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Abstract – We study the slow quench dynamics of a one-dimensional nonequilibrium lattice
gas model which exhibits a phase transition in the stationary state between a fluid phase with
homogeneously distributed particles and a jammed phase with a macroscopic hole cluster. Our
main result is that in the critical region (i.e., at the critical point and in its vicinity) where the
dynamics are assumed to be frozen in the standard Kibble-Zurek argument, the defect density
exhibits an algebraic decay in the inverse annealing rate with an exponent that can be understood
using critical coarsening dynamics. However, in a part of the critical region in the fluid phase, the
standard Kibble-Zurek scaling holds. We also find that when the slow quench occurs deep into the
jammed phase, the defect density behavior is explained by the rapid quench dynamics in this phase.
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Introduction. – In the past few decades, extensive
studies have been carried out to understand the phase or-
dering dynamics of classical systems with equilibrium [1]
and nonequilibrium steady states [2–4] when the system
is quenched infinitely fast from a disordered state to an
ordered one. Slow quench (or annealing) dynamics have
also attracted some attention in the recent years, and have
been invoked to understand the defect structures in the
early universe [5,6] and more generally, systems exhibiting
second-order phase transitions [7,8] in both classical [9–15]
and quantum [16–20] settings. Moreover, a number of
experiments investigating the relationship between defect
density and quench rates have also been performed in a va-
riety of systems such as the liquid crystals, superfluid 3He,
superconductors, Bose-Einstein condensates and colloidal
systems, see [21] for a recent review. The defect density
at the end of the quench is generally found to decay as
a power law in the inverse quench rate (although some
systems such as the 2D XY model exhibit non-algebraic
decay [22,23]).

Much of the body of work on slow quench dynamics ap-
peals to the Kibble-Zurek argument [5,7] which states that
if the control parameter is varied slowly across the critical
point, the system stays close to the steady state (adiabatic

regime) until its relaxation time becomes longer than the
quench time after which the dynamics are hypothesised to
remain “frozen” (impulse regime) until the critical region
is crossed. Thus, the Kibble-Zurek argument describes the
quench dynamics before the critical point is crossed. Re-
cent works have elucidated the slow annealing dynamics
when the system is quenched far from the critical point
to an ordered phase and argued that the defect density
is determined by coarsening dynamics [13]. The dynam-
ics in the 2D XY model in which the system is quenched
slowly from the high-temperature disordered phase to the
low-temperature critical phase have also been studied [22].
However, a complete study of a system with isolated crit-
ical point in which one can examine the change in the dy-
namical behavior when a slow quench occurs below, at and
above the critical point has not been carried out. More-
over, all the studies mentioned above deal with systems
with equilibrium steady state (but, see [24] that considers
a nonequilibrium quantum system).

Here we consider the slow quench dynamics of the jam-
ming transition that occurs in diverse settings such as
vehicular traffic [25], cellular traffic [26] and granular me-
dia [27]. We study a classical nonequilibrium system in
one dimension which shows a jamming transition in the
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stationary state [28]. The steady state of this model is
known exactly [29], and some results for the coarsening dy-
namics [4,30] and stationary-state dynamics [31] have also
been obtained. However, the dynamics of this model under
slow annealing have not been studied and here we address
this problem using numerical simulations. We find that
the standard Kibble-Zurek scaling explains our results in
a part of the critical region but close to the critical point
and for quenches deep in the jammed phase, the defect
density decay can be understood using the corresponding
results for rapid quench dynamics [13].

Models. – We consider a one-dimensional lattice with
periodic boundary having L sites and N particles. The
total number of particles in the system is conserved. Due
to hard-core interactions between the particles, each site
can have at most one particle. As shown in fig. 1, a particle
hops to its right empty neighbor with a rate u(n) where n
is the number of holes in front of it (unidirectional model).

It is useful to map this model to a zero range process
(ZRP) with L = N sites and N = L − N mass units
by considering particles in the lattice gas model as sites
and holes as mass clusters [29]. Thus, in ZRP, a site can
contain any number of particles and a particle hops out
of a site containing n particles to its left neighbor with a
rate u(n), see fig. 1 for an illustration. For an infinitely
large system in the stationary state, the probability that
a site contains n particles is given by [29]

p(n) = ωn f(n)
g(ω)

, (1)

where

f(n) =
n∏

k=1

1
u(k)

, n ≥ 1. (2)

In the above equation, g(ω) =
∑∞

n=0 ωnf(n) is the gen-
erating function of f(n) and the fugacity ω is calculated
from the fugacity-density relation,

� =
N
L = ω

∂ ln g(ω)
∂ω

. (3)

From the above equation, it can be seen that the fugacity is
an increasing function of the density �. For certain choices
of u(n), the fugacity reaches its maximum value (given by
the radius of convergence of the generating function g(ω))
at a finite density �c. Then for � > �c, the excess density
� − �c resides at a single site while for � < �c, each site
supports a density � [29].

For the hop rate

u(n) = 1 +
b

n
, n > 0, (4)

the ZRP shows the phase transition described above in the
�-b plane for b > 2. Correspondingly, the lattice gas model
exhibits a phase transition at the critical point given by

bc =
2 − ρ

1 − ρ
, (5)
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Fig. 1: (Colour online) The inset shows the unidirectional lat-
tice gas model studied in this article and the related zero range
process. The main panel shows the dynamics of the excess de-
fect density defined in (9) for bτ = bc = 2.3 in the unidirectional
model.

where ρ = N/L is the total particle density. For b < bc, the
typical hole cluster length is of order unity (fluid phase)
while for b > bc, a macroscopically long hole cluster co-
exists with gaps that are power law distributed as n−b

(jammed phase) [29]. It has been shown that close to the
critical point, the static correlation length ξ ∼ (bc − b)−ν

where the exponent ν varies continuously with bc when
2 < bc < 3 but it is a constant otherwise [32]:

ν =

⎧⎨
⎩

(bc − 2)−1, 2 < bc < 3,

1, bc ≥ 3.
(6)

The stationary-state dynamics have also been studied and
it has been found that at the critical point, the steady-
state density fluctuations decay on a time scale that grows
as Lz where the dynamic exponent z = 3/2 [31].

In the following, we also consider a bidirectional model
in which the particle first chooses either the left or the
right neighbor with equal probability and then hops with
a rate that depends on the vacancies in the chosen direