local
Hubble patch is well-approximated by the evolution of
an unperturbed universe. The curvature perturbation at
t = tf is given by the perturbation in the number of e-folds
between the initial flat slice at t = ti and a final comoving

slice at t = tf when the universe is in the adiabatic limit,

Rc(tf ,x) = δN ≡ N(ti → tf ,x) − N0(ti → tf ), (28)

where N0 ≡ ln [a(tf )/a(ti)] is the unperturbed number of
e-folds. In our case, the inflationary expansion history is
parameterized by the value of the scalar field φ,

N(φ) =
∫ φf

φ

H(φ̃)
˙̃
φ

dφ̃ 	
∫ φ

φf

ρinf (φ̃) + ρB(φ̃)
M2

p Vφ(φ̃)
dφ̃, (29)

where ρinf is the energy density of the inflaton, Vφ ≡
∂V/∂φ, and we have used the Friedmann equation, the
equation of motion for φ, and the slow-roll approximation.
According to the δN formalism, we have

Rc(tf ,x) =
∂N

∂φ
δφ =

ρinf (φ)δφ
Vφ(φ)

+
ρB(φ)δφ
Vφ(φ)

, (30)

where δφ is to be evaluated on the initial flat slice at t = ti.
To evaluate the curvature perturbation for a given k, we
simply identify ti with the horizon crossing time deter-
mined by a(tk)H(tk) = k. The first term in (30) is due to
the inflaton density fluctuation, and the second term is the
additional contribution from the magnetic field. Given the
constraint on the parameter ν, (27), the contribution from
the magnetic field is completely negligible. For instance,
for parameter ν ∼ O(10−2), we have ρB/ρinf ∼ 10−12.

The same conclusion applies to the non-linear per-
turbations. For the bi-spectrum (3-point function), the
size of non-Gaussianity is characterised by the non-linear
parameter

−3
5
fNL =

1
2

∂2N/∂φ2

(∂N/∂φ)2
⊃ 3Hρ̇B − ρBV ′′

ρ2
inf

+ . . . (31)

Taking into account that the energy density of the mag-
netic field is much smaller than that of the inflaton field,
and it evolves very slowly, the contribution to the non-
Gaussianity from the magnetic field is also completely neg-
ligible. The same conclusion can be trivially extended to
the tri-spectrum (4-point function).

The magnetic field may also source tensor perturba-
tions [23,33]. The transverse and traceless part of the elec-
tromagnetic energy-momentum tensor appears as a source
term on the right-hand side of the equation of motion for
the tensor perturbation,

1
2a2

(
γ′′

ij +
2a′

a
γ′

ij + k2γij

)
	 − 1

M2
p

(BiBj)
TT

. (32)

As an order of magnitude estimation of the contribution
from the electromagnetic field, we set the left-hand to be
H2γij and the right-hand side to be H4

M2
pν . Thus we obtain

γem
ij ∼ H2

M2
p ν

� γvac
ij ∼ H

Mp
, (33)

where the middle double inequality holds because ν �
H/Mp � 10−6. Thus the vacuum fluctuation always dom-
inates over the one generated by the electromagnetic field.
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Conclusion and discussion. – The theoretical expla-
nation on the origin of the large scale magnetic field has
been a challenging problem for years. In this letter, we
have pointed out that if we break the local U(1) symme-
try by promoting the effective electric charge to be a fun-
damental constant, the sufficient magnitude of stochastic
magnetic fields may be generated during inflation without
encountering neither the back reaction problem nor the
strong coupling problem. The local U(1) symmetry is re-
stored at the end of inflation. We have examined that the
contributions from the generated electromagnetic field to
the primordial curvature perturbation are completely neg-
ligible both at linear and non-linear orders.

An additional interesting fact is that a broken U(1) sym-
metry may have a more significant consequence such as
baryon asymmetry. The broken U(1) symmetry may lead
to the lepton number violation. The lepton number vio-
lation translates to the baryon number violation through
the weak interaction which meditated by sphaelerons [39].
Thus we may create the baryon asymmetry by creating the
lepton number during inflation. We hope to come back to
this issue in the future.
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