
                          

LETTER

Universal description of three two-component
fermions
To cite this article: O. I. Kartavtsev and A. V. Malykh 2016 EPL 115 36005

 

View the article online for updates and enhancements.

You may also like
Driving-induced stability with long-range
effects
Urna Basu, Pierre de Buyl, Christian Maes
et al.

-

Pair correlations as a signature of
entanglement: A bosonic mixture in gauge
field ring lattices
L. Morales-Molina, S. A. Reyes and E.
Arévalo

-

From non-ergodic eigenvectors to local
resolvent statistics and back: A random
matrix perspective
Davide Facoetti, Pierpaolo Vivo and Giulio
Biroli

-

This content was downloaded from IP address 18.116.36.221 on 27/04/2024 at 01:58

https://doi.org/10.1209/0295-5075/115/36005
https://iopscience.iop.org/article/10.1209/0295-5075/115/30007
https://iopscience.iop.org/article/10.1209/0295-5075/115/30007
https://iopscience.iop.org/article/10.1209/0295-5075/115/36004
https://iopscience.iop.org/article/10.1209/0295-5075/115/36004
https://iopscience.iop.org/article/10.1209/0295-5075/115/36004
https://iopscience.iop.org/article/10.1209/0295-5075/115/47003
https://iopscience.iop.org/article/10.1209/0295-5075/115/47003
https://iopscience.iop.org/article/10.1209/0295-5075/115/47003


August 2016

EPL, 115 (2016) 36005 www.epljournal.org
doi: 10.1209/0295-5075/115/36005

Universal description of three two-component fermions

O. I. Kartavtsev and A. V. Malykh

Joint Institute for Nuclear Research - Dubna, 141980, Russia

received 28 April 2016; accepted in final form 19 August 2016
published online 13 September 2016

PACS 67.85.-d – Ultracold gases, trapped gases
PACS 03.65.Ge – Solutions of wave equations: bound states
PACS 21.45.-v – Few-body systems

Abstract – A quantum-mechanical three-body problem for two identical fermions of mass m and
a distinct particle of mass m1 in the universal limit of zero-range two-body interaction is studied.
For the unambiguous formulation of the problem in the interval μr < m/m1 ≤ μc (μr ≈ 8.619 and
μc ≈ 13.607) an additional parameter b determining the wave function near the triple-collision
point is introduced; thus, a one-parameter family of self-adjoint Hamiltonians is defined. The
dependence of the bound-state energies on m/m1 and b in the sector of angular momentum and
parity LP = 1− is calculated and analysed with the aid of a simple model.

Copyright c© EPLA, 2016

Low-energy dynamics of few two-species particles has
attracted much attention as a basic quantum problem that
is closely related to the investigations of ultra-cold binary
quantum gases [1–7]. The principal problem is the in-
vestigation of few two-species fermions, in particular, the
present letter is aimed to study two identical fermions of
mass m interacting with a distinct particle of mass m1.
Since the few-body properties become independent of the
particular form of the short-range two-body interaction in
the low-energy limit, the universal description is obtained
by using the contact or zero-range interaction defined by
a single parameter, the two-body scattering length a. As
a consequence, one expects that for the properly chosen
units the few-body properties depend on a single non-
trivial parameter, the mass ratio m/m1.

Significant advance was made in [8], where it was
demonstrated that form/m1 > μc (μc ≈ 13.607), similarly
to the three-boson case, the problem of three two-species
fermions is ambiguously defined in the limit of zero-range
interaction. For the correct formulation, an additional pa-
rameter is needed to define the oscillating wave function
near the triple-collision point. By setting this parameter,
one comes to the Efimov spectrum, which contains an in-
finite number of bound states whose binding energies tend
to infinity and the ratio of subsequent energies tends to a
constant.

