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Abstract – Projective (von Neumann) measurement of an operator (i.e., a dynamical variable)
selected from a prescribed set of operators is termed unrecorded measurement (URM) when both
the selected operator and the measurement outcome are unknown, i.e., “lost”. Within classical
physics a URM is completely inconsequential: the state is unaffected by measurement. Within
quantum physics a measurement leaves a mark. The present study provides protocols that allow
the retrieval of some of the data lost in a URM. The study is shown as supportive of viewing
quantum measurement as made up of both classical-like and pure quantum components.
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Introduction. – Within quantum mechanics a mea-
surement (the present study is confined to von Neumann,
i.e., projective, measurements [1,2]) has an important ef-
fect. This remains true for a measurement of an operator,
selected from a prescribed set of operators, with neither
the measurement outcome nor the operator chosen being
available, i.e., they are “lost”. We refer to such mea-
surement as “unrecorded measurement” (URM). E.g., we
confine ourselves to a two-dimensional Hilbert space, with
measurement of the spin along the x-direction for a parti-
cle whose spin is aligned along the y-direction. The mea-
surement outcome has equal chance of being +1 or −1.
Let the outcome be +1. This is a URM measurement if
neither the direction (here x) nor the outcome (here +1)
are available (are “lost”). Nonetheless the state of the sys-
tem has changed: the particle did enjoy a (von Neumann)
measurement. Quantum mechanics (QM) [3] assures us
that should we measure the particle’s spin along the x-
direction, the result would be +1 —its pre-measurement
notwithstanding. We seek a protocol prescribing the “con-
trol measurement” that will disclose (some) of the changes
in the system that underwent a URM. The study below
considers setups allowing the retrieval of (some of) the un-
available data of a URM. We note that these are purely
quantum in nature as within the classical theory URM
is completely inconsequential and leaves, in principle, no
trace.

Quantum measurement (à la von Neumann) may log-
ically be considered as made of two components. One
essentially quantal and the other of more classical flavour.
The quantal part involves the choice of the basis (i.e., the
type of measurement undertaken among the prescribed

set, e.g., the spin along the x-direction). The system sched-
uled for measurement is reduced thereby to a “classical-
like” distribution. Thus, within our example, the choice
of measuring σx of some initial state |ψ〉 is expressed via
the reduction of the density matrix to a “classical-like”
probability distribution,

|ψ〉〈ψ| → |+, x〉〈x,+|ψ〉〈ψ|+, x〉〈x,+|
+ |−, x〉〈x,−|ψ〉〈ψ|−, x〉〈x,−|,

with |〈+/−, x|ψ〉|2 being the probability of finding the spin
along the x-direction +1/ − 1.

The “classical-like” part involves the actual recorded
measurement. Thus, a recorded (= consummated) mea-
surement is viewed as realizing both reductions, that of
the density matrix to its “classical-like” (diagonal) dis-
tributional form and (its subsequent) projection onto the
observed state.

This view of quantum measurement suggests that the
step wherein the quantal state is reduced to the “classical-
like” distribution with possible outcome within the mea-
sured basis is the traceable attribute of an unrecorded
measurement. It is perhaps natural to consider the
state that should allow efficiently the measurement of un-
recorded measurement to be a maximally entangled state
whose form is basis independent (cf. eq. (13)).

Our strategy is to entangle our system (particle “1”
—the system that will undergo a URM) with an ancilla
(particle “2”) [1]. The URM, though pertaining to par-
ticle 1, affects both systems and we shall extract the
information we seek from both. This is achieved by a two-
particle control measurement of the combined system.
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The (single-particle) URM bases that we consider for
a d-dimensional Hilbert space particle are mutually unbi-
ased bases (MUB). To assure self-containment and to fix
the notation we now give a brief review of MUB [4–14].

