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Abstract – It is shown that an entire class of off-diagonally disordered linear lattices composed of
two basic building blocks and described within a tight-binding model can be tailored to generate
absolutely continuous energy bands. It can be achieved if linear atomic clusters of an appropriate
size are side-coupled to a suitable subset of sites in the backbone, and if the nearest-neighbor
hopping integrals, in the backbone and in the side-coupled cluster, bear a certain ratio. We work
out the precise relationship between the number of atoms in one of the building blocks in the
backbone and that in the side attachment. In addition, we also evaluate the definite correlation
between the numerical values of the hopping integrals at different subsections of the chain, that can
convert an otherwise point spectrum (or a singular continuous one for deterministically disordered
lattices) with exponentially (or power law) localized eigenfunctions to an absolutely continuous
spectrum comprising one or more bands (subbands) populated by extended, totally transparent
eigenstates. The results, which are analytically exact, put forward a non-trivial variation of the
Anderson localization (Anderson P. W., Phys. Rev., 109 (1958) 1492), pointing towards its
unusual sensitivity to the numerical values of the system parameters and, go well beyond the
other related models such as the Random Dimer Model (RDM) (Dunlap D. H. et al., Phys. Rev.
Lett., 65 (1990) 88).

Copyright c© EPLA, 2016

Introduction. – Single-particle states localize expo-
nentially in a disordered system [1–3]. The effect is
strongest in one dimension, where there is a com-
plete absence of diffusion irrespective of the strength of
disorder [1]. In two dimensions the states retain their ex-
ponential decay of amplitude, while in three dimensions
the possibility of a metal-insulator transition arises. The
results get adequate support from the calculations of the
localization length [4,5], density of states [6] and the multi-
fractality of the spectra and wave functions of spinless,
non-interacting fermionic systems [7–9].

The path breaking observation by Anderson [1], over
the years, has extended its realm well beyond the elec-
tronic properties of disordered solid materials, and has
been found out to be ubiquitous in a wide variety of sys-
tems. For example, one can refer to the field of localiza-
tion of light, an idea pioneered about three decades ago by

(a)E-mail: arunava chakrabarti@yahoo.co.in

Yablonovitch [10] and John [11], and which is being carried
forward even recently using path-entangled photons [12]
or tailoring of partially coherent light [13]. Localization of
phononic [14,15], polaronic [16,17], or plasmonic excita-
tions [18–20] has also been studied in detail and has high-
lighted the general character of the Anderson localization
induced by disorder. From an experimental standpoint,
the fundamental issue of localization has been substanti-
ated over the past years with the help of artificial, tailor-
made geometries developed by the improved fabrication
and lithographic techniques. The direct observation of lo-
calization of matter waves in recent times [21–23] is one
such example.

Interestingly, variations of the canonical case of
disorder-induced Anderson localization have surfaced over
the years, particularly, within a tight-binding description.
Resonant tunneling of electronic states in one dimension,
caused by special short-range positional correlation in the
so-called random dimer model (RDM) [24], initiated such
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studies. Bloch-like eigenstates, extended over the entire
lattice were observed at certain discrete energy eigenvalues
rendering the lattice completely transparent to an incom-
ing electron possessing such an energy. Such a situation
was also observed with long-range positional correlation
in one dimension [25], or in quasi–one-dimensional ladder
networks with specially correlated potentials, where the
existence of even a continuous band of extended states
was shown to be possible [26,27].

In this context, a pertinent question could be the fol-
lowing: is it possible to engineer a complete turnaround,
in a controlled fashion, in the fundamental character
of the energy spectrum of non-translationally invariant
systems such that the point-like character of the spec-
trum, representative of localized eigenstates can be con-
verted into an assembly of absolutely continuous subbands
where only Bloch-like eigenstates reside? The existence
of continuous bands has been reported recently in quasi–
one-dimensional or two-dimensional systems with diagonal
disorder [26,27]. Correlation between the numerical val-
ues of the hopping integrals in a class of topologically dis-
ordered quasi–one-dimensional closed looped systems has
also been shown to produce absolutely continuous bands
of eigenfunctions recently [28,29]. We thus have a partial
answer to the question, and it remains to be seen whether
such bands of extended eigenfunctions can be generated
and controlled with other variants of an off-diagonally dis-
ordered tight-binding chain of atoms as well.