For m/m1 ≤ μc, one of the important results was
the analytic zero-energy solution, which reveals the two-
hump structure in the low-energy three-body recombina-
tion rate dependence onm/m1 [9]. The three-body energy

spectrum and the scattering cross sections for LP = 1−

were studied in [10], where two bound states were dis-
closed for m/m1 increasing to μc. The conclusions of [10]
were confirmed in [11,12] by solving the momentum-space
integral equations. The formation of the three-body clus-
ters should affect the properties of fermionic mixtures, in
particular, it indicates effective attraction between a di-
atomic molecule and a light particle in the p-wave state,
which persists even if the three-body system is unbound.
In this respect, a role of the p-wave (2 + 1)-scattering was
discussed in [4–6,13] and the molecule-atom p-wave attrac-
tion in 40K–6Li mixture was detected in [7]. Furthermore,
the dynamics of the ultra-cold gas consisting of three-body
clusters was investigated [14,15]. Another application to
the many-body dynamics was the calculation of the third
virial coefficient in the unitary limit a → ∞ [16,17].

In spite of the progress, it is still necessary to correctly
formulate the three-body problem for two-species fermions
with zero-range two-body interaction in the mass-ratio in-
terval m/m1 ≤ μc, as indicated in both physical [18–20]
and mathematical [21–24] works. In this respect, the basic
question is the unambiguous definition of the wave func-
tion in the vicinity of the triple-collision point. In this
letter, an additional three-body parameter b is introduced
to formulate the three-body problem for μr < m/m1 ≤ μc

(μr ≈ 8.619) that corresponds to the construction of a
one-parameter family of self-adjoint Hamiltonians. Within
the framework of this formulation, comprehensive analytic
and numerical study of the three-body bound states is per-
formed. Due to the permutational symmetry of fermions,
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the states of unit total angular momentum L and negative
parity P are of most interest at low energy; for this reason,
the LP = 1− sector is considered in this letter.

The Hamiltonian in the centre-of-mass frame is the six-
dimensional kinetic-energy operator H0 = −Δx − Δy,
where x and y are the scaled Jacobi coordinates and the
units h̄ = 2m/(1+m/m1) = 1 are used. The two-body in-
teraction is defined by the boundary condition for the wave
function Ψ imposed on two hyper-planes corresponding
to the zero distance r between either fermion and a dis-
tinct particle, limr→0

∂ ln(rΨ)
∂r = − 1

a . As the wave function
is antisymmetric under permutation of fermions, a single
condition in one pair of interacting particles is needed [10].

The formal construction of the Hamiltonian does not
obviously provide an unambiguous definition of the three-
body problem; in particular, one should inspect the so-
lution at the intersection of hyper-planes (triple-collision
point). To analyse the wave function, correctly de-
fine the three-body problem, and calculate the bind-
ing energies, it is suitable to expand the wave function
Ψ = ρ−5/2 ∑∞

n=1 fn(ρ)Φn(ρ,Ω) into a set of eigenfunc-
tions Φn(ρ,Ω) of the auxiliary problem on a hyper-sphere
at fixed ρ, where ρ =

√
x2 + y2 is a hyper-radius and Ω

denotes a set of hyper-angular variables [10]. This leads to
an infinite set of coupled hyper-radial equations (HREs),[

d2

dρ2 − γ2
n(ρ) − 1/4

ρ2 + E

]
fn(ρ) −

∞∑
m=1

[Pnm(ρ)

− Qnm(ρ)
d
dρ

− d
dρ
Qnm(ρ)

]
fm(ρ) = 0, (1)

where the eigenvalues of the auxiliary problem γ2
n(ρ) are

different branches of the multi-valued function defined for
LP = 1− by

ρ

a
cos γ

π

2
=

1 − γ2

γ
sin γ

π

2
− 2

cosωγ
sin 2ω

+
sinωγ
γ sin2 ω

(2)

and the notation sinω = 1/(1 + m1/m) is used. The
coupling terms Qnm(ρ) and Pnm(ρ) are expressed in the
analytical form via γ2

n(ρ) and their derivatives [10,25,26].
Since both eigenfunctions Φn(ρ,Ω) of the auxiliary

problem and the coupling terms Qnm(ρ) and Pnm(ρ) are
regular, the wave function Ψ for ρ → 0 is basically de-
termined by one of the channel functions fn(ρ), which
corresponds to the least singular term (γ2

n − 1/4)/ρ2 in
the system of HREs (1), i.e., to the smallest γ2

n. For the
sake of brevity, the channel index denoting the smallest
eigenvalue, γ2(ρ), and the corresponding channel function,
f(ρ), will be omitted. To determine the channel func-
tion f(ρ) up to the leading-order terms for ρ → 0, one
should retain in HRE the singular part (γ2−1/4)/ρ2+q/ρ,
where the notations γ ≡ γ(0) and q = [dγ2(ρ)