Two orthonormal vectorial bases B1, B2 are said to be
MUB if and only if (B1 �= B2)

∀ |u〉, |v〉 ∈ B1, B2, respectively, |〈u|v〉| =
1√
d
. (1)

A set of orthonormal bases which are pairwise MUB is
a MUB set. It was shown in [11] that there are at most
d+1 MUB in a set belonging to a d-dimensional space. For
d = prime (d �= 2), d members of an MUB set are given in
terms of the (d + 1)-th basis {|n〉}, n = 0, 1, . . . , d − 1 by
(b designates a basis, m specifies the vector in the basis)

|m; b〉 =
1√
d

d−1∑
n=0

|n〉ω b
2 [n(n−1)]−mn;

b = 0, 1, . . . , d − 1; ω = ei 2π
d . (2)

The (d+1)-th basis, termed the computational basis (CB),
is the set of eigenfunctions of the enumerating operator Ẑ:

Ẑ|n〉 = ωn|n〉. (3)

We shall designate this basis with b = 0̈; i.e., |n〉 = |n; 0̈〉:
Thus, the d + 1 bases are b = 0̈, 0, 1, . . . , d − 1.

We adopt the following abbreviation [14]: |m̈〉 = |m̈;
b = 0̈〉 and |m0〉 = |m0; b = 0〉. We note, for future refer-
ence, that the basis b = 0 is made of the eigenfunctions of
the shift operator X̂,

X̂|n〉 = |n + 1〉; |n + d〉 = |n〉,
X̂|m; 0〉 = ωm|m; 0〉, (4)

i.e., it is the Fourier transform of the CB. Note that the
exponents are modular and may be viewed as members of
an algebraic field [5–7,15].

Notational convenience leads us to define “tilde states”
|m̃; b̃〉. These are defined as follows:

〈n|m; b〉∗ ≡ 〈n|m̃; b̃〉 → |ñ〉 = |n〉; |m̃; b̃〉 = | − m;−b〉.
(5)

Note that the variables are modular, e.g., −m ≡ d −
m (mod d).

The URM we consider involves measuring an operator
K̂ of the general form

K̂b =
∑
m

|m; b〉ωm〈b;m|; b = 0̈, 0, 1, . . . , d − 1, (6)

for some selected alignment (= basis), b. The URM con-
sidered is a measurement of K̂b, eq. (6), of particle 1 with
an outcome m in a basis b with the values of m and b un-
available, lost. Both the initially prepared state and the
control measurement basis involve entangled systems: par-
ticle 1, the system subjected to the URM, and the ancilla,
particle 2.

We shall show below that there are two “natu-
ral” control measurements that provide distinct pieces
of information. These are measurements of MUB of

maximally entangled states (MES) bases. (The MES con-
sidered here are pure two-particle states such that partial
tracing over either one leaves as unity the density matrix
of the other.) The presentation of these MES is simplest
with the use of collective coordinates which are now intro-
duced schematically [13–15].

The Hilbert space of two d-dimensional particles, 1
and 2, is spanned by |n1〉|n2〉, ni = 0, 1, . . . , d−1, i = 1, 2
where |ni〉 is the eigenfunction of Ẑi (i = 1, 2) correspond-
ing to eq. (3), with a similar relation for the shifting op-
erators, X̂i, viz. X̂i|ni〉 = |ni + 1〉, eq. (4). The space
may, alternatively, be accounted for with collective co-
ordinate |nc〉|nr〉, nj = 0, 1, . . . , d − 1, j = c, r. Here
c stands for “center of mass” and r for “relative” coor-
dinates. These are defined for a d-dimensional Hilbert
space (d �= 2) via the single-particle dynamical variables
(recall, [7,13], that the exponents are modular variables,
e.g., 1/2 ≡ (d + 1)/2 (mod d)]), d = odd prime,