In this letter we address ourselves to this particular
question. A one-dimensional chain is grown along the x-
direction by placing two basic structural units βδnγ and
α, with an atomic cluster side-coupled to the α sites only
(fig. 1) in any desired arrangement, for example, in a com-
pletely random way or following any deterministically dis-
ordered (maybe quasi-periodic) geometry.

The sites are named in the following way. The α site
is flanked by two identical bonds A. The β and γ sites
are flanked by A on the left and B on the right, and the
other way round. The δ sites are flanked on either side by
the bond of type B. The hopping integrals correspond-
ing to these bonds are named as tA and tB, respectively.
The general character of the spectrum in such cases, as
can be appreciated easily, will reflect localization of elec-
tronic states, exponential or power law, depending on the
distribution.

The side-coupled clusters extend in the y-direction and
introduce quasi–one-dimensionality, but only in the min-
imal way, and locally at an infinite subset of the atomic
sites (of type α) in the basic chain, henceforth referred to
as the “backbone”. We work within the framework of the
tight-binding scheme, and with off-diagonal disorder only,
that is, the on-site potential is assigned a constant value
for all the sites, including those in the hanging clusters.

It is observed, quite contrary to the usual picture of the
Anderson localization [1], that a definite correlation be-
tween the numerical values of the hopping integrals along
the backbone (tA and tB), the backbone-cluster tunnel

Fig. 1: (Color online) Basic structural units for the off-
diagonally disordered chains. The black and red bonds cor-
respond to the hopping integrals tA and tB. The double
bond corresponds to the backbone-side cluster coupling λ and
ξ represents the hopping integral in the bulk of the hanging
atomic cluster.

hopping amplitude (λ), and the intra-cluster hopping (ξ)
can render any spectrum, namely, point or singular contin-
uous, into an assembly of absolutely continuous subbands.
The continuous subbands turn out to be populated with
extended Bloch-like states only, and this happens irrespec-
tive of the electron energy, in total contrast to the already
existing results of the RDM class of lattices, where only
a finite number of resonant eigenstates are observed aris-
ing out of a positionally correlated disorder. We provide
a detailed analysis for a quasi-periodic copper mean lat-
tice [30], but emphasize that, the observation is by no
means, restricted to them.

Before we conclude this section, it may be appropri-
ate to mention at this point that linear atomic chains
with side-coupled atomic clusters, the so-called Fano-
Anderson defects [31], have drawn interest over the past
years not only for their unusual localization and trans-
port properties, mimicking to some extent, the branched
polymers [32], but also for their suitability as models of
waveguides [33], and observation of the Fano resonances
in the electronic transport [34]. Experimental observa-
tion of Fano profile in the electronic transmission across
a quantum wire with a side-coupled quantum dot [35] has
strengthened the need for a detailed study of such sys-
tems. A strong point of interest in such studies has been
the functionalization of the backbone by the hanging clus-
ters, where the electronic states of the side attachment
interfere with the spectrum of the linear chain (the back-
bone) which gives rise to rich spectral features [36]. The
present work, which allows for a coupling of the discrete
eigenstates of the hanging cluster with the spectrum of
the linear backbone offering a spectrum depending on its
topography, could be of considerable interest to the exper-
imentalists as well.

In what follows, we present the results. In the sec-
ond and third section we provide the tight-binding
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Fig. 2: (Color online) (a) Basic structural units in fig. 1 placed
at random on the backbone. The hopping integrals tA and
tB are represented by black and red lines along the backbone.
(b) The hanging sites are decimated to generate an effectively
one-dimensional chain of modified α sites, the modification is
shown by encircling the relevant sites in (a).

Hamiltonian to work with, and the basic scheme for engi-
neering the continuous subbands in the energy spectrum.
In the fourth section we discuss the case of a copper mean
chain (CMC) and illustrate how the usual spectrum of
a CMC gets converted into a three-subband continuous
pattern as we approach the resonance conditions. In the
fifth section we present the transmission coefficient of fi-
nite segments of CMC to corroborate the density of states
profiles discussed in the fourth section, and finally in the
last section we draw our conclusion.

The model and the method. – The variety of atomic
environments is already described in the introduction,
with reference to fig. 1. A typical lattice with an arbitrary
arrangement of these units is illustrated in fig. 2(a). The
array is modeled by the standard tight-binding Hamilto-
nian written in the Wannier basis as

H =
∑

i

εic
†
ici +

∑
〈ij〉

(
tijc

†
i cj + h.c.