dρ ]ρ=0 are
introduced for brevity. The dependences γ(m/m1) and
q(m/m1) are depicted in fig. 1. Note that the two-body
scattering length is taken as a length unit (|a| = 1) and
q < 0 (q > 0) for a > 0 (a < 0).
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γ, |q|
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Fig. 1: (Colour online) The dependences γ(m/m1) (solid red
line) and q(m/m1) (dashed blue line). The values μr, μe, and
μc correspond to γ = 1, 1/2, and 0.

Generally, f(ρ) = C+ϕ+(ρ) +C−ϕ−(ρ) is a linear com-
bination of two independent solutions, which up to the
leading-order terms for ρ → 0 are given by ϕ±(ρ) =
ρ1/2±γ(1 + qρ

1±2γ ), except γ = 0, 1/2 when the expressions
for ϕ±(ρ) contain logarithmic terms.

Consider firstly γ2 ≥ 1 (m/m1 ≤ μr ≈ 8.619), in
which case ϕ−(ρ) is not square-integrable when ρ → 0
and should be excluded, i.e., C− = 0. Thus, one should
satisfy the simple condition f(ρ)−→

ρ→0
0, in other words, the

requirement of square integrability of Ψ is sufficient. Con-
versely, if γ2 < 1 (m/m1 > μr), both ϕ+(ρ) and ϕ−(ρ)
are square-integrable and an additional boundary condi-
tion is needed if ρ → 0. One should further distinguish
the case γ2 < 0 (m/m1 > μc ≈ 13.607), then ϕ±(ρ) oscil-
late and a standard method to lift ambiguity of the solu-
tion is to specify the constant C−/C+, which must satisfy
|C−/C+| = 1 to provide self-adjointness of the Hamilto-
nian. Thus, one comes to the family of Hamiltonians de-
pending on a single parameter (the phase of C−/C+) with
the well-known Efimov spectrum of bound states [8].

One of the aims of this letter is the unambiguous formu-
lation of the problem for 1 > γ2 ≥ 0 (μr < m/m1 ≤ μc),
which requires defining the boundary condition for ρ → 0.
Again, a standard method is to specify C−/C+, which
should be real-valued to provide self-adjointness of the
Hamiltonian. It is convenient to define the length −∞ <
b < ∞ by −C−/C+ = ±|b|2γ ≡ b|b|2γ−1, i.e., ± refers to
the sign of b. The boundary condition is straightforwardly
written as

f(ρ)−→
ρ→0

ρ1/2+γ ∓ |b|2γρ1/2−γ [1 + qρ/(1 − 2γ)] , (3)

except for γ = 1/2 (m/m1 = μe ≈ 12.313). The last
term ∼ q can be optionally omitted if 1/2 > γ > 0 (μe <
m/m1 < μc) and should be retained if 1 > γ > 1/2 (μr <
m/m1 < μe), when it exceeds the first term ρ1/2+γ . If
γ = 0 (m/m1 = μc), one finds the boundary condition
either from eq. (3) in the limit γ → 0 or directly from
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ϕ+ ∼ √
ρ and ϕ− ∼ √

ρ ln(ρ),

f(ρ)−→
ρ→0

ρ1/2 ln(ρ/b) , (4)

where only b > 0 is allowed. In the specific case of γ =
1/2 (m/m1 = μe) one can take ϕ+ ∼ ρ and ϕ− ∼ 1 +
qρ ln ρ, which leads to the boundary condition

f(ρ)−→
ρ→0

ρ− b(1 + qρ ln ρ). (5)

One should emphasise that the condition (5) does not fol-
low from (3) in the limit γ → 1/2 and the definitions of
the parameter b in (5) and (3) do not correspond to each
other. Notice that one could substitute ln ρ with ln(ρ/ρ0)
in (5) introducing a scale ρ0, which simply leads to redef-
inition of the parameter b̃ = b/(1 − b ln ρ0). As all other
channel functions fn(ρ) tend to zero faster than f(ρ) at
ρ → 0, it is sufficient to impose the conditions fn(0) = 0
for complete formulation.