Ẑc = Ẑ
1/2
1 Ẑ

1/2
2 , Ẑr = Ẑ

1/2
1 Ẑ

−1/2
2 ,

Ẑj |nj〉 = ωnj |nj〉, X̂c = X̂1X̂2,

X̂r = X̂1X̂
−1
2 , X̂j |ni〉 = |(n+1)j〉,

ẐjX̂j = ωX̂jẐj , ẐiX̂j = X̂jẐi, X̂d
j = Ẑd

j = I,

nj = 0, 1, . . . , d − 1; i �= j; i, j = c, r; j = c, r. (7)

One may consider MUB for the c and r coordinates for the
d + 1 bases. We, however, concern ourselves with the two
collective coordinates MUB, the CB, b = 0̈, and its Fourier
transform, b = 0. We label the CB bases of the collective
coordinates in close analogy with the particles ones. Thus,
the “center of mass”, c, CB basis, i.e., the eigenfunctions
of Ẑc, are {|nc〉} = {|nc; 0̈c〉}, nc = 0, 1, . . . , d − 1. With
a similar designation scheme for the eigenfunctions of
X̂, we have the b = 0 case. (We shall omit the basis
subscript, e.g., 0̈c ⇒ 0̈. Whenever possible confusion may
arise between values of b for the collective coordinates
with those of the single particles, it is removed via a
detailed specification.)

Direct calculation proves [13,16] that each |n1〉|n2〉 state
corresponds to a unique collective state |nc〉|nr〉:

|n1〉|n2〉 ⇔ |nc〉|nr〉 with

nc =
(n1 + n2)

2
, nr =

(n1 − n2)
2

⇔ n1 = nc + nr; n2 = nc − nr. (8)

Adopting the following notational simplification for both
c and r, [14], viz.

|n̈〉i ≡ |n̈; b = 0̈〉i, |n0〉i ≡ |n0; b = 0〉i, i = c, r,

we now prove that the product collective state |m̈〉c|2m0〉r
is a maximally entangled state (MES). Indeed

|m̈〉c|2m0〉r = |m̈〉c

[
1√
d

d−1∑
n=0

|n〉rω−2m0n

]

=
1√
d

d−1∑
n=0

|m̈ + n〉1|m̈ − n〉2ω−2m0n, (9)

30005-p2



Measuring unrecorded measurement

where we used eq. (8). The last expression is obviously a
MES, QED.

Now the d2 MES, |m̈〉c|2m0〉r, m̈,m0 = 0, 1, . . . , d − 1,
are orthonormal and span the two–d-dimensional–
particles Hilbert space and, thus, form a (MES) basis for
it. This MES basis defines a conjugate basis made of the
d2 MES: |m̈〉r|2m0〉c, m̈,m0 = 0, 1, . . . , d − 1 (r and c are
interchanged). The two bases are MUB:

|〈m̈′|c〈2m′
0|r|m̈〉r|2m0〉c| =

1
d
,

independent of m̈, m̈′,m0,m
′
0. (10)

Either basis may be used as a retrieving control mea-
surement. Thus, one control measurement involves mea-
suring the operator

Γ̂a =
∑

m̈,m0

|m̈〉c|2m0; 0〉rΓa
m̈,m0

〈m̈|c〈0; 2m0|r. (11)

This operator involves the double (commuting) col-
lective operators, eq. (7). (This control measurement
relates the URM issue to the so-called Mean King
Problem [15,17,18].) The other conjugate control mea-
surement involves measuring

Γ̂b =
∑

m̈,m0

|m̈〉r|2m0; 0〉cΓ̃b
m̈,m0

〈m̈|r〈0; 2m0|c. (12)

Γ̂b involves the double (commuting) collective opera-
tors conjugate to those of eq. (11) it relates to the so-
called Tracking the King problem [15]. In either case
Γm̈,m0 assign arbitrary nondegenerate eigenvalues to the
observables.

Measuring unrecorded measurement. – We now
outline two protocols wherein measuring a URM allows
the retrieval of some of unavailable data of a URM of
a d-dimensional particle 1: Let Alice prepare the MES
|0; 0〉c|0; 0̈〉r, [16,19], wherein particle 1 and an ancilla, par-
ticle 2, are (maximally) entangled.