)
, (1)

where the on-site potential εi at the vertices α, β and
γ is set equal to a constant, viz., εα = εβ = εγ = ε.
The potential at every site of the side-coupled cluster is
designated chosen to be equal to ε. The nearest-neighbor
hopping integral is tij = tA or tB along the backbone,
and depends on the character of the bond, A or B, they
represent. The tunnel hopping integral between an α site
and the first site of the side-coupled cluster (shown by a
double bond in fig. 1) is tij = λ, while the intra-cluster
hopping in the side attachment is represented by ξ.

The fundamental building blocks are placed in any de-
sired pattern on a line (the backbone), for example, in a
random or a quasi-periodic fashion. The geometry can eas-
ily be mapped onto a single linear chain comprising some
effective atoms by decimating the cluster of atomic sites
in the side attachment to the α sites. This is illustrated
in fig. 2(b). The decimation process is easily implemented
through the use of the set of difference equations,

(E − εi)ψi =
∑
〈ij〉

tijψj , (2)

for any i-th site in the side-coupled cluster. The resulting
linear chain now has two kinds of blocks, one being the
renormalized α site having an effective energy-dependent
on-site potential of the form

ε̃α = ε+ λ2 Um(y)
ξUm+1(y)

, (3)

and the other is the original cluster of βδnγ. In eq. (3)
Um(y) is the m-th order Chebyshev polynomial of the sec-
ond kind and y = (E − ε)/2ξ. The formulation of eq. (3)
is shown in the appendix in detail.

Engineering the continuous subbands. – The
effective linear chain depicted in fig. 2(b) is described by
the set of difference equations, eq. (2), with εi = ε̃α, εβ or
εγ (the two latter values being set equal to ε) depending on
the site. The hopping integral between nearest neighbors
tij is still tA or tB depending on the bond The explicit
equations for the three kinds of sites typically look like

(E − ε̃α)ψi = tAψi+1 + tAψi−1, (4a)
(E − εβ)ψi = tBψi+1 + tAψi−1, (4b)
(E − εγ)ψi = tAψi+1 + tBψi−1, (4c)

where i = α, β or γ, as it comes. ε̃α is given by eq. (3),
while εβ = εγ = ε as already explained.

The amplitude of the wave function at any (i+1)-th site
is related to any arbitrary site through a simple product
of 2 × 2 transfer matrices, and is given by(

ψi+1

ψi

)
= Mi · Mi−1 · · · M2 · M1

(
ψ1

ψ0

)
. (5)

The above string of transfer matrices, written explicitly,
is a product of two basic matrices, viz., Mα and Mγδnβ ,
where

Mα =

⎛
⎜⎝ 2xR− λ2Um(y)

ξtAUm+1(y)
−1

1 0

⎞
⎟⎠, (6a)

Mγδnβ =

⎛
⎝RUn+2(x) −Un+1(x)

Un+1(x) −Un(x)
R

⎞
⎠. (6b)

Here, x = (E − ε)/2tB, y = (E − ε)/2ξ, and R = tB/tA.
Un(x), as before, represents the n-th order Chebyshev
polynomial of the second kind. The sequence of the two
matrices Mα and Mγδnβ can be anything, aperiodic or
random, depending on how the clusters are arranged on
the backbone.

It is straightforward to work out the commuta-
tor [Mα,Mγδnβ ], and see that the matrix elements
of the commutator read, [Mα,Mγδnβ ]1,1 = 0 and,
[Mα,Mγδnβ ]2,2 = 0, while

[Mα,Mγδnβ ]1,2 = RUn+2(x) − 2xRUn+1(x)

+
Un(x)
R

+
λ2Un+1(x)Um(y)
ξtAUm+1(y)

, (7)

with [Mα,Mγδnβ ]2,1 = [Mα,Mγδnβ ]1,2.
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Fig. 3: (Color online) (a) Portion of an infinite copper mean
chain showing the four kinds of vertices along with the two
bonds as shown. (b) Renormalization of the lattice in (a) into
a purely 1d chain.

It is interesting to note that if we set m = n, that is, if
the number of atoms in the side-coupled cluster becomes
equal to n + 1, one exceeds to the number of the δ-sites
in the cluster βδnγ, the commutator [Mα, Mγδnβ ] = 0.
In terms of the actual lattice it implies that the electronic
spectrum will be insensitive to the arrangement of the
clusters α (renormalized) and βδnγ. Any disordered
arrangement, deterministic or random, of these two
different atomic clusters will then, in principle, be indis-
tinguishable from a perfectly periodic arrangement of an
infinitely long string of α-like sites and an infinite array
of the βδnγ polymers.