Besides the definition of the boundary conditions for
the channel function (3)–(5), it is of interest to discuss
those for the total wave function Ψ. Generally, eqs. (3)–
(5) can be deduced from the boundary condition for Ψ
by projecting onto the first-channel eigenfunction on the
hyper-sphere Φ1(ρ,Ω) taken in the limit ρ → 0. One
can easily find the required expression if μe < m/m1 <
μc (1/2 > γ > 0), as Ψ is a linear combination of two
terms ∼ ρ±γ−2Φ1(0,Ω) for ρ → 0 and the boundary con-
dition takes a simple form,

lim
ρ→0

(
ρ1−2γ d

dρ
± 2γ

|b|2γ

)
ρ2+γΨ = 0, (6)

which is similar to (3). On the other hand, for μr <
m/m1 < μe (1 > γ > 1/2), it is necessary to keep in the
expansion of Ψ for ρ → 0 also the term ∼ ρ−γ−1, which
includes an additional function of hyper-angles. In this
case, the boundary condition becomes cumbersome, as it
should contain, besides Φ1(0,Ω), the additional function,
whose determination is not necessary for the present letter.

The boundary condition imposed for ρ → 0 is equivalent
to including a zero-range three-body potential, while b ad-
mits an interpretation as the generalised scattering length.
This potential represents either the effect of overlapping of
the two-body potentials or the true three-body force. For
illustration consider the connection of b with the parame-
ters of a regularised potential, whose range ρ0 is allowed
to shrink to zero. The simple example is the potential de-
fined as the square well U(ρ) = −U0 for ρ ≤ ρ0 and as the
diagonal term U(ρ) = γ2−1/4

ρ2 + q
ρ for HREs (1) for ρ > ρ0.

The channel function f(ρ) = cosκρ (κ =
√
U0 + E) for

ρ ≤ ρ0 and is of the form (3) for ρ > ρ0, which gives the
asymptotic relation

κρ0 tanκρ0 = γ − 1
2

± 2γ
(
ρ0

|b|
)2γ

− qρ0

1 − 2γ + qρ0
. (7)

Up to the leading-order terms containing b and q, the po-
tential strength U0 is related to the interaction range ρ0 as

U0 = v

[
1
ρ2
0

± 4γ

|b|2γ(γ2 − 1/4 + v)ρ2(1−γ)
0

+
q

(γ2 − 1/4 + v)(γ − 1/2)ρ0

]
, (8)

where v is determined by
√
v tan

√
v = γ − 1/2. Thus,

the most singular term ∼ ρ−2
0 in the dependence U0(ρ0)

is determined by γ, whereas the parameter b determines
less singular terms. With decreasing γ, the higher-order
terms containing b (∼ ρ−2+2nγ

0 for n ≥ 2) prevail over
the term proportional to q, e.g., for γ < 1/4, the term
∼ ρ−2+4γ

0 is more important than that of q/ρ0. For γ = 0
eqs. (7) and (8) take the following form: κρ0 tanκρ0 =
− 1

2 − 1
ln(ρ0/b) and U0 = v

ρ2
0
[1 + 2

(1/4−v) ln(ρ0/b) ]. If b = 0,
relation (7) is not applicable; in this case the form (3) gives
κρ0 tanκρ0 + γ + 1

2 = 0 and U0 = ṽ
ρ2
0
, where

√
ṽ tan

√
ṽ =

−γ − 1/2.
The determination of the three-body bound-state en-

ergies is simple in the limit |a| → ∞ due to decoupling
of HREs (1), since γ2

n(ρ) in (2) become independent of
ρ constants γ2

n(0) and the coupling terms Qnm(ρ) and
Pnm(ρ) vanish. Picking out one HRE with the small-
est γ2

n(0) ≡ γ2 from the uncoupled system of HREs (1)
one finds for b > 0 that there is one bound state whose
energy E = −4b−2[−Γ(γ)/Γ(−γ)]1/γ and eigenfunction
f(ρ) = ρ1/2Kγ(

√−Eρ) are expressed in terms of the
gamma function and the modified Bessel function. In
the limit b → ∞, the bound state goes to the thresh-
old, where it turns to the virtual state, which persists
for b < 0 and whose energy is given by the above ex-
pression. The above expressions for |a| → ∞ are a good
approximation for the properties of the deep state, which
exists for |a|/b � 1. Note also that redefinition of the pa-
rameter b̃ = b