This state is essentially basis independent,

|0; 0〉c|0; 0̈〉r =
1√
d

∑
n

|n〉1|n〉2 =
1√
d

∑
m

|m; b〉1|m̃; b̃〉2.

(13)
Now let Bob measure K̂b, eq. (6), with an outcome m.
(The basis (b) of the measurement and the outcome (m)
are not available to Alice. To her the state is an URM
state.) The state of the two-particle system is now (un-
normalized) [1], using eqs. (2), (8), (9),

|m; b〉|m̃; b̃〉. (14)

Let Alice select, as her control measurement, to mea-
sure Γ̂b, eq. (12), having as her outcome, say, Γb

m̈,m0
.

Thus, she is assured that the following matrix element
is nonvanishing:

〈2m0|c〈m̈|r|m; b〉1|m̃; b̃〉2. (15)

This implies (note: the equations are modular)

b = −m0

m̈
; m̈ �= 0.

= 0̈ m̈ = 0; m0 �= 0.

undetermined for m̈ = m0 = 0. (16)

The last two results are obtained upon evaluating the ma-
trix elements that include b = 0̈, i.e., the possibility of
Bob measuring K̂(b=0̈).

The protocol above reveals the basis used in the URM
except for the case wherein the outcome of the control
measurement recovers the initially prepared state which
would also be the case wherein no measurement was per-
formed. In such a case the outcome of the control mea-
surement does not reveal any of the sought-after data.

We contend that this is the maximal information that
can be extracted on an URM. It reveals the unavoidable
disturbance imparted on the measured system involved in
the reduction of the quantum state to the “classical like”
distribution.

We now wish to consider an alternative kind of informa-
tion attained via measuring an URM. This is a different
sort of of information that is in essence involved in the
so-called Mean King Problem.

We now consider once more that Alice prepares the state
in eq. (13). Bob measures K̂b and obtains, say, m, without
informing Alice about the basis b and the outcome m. To
gain some information of his measurement she measures
Γ̂a observing, say, m̈,m0. Going through similar reasoning
as above she now gets

m = m0 + bm̈ − b/2, b �= 0̈;
= m̈, b = 0̈. (17)

In this case one gets a relation between the basis used (b)
in the (unrecorded) measurement and the experimental
outcome. This is, perhaps arguably, not as informative as
the results above, eq. (16).

Replacing the above with their respective conjugates
(e.g., eq. (10)) leads to equivalent results.

Conclusions and remarks. – An Unrecorded
Measurement (URM) is a projective (von Neumann)
measurement of an operator selected, in our study, from
a prescribed complete set of operators with the mea-
surement’s outcome and the operator selected unavailable
considered as “lost”. Such a measurement is completely
inconsequential within classical physics (CP). This is,
within CP, a measurement that leaves the measured
system, in principle, unperturbed. Within quantum me-
chanics (QM) the measurement marks the measured sys-
tem. We suggested that the unavoidable mark may be
associated with the reduction of the state to “classical-
like” distribution that is actuated with the recording of
the measurement. The subsequent “loss” of the recording
(i.e., both the outcome and the basis chosen) left this as
an observable mark.
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The present study is confined to d-dimensional Hilbert
space particles with d an odd prime as for these dimen-
sionalities the analysis is particularly simple. The exten-
sion of the theory to d being a power of prime is possible
but is judged to require complicated mathematics with-
out adding physical insight. The case of d = 2 requires a
special treatment.

The essential role played by entanglement in the un-
veiling the change of the quantal state due to (projec-
tive) measurement relates to an intimate relation among
entanglement, measurement theory and the uncertainty
principle: the retrieval of data residing in the perturbation
of a state due to (projective) measurement requires entan-
glement. The contention of this work is that the maximal
information that can be gained by a single measurement
of an unrecorded measurement is the basis used.
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