A copper mean quasi-periodic chain as an
example. – To check the arguments presented so far, we
fix, without loss of any generality, n = 1, and construct
a quasi-periodic copper mean chain (CMC) consisting of
two “bonds” A and B, and following the recursive growth
rule A → ABB and B → A. The resulting CMC has iso-
lated α-type atoms flanked by two A-bonds on either side,
and a cluster of βδγ triplets, as shown in fig. 3. For such
a CMC we need to side-couple a two-atom cluster to the
α sites (as m = n is the resonance condition).

As we now appreciate, the original CMC, under the res-
onance condition, is equivalent to an infinite periodic ar-
ray of the renormalized α sites (obtained after folding the
hanging chain back into the backbone site) along with an-
other periodic array of the βδγ triplet. We now evaluate
the local density of states (LDOS) at the renormalized
(encircled) α chain and any site in the periodic βδγ chain
(fig. 3(b)). The local densities of states are given, for
these two infinite periodic lattices, and for a given set of
values of ε, λ, ξ, tA and tB, by ρα

00 = 1/(π
√
Qα) and

ρβ
00 = 1/(π

√
Qβ), where

Qα = 4t2A −
[
E − ε− λ2Um(y)

ξUm+1(y)

]2
, (8a)

Qβ =
4t2A

U2
n+1(x)

−t2B
[
2x− 1

U2
n(x)

(
Un−1(x)+

R2 + U2
n(x)

R2Un+1(x)

)]2
. (8b)

As soon as one sets λ =
√
t2B − t2A, ξ = tB and m = n

the LDOS of the two separate periodic chains become iden-
tical independent of energy, resulting in a complete overlap

Fig. 4: (Color online) Spectral landscape of a copper mean
chain under (a) resonance condition, and with (b) 10% devi-
ation from the resonance condition. The initial values of the
parameters under the resonance condition are εα = εβ = εγ =
εδ = 0, tA = 1, tB = 2, λ =

√
3 and ξ = 2. The dangling atoms

also have the same on-site potentials as the four kinds of sites
of CMC.

of the continuous subbands in the spectra of these individ-
ual chains under the above resonance condition.

This is illustrated sequentially in fig. 4. In the first plot,
viz., fig. 4(a) we present the density of states under the
resonance condition. The green shaded curves with vio-
let outlines represent the absolutely continuous subbands,
and arise out of the α sites. The LDOS from the β, δ
and the γ sites cover up the same subbands as well. The
envelops of the black and the orange lines that fall within
the green shaded zones provide the LDOS in the middle
and the end sites in the side-coupled two-atom clusters.
Thus, there is a complete overlap of the absolutely con-
tinuous subbands arising out of the each individual lattice
points. Of course, one should observe the appearance of
isolated, pinned localized eigenstates, marked by the black
and the orange spikes in fig. 4(a) which occur at E = ±2
and ±3.57. These are the contributions coming from the
top and the middle atoms in the side-coupled clusters.

Figure 4(b) presents results for the LDOS as we deviate
from the resonance condition by ten percent. The central
continuum practically remains undislodged, while we ob-
serve dense packing of eigenstates in the subbands at the
flanks. We have checked carefully the flow of the hopping
integrals under the RSRG iterations [30] for a wide collec-
tion of energies, placed densely in all such regions. For ev-
ery energy belonging to the continuum zone, the hopping
integrals keep on oscillating for an indefinite number of it-
erations, without converging to zero, indicating complete
extendedness of the corresponding eigenfunctions. On the
other hand, for E = ±2 and ±3.57, the hopping integrals
tA and tB flow to zero under iteration very quickly. As we
get non-zero densities of states for these energies, the only
conclusion that can be drawn is that such states are local-
ized. The small number of iterations indicate practically
zero overlap of the corresponding wave function with the
neighboring sites. This gives us confidence to conclude
that such states must be pinned at some of the atomic
sites in the system, likely places being the hanging clusters
themselves. This has been cross-checked by observing the
flow of the trace-map, that has been used as a diagnostic
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Fig. 5: (Color online) A finite-generation copper mean chain
clamped between two semi-infinite ordered leads (solid brown
circles).

tool for localization in aperiodic systems [37]. For eigen-
values residing within the absolutely continuous bands,
the trace of the transfer matrix of any l-th generation
CMC remains bounded by 2 [37], while for the localized
states it is not. These observations indicate that a possi-
ble experimental growth of such systems can indeed test
the robustness of the conclusions drawn so far.

Two-terminal transport. – The two-terminal trans-
mission coefficient is easily evaluated following the
standard prescription [38]. A finite-generation CMC is
clamped between two semi-infinite ordered leads (as shown
in fig. 5) which is characterized by a constant on-site po-
tential ε0 and a constant nearest-neighbor hopping inte-
gral t0. The segment of CMC clamped between the leads
is successively renormalized with the help of the RSRG
recursion relations for the on-site potentials and the hop-
ping integrals in the CMC exploiting a reversal of its
growth rule. Without loss of generality, we work out the
transmission coefficient for odd-generation CMC’s which
“end” with an A-bond. To achieve a uniform scaling of
the end atoms we renormalize the chain by the reverse
transformation ABBAA → A′ and ABB → B′. This
makes a (2n+ 1)-th–generation CMC get folded into the
1st-generation chain (comprising a single A-bond) after n
steps of decimation. The recursion relations for the po-
tentials and the hopping integrals are then given by

ε̃α,n+1 = ε̃α,n +
t2A,nχ2,n

χ3,n
+
t2A,nσ2,n

σ3,n
,

εβ,n+1 = ε̃α,n +
t2A,nσ2,n

σ3,n
+
t2A,n(E − εδ,n)

σ1,n
,

εγ,n+1 = εγ,n +
t2A,nχ2,n

χ3,n
+
t2B,n(E − εβ,n)

σ1,n
,

εδ,n = εγ,n +
t2B,n(E − εβ,n)

σ1,n
+
t2A,n(E − εδ,n)

σ1,n
,

tA,n+1 =
t3A,nt

2
B,n

χ3,n
,

tB,n+1 =
t2B,ntA,n

σ1,n
.

(9)

The “end” sites L and R get renormalized following
the rules

εL,n+1 = εL,n +
t2A,nχ2,n

χ3,n
,

εR,n+1 = εR,n +
t2A,nσ2,n

σ3,n
.

(10)

Fig. 6: (Color online) Transmission spectrum of a 5th-
generation copper mean chain under (a) resonance condition,
and with (b) 10% deviation from the resonance condition. The
initial values of the parameters under the resonance condition
are εα = εβ = εγ = εδ = 0, tA = 1, tB = 2, λ =

√
3 and ξ = 2.

The dangling atoms also have the same on-site potentials as
the four kinds of sites of CMC. The initial values of the lead
parameters are respectively ε0 = 0 and t0 = 2.

Here, χ2,n = [(E − εδn)χ1,n − t2B,n(E − εα,n)], with
χ1,n = (E − εγ,n)(E − εα,n) − t2A,n. χ3,n = [(E −
εβ,n)χ2,n − t2B,nχ1,n], σ1,n = (E − εδ,n)(E − εβ,n) − t2B,n,
σ2,n = (E − εγ,n)σ1,n − t2B,n(E − εβ,n), and,
σ3,n = σ2,n(E − εα,n) − σ1,nt

2
A,n.

The two-terminal transport coefficient of a (2n+ 1)-th–
generation CMC is then given by

T =
4 sin2 ka

|P|2 + |Q|2 (11)

with

P = [(M12 −M21) + (M11 −M22) cos ka]

and

Q = [(M11 +M22) sin ka],

where M11 = (E−εR,n)(E−εL,n)/t0tA,n −tA,n/t0, M12 =
−(E − εR,n)/tA,n, M21 = (E − εL,n)/tA,n, and M22 =
−t0/tA,n.

In fig. 6 we exhibit the two-terminal transport of a 5th-
generation CMC with the α sites attached with two-atom
clusters. Three clear transmission windows are visible ex-
actly over the energy ranges of the absolutely continu-
ous subbands when the resonance condition is enforced
(fig. 6(a)). This is at par with the expectation that
these subbands are populated with extended eigenfunc-
tions only. Interestingly, even with a ten percent deviation
from the condition of resonance the transparent windows
of the transmission coefficient demonstrate the robustness
of the result.

It is of interest to observe that the renormalized po-
tential ε̃α reduces to its bare scale value εα = ε for energy
eigenvalues which are solutions of the equation Um(y) = 0.
Each of such energy values, which reside within the energy
band of the semi-infinite leads, will give rise to a resonant
electronic transmission. For these energies, the excursion
of the propagating electron in the hanging clusters does
not change the phase of the wave function. Similar issues,
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including the occurrence of the stop bands between the ab-
solute continua of the spectrum of a model quantum wire
with side-coupled nanowires, were discussed previously by
Orellana et al. [39]

It is also important to appreciate that the resonant
transmission (T = 1) seen in the present case is definitely
caused by the fact that the transfer matrices across the
clusters α and βδnγ commute irrespective of energy when
we set the desired correlation between the hopping inte-
grals, as already mentioned. This is to be contrasted with
the case of, for example, the RDM, where under a res-
onance condition, the transfer matrix across a local pair
of impurity atoms just turned out to be an identity ma-
trix [24] at only a special value of the electron energy. In
the present case, the commutation makes the lattice indis-
tinguishable from a periodic array of the same scatterers.
The transmission resonances thus result out of the phase
coherence, as the electron is made to travel through the
system.

Before we end this section, it is pertinent to remind the
reader that the choice of a copper mean lattice is just for
the sake of presenting analytically exact results. The con-
dition of resonance, and its consequences, are by no means
restricted to such a specific case, and definitely hold good
for a completely random distribution of the clusters βδnγ
and α. Variants of the idea presented in this commu-
nication have already been tested with other geometries
elsewhere [28].

Concluding remarks. – We have shown that suit-
ably introducing minimal quasi–one-dimensionality to a
selected subset of atomic sites in an infinite linear chain
one can obtain an absolutely continuous spectrum in an
off-diagonal model with random or any kind of determin-
istic disorder. This requires an appropriate correlation
between the numerical values of a subset of the Hamil-
tonian parameters, in contradistinction with the conven-
tional Anderson localization problem. The results indicate
the possibility of manipulating a spectral crossover, if not
an insulator, to metal transition by tuning the hopping
integrals appropriately. The result appears to be robust
even when one deviates from the ideal conditions of reso-
nance, a fact that may inspire experimentalists to under-
take experiments with quantum wires, for example, with
quantum dots coupled to them from a side.
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Appendix

For the derivation of eq. (3), let us first look at fig. 1(b).

From this figure, we can have

(
ψm+1

ψm

)
= Mm · Mm−1 · · · M3 · M2

(
ψ2

ψ1

)
. (A.1)

From which we must have(
ψm+1

ψm

)
= Mm−1

(
ψ2

ψ1

)
. (A.2)

Thus, from the above equation, writing in terms of the
Chebyshev polynomial we obtain(
ψm+1

ψm

)
=

(
2yUm−2(y)−Um−3(y) −Um−2(y)

Um−2(y) −Um−3(y)

)(
ψ2

ψ1

)
.

(A.3)
This obviously gives(

ψm+1

ψm

)
=

(
Um−1(y) −Um−2(y)
Um−2(y) −Um−3(y)

)(
ψ2

ψ1

)
. (A.4)

Here, y = (E − ε)/2ξ. From eq. (A.4), we can write

ψm+1 = Um−1(y)ψ2 − Um−2(y)ψ1, (A.5a)
ψm = Um−2(y)ψ2 − Um−3(y)ψ1. (A.5b)

Now, if we write down the difference equation for the
(m+ 1)-th atom in the hanging cluster, we will get,

(E − ε)ψm+1 = ξψm. (A.6)

Therefore, substituting eq. (A.5) into eq. (A.6) one can
easily obtain after simplification the following expression:

ψ2 =
Um−1(y)
Um(y)

ψ1. (A.7)

Now the difference equation for the 1st atomic site in the
hanging cluster reads

(E − ε)ψ1 = λψα + ξψ2. (A.8)

By the use of eq. (A.7), one can obtain from eq. (A.8)

ψ1 =
λUm(y)
ξUm+1(y)

ψα. (A.9)

Finally the difference equation for the α-kind of site is
given by

(E − ε)ψα = λψ1 + tA
∑

j

ψj . (A.10)

From eq. (A.9) and eq. (A.10), we get the final form of the
renormalized on-site potential as

ε̃α = ε+ λ2 Um(y)
ξUm+1(y)

. (A.11)
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[5] Eilmes A., Römer R. A. and Schreiber M., Physica
B, 296 (2001) 46.

[6] Rodŕıguez A., J. Phys. A: Math. Gen., 39 (2006)
14303.

[7] Rodriguez A., Vasquez L. J., and Römer R. A., Phys.
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R. A., Phys. Rev. B, 84 (2011) 134209.
[9] Pinski S. D., Schirmacher W. and Römer R. A., EPL,
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