2 [−Γ(−γ)/Γ(γ)]
1
2γ gives the usual relation,

E = −b̃−2, between the energy and the scattering length.
To elucidate the qualitative features of the problem in

connection with the three-body boundary condition, one
constructs a simple model that provides reliable depen-
dence of the bound-state energy on b and m/m1. The
model is based on splitting the Hamiltonian into two parts:
the singular one containing terms singular as ρ → 0 and
the remaining one describing a smooth dependence on
m/m1. The former part is defined as one HRE of (1) con-
taining the smallest γ2

n(ρ), moreover, only singular terms
(γ2 − 1/4)/ρ2 + q/ρ are retained, which allows one to
obtain the correct behaviour of the solution for ρ → 0 and
to reproduce the attraction for finite ρ. The remaining
part is defined simply as a constant ε(m/m1). Explicitly,
one comes to the equation ( d2

dρ2 − γ2−1/4
ρ2 − q

ρ + E − ε)
f(ρ) = 0, whose square-integrable solution is written as
f(ρ) = ρ1/2+γe−κρΨ(1/2 + γ+ q/(2κ), 1 + 2γ; 2κρ), where
κ =

√
ε− E and Ψ(a, c; z) is the confluent hyper-geometric
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Fig. 2: (Colour online) Bound-state energies E as a function of m/m1 and b for the two-body scattering length a > 0 (panel (a))
and a < 0 (panel (b)) and the energy axis scaled to map −∞ < E < −1 (panel (a)) and −∞ < E < 0 (panel (b)) to the interval
(−1, 0). Values μr, μe and μc correspond to γ = 1, 1/2 and 0.

function decaying as z → ∞. The eigenenergy equation

(2κ|b|)2γ = ∓ Γ(2γ)Γ (1/2 − γ + q/(2κ))
Γ(−2γ)Γ (1/2 + γ + q/(2κ))

(9)

follows from boundary condition (3) for all 0 < γ < 1
(μc > m/m1 > μr) except γ = 1/2 (m/m1 = μe). The
eigenenergy equation for γ = 0 is obtained either by taking
the limit in eq. (9) or from the boundary condition (4) that
gives ln(2κb) + ψ(1

2 + q
2κ ) + 2γC = 0 for b > 0. Hereafter,

ψ(x) is the digamma function and γC ≈ 0.5772 is the
Euler–Mascheroni constant. In the special case of γ =
1/2 (m/m1 = μe) the eigenenergy equation 1

q (1
b − κ) −

ln( |q|
2κ ) + ψ(1 + q

2κ ) + 2γC − 1 = 0 comes from (5).
The simple model is equivalent to the generalised

Coulomb problem incorporating the zero-range interac-
tion. As follows from eq. (9), the bound-state energies
monotonically increase with increasing b; moreover, one
bound state appears if b passes through zero. It is help-
ful to examine two limiting cases of b = 0 and b → ∞,
which gives the eigenvalues κnb = − q

2(n+sbγ)+1 , where n
is a non-negative integer and s0 = +1 (s∞ = −1). The
bound-state energies are

Enb = − q2

[2(n+ sbγ) + 1]2
+ ε, (10)

where n is restricted by the condition 2(n+ sbγ) + 1 > 0
if a > 0 (q < 0) and 2(n + sbγ) + 1 < 0 if a < 0 (q > 0).
Hereafter it is convenient to take |a| as a length unit that
sets the two-body binding energy to unity. A comparison
of the ground- and excited-states energies for b = 0 [27]
with eq. (10) shows that reasonable agreement could be
obtained for ε about −0.4÷−0.6. Estimating the constant
ε ≈ −0.5, one finds that for a > 0 there are two branches
below the threshold (at E ≤ −1) if b = 0 and three
branches if b → ∞, while for a < 0 there is one branch
below the threshold (at E ≤ 0) if b → ∞ (see fig. 2). For
a > 0, from eq. (10) follows degeneracy of the branches

En0 and En∞ (n = 0, 1) as m/m1 → μc (γ → 0), E00
and E1∞ as m/m1 → μe (γ → 1/2), and E00 and E2∞
as m/m1 → μr (γ → 1). Moreover, from eq. (9) it fol-
lows that as m/m1 → μc (γ → 0) the energies for any
b < 0 converge to either E00 = E0∞ or E10 = E1∞. As
m/m1 → μe (γ → 1/2) the energies converge to either
of three options, the threshold E = −1, E00 = E1∞, and
−∞. And as m/m1 → μr (γ → 1) the energies converge
to either E1∞ or E00 = E2∞ as shown in fig. 2. For a < 0,
the energies converge to E0∞ as m/m1 → μr (γ → 1) and
to −∞ as m/m1 → μe (γ → 1/2) for b �= 0.

The three-body bound-state energies are determined by
numerical solution of the truncated system of HRE (1)
complemented by boundary conditions (3), (4), and (5).
The numerical method is the same as in [10,27] apart from
implementation of the boundary conditions at sufficiently
small ρ. Sufficient accuracy of the calculated three-body
bound-state energies is achieved by solving up to eight
HREs; the results are plotted in fig. 2. The calculated
dependences are consistent with the overall predictions
of the simple model. The energy dependence on b for
fixed m/m1 is typical of a sum of the finite-range and
zero-range potentials, in particular, variation of the pa-
rameter b leads to the appearance or disappearance of one
bound state.

The calculations for a > 0 show that if m/m1 → μr the
energies for any b converge either to E1∞ ∼ −4.7473 or to
E00 = E2∞ ∼ −1.02090, if m/m1 → μe there is one limit
E00 = E1∞ ∼ −1.74397, and if m/m1 → μc the energies
for any b ≤ 0 converge either to E00 = E0∞ → −5.89543
or to E10 = E1∞ → −1.13767. In agreement with [10] it
is found that if m/m1 ≤ μr, where only b = 0 is allowed,
there is one bound state, which arises at m/m1 ≈ 8.17259
and naturally continues the branch E00. The calculations
for a < 0 show that if m/m1 → μr the energies for any
b converge to the limit E0∞ → −4.7147. If m/m1 → μr,
the limit E0∞ for a < 0 coincides with the limit E1∞ for
a > 0, as predicted by the simple model (10).
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Fig. 3: (Colour online) A number of bound states in each domain of the m/m1-b plane for the two-body scattering length a > 0
(panels (a) and (b)) and a < 0 (panel (c)). Part of the panel (a) is plotted in the panel (b) to discern details. Solid (red)
line: critical three-body parameter bc(m/m1) corresponding to the bound-state energy at the threshold. Dashed (green) lines:
domain boundaries determined by m/m1 = μe and b = 0. Values μr, μe and μc correspond to γ = 1, 1/2 and 0.

Notice that due to discontinuity in the definition of b
the limiting values of the bound-state energy for m/m1 →
μe ∓ 0 do not coincide with that calculated exactly at
m/m1 = μe. The calculations atm/m1 = μe show that for
a > 0 there are two bound states, one of which disappears
for −.108 < b ≤ 0; for a < 0 there is one bound state,
which disappears for −.437 < b ≤ 0. In the limit b → ∞
the bound-state energies tend to −4.319 and −1.061 for
a > 0 and to −25.720 for a < 0. For b = 0 definitions (3)
and (5) are the same and for a > 0 the bound-state energy
takes the value E00 ≈ −1.74397.

Elaborate calculations were carried out to determine the
critical parameter bc(m/m1), for which the bound-state
energy coincides with the threshold. The lines bc(m/m1),
b = 0, and m/m1 = μe form boundaries of the domains
of the definite number of bound states in the m/m1-b
plane as presented in fig. 3. Few points of the depen-
dence bc(m/m1) are of special interest, viz., one finds for
a > 0 that bc = 0 at m/m1 ≈ 12.91742, bc → ±∞
at m/m1 ≈ 10.2948, bc ≈ 0.05166 at m/m1 = μc,
and bc(m/m1) has a local minimum bc ≈ −0.01754 at
m/m1 ≈ 12.550. Similarly, one finds for a < 0 that
bc ≈ 0.13620 at m/m1 = μc, and bc(m/m1) has a local
minimum bc ≈ −0.2501 at m/m1 ≈ 10.15.

Until now, in a number of reliable investigations of three
two-component fermions (for m/m1 ≤ μc) [9–12,27] it was
explicitly or implicitly assumed that only one particular
form of the wave function near the triple-collision point
is allowed, which in terms of this letter means that the
three-body parameter b was set to zero. Nonetheless, the
problem of two linear-independent square-integrable solu-
tions was mentioned in [9,18,19,28]. A rigorous treatment
of few two-component fermions with the contact two-body
interactions and the construction of a self-adjoint Hamil-
tonian was discussed from the mathematical point of view
in [21–24]. The approach of [23] was further exploited in
the calculation of three-body bound states [29].

It is interesting to discuss the approach used in
paper [19], where the two-parameter variety of the three-
body problems was defined by introducing the logarithmic
derivative of the channel function, tan δ = ρd ln f

dρ at small

hyper-radius ρ0 (denoted as R0 in [19]). The limit ρ0 → 0
was treated numerically thus resulting in the discontinuous
bound-state energy dependence on δ. One expects that
the seemingly non-universal description in the framework
of the particular model [19] reduces to the one-parameter
universal picture of the present letter, at least in the limit
ρ0 → 0. The required relation is readily found by using
the asymptotic form of the solution for ρ → 0 (3), which
leads to the connection of two parameters δ and ρ0 and
the three-body parameter b of the present letter,

|b|2γ =
±ρ2γ

0

[
tan δ − γ − 1

2

][
1 + qρ0

1−2γ

]
tan δ + γ − 1

2 + qρ0
2γ−3

2(1−2γ)

, (11)

except for γ = 1/2. Thus, the dependence b(δ, ρ0) is dis-
continuous at δ = δcr, where

tan δcr =
(1 − 2γ)2 + qρ0(3 − 2γ)

2(1 − 2γ + qρ0)
, (12)

which explains why the bound-state energy in [19] is dis-
continuous. For ρ0 → 0, eq. (12) takes a simple form,
tan δcr = 1/2 − γ, which is valid everywhere excluding a
small neighbourhood ∼ qρ0 of the point m/m1 = μe (of
the order of |γ−1/2| < qρ0). To exemplify the correspon-
dence between the model [19] and the present universal de-
scription, one compares δcr(m/m1) obtained numerically
in [19] and δcr(m/m1) = arctan(1/2 − γ). It is clearly
seen from fig. 5 of [19] that both results are in agreement
up to m/m1 ≈ 13, e.g., δcr → − arctan(1/2) ≈ −0.46
for m/m1 → μr and δcr → 0 for m/m1 → μe. On the
other hand, the discrepancy arises abovem/m1 ≈ 13, e.g.,
the exact expression gives δcr → arctan(1/2) ≈ 0.46 for
m/m1 → μc, which differs from δcr in fig. 5 of [19]. Pre-
sumably, this discrepancy indicates difficulty of the nu-
merical calculation for ρ0 → 0 in this mass-ratio region.

The transition from the infinite Efimov spectrum to the
one-parameter spectrum described in this letter under the
variation of the mass ratio is a general scenario, which will
appear in a number of problems. One should anticipate
the same transition for any problem, whose essential prop-
erties are determined by the effective potential with the
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singular part ∼ x−2, if its strength depends on a param-
eter (similar to the mass ratio). Evident example of this
kind is the problem of three two-species particles in any
LP sectors [11,12,27]. Similar to the case of the LP = 1−

sector, the three-body parameter should be introduced in
the L− sectors of odd L and in the L+ sectors of even
L > 0 if two identical particles are fermions and bosons,
respectively. Also, this scenario will be realised for the
three-body problem in the mixed dimensions [30,31] or in
the presence of spin-orbit interaction [32,33].

In future studies it is natural to find m/m1 and b
dependences of the scattering cross sections, three-body
resonances, and recombination rates. The disclosed de-
pendence on the three-body parameter should be taken
into account in many-body properties as well; promising
examples are the four-body (3 + 1) [34] and (2 + 2) [35]
problems. Furthermore, the three-body parameter will be
important in the crossover problem [36], i.e., in the rela-
tion of solutions for m/m1 below and above μc; another
interesting point is the crossover of the solutions form/m1
above and below μr.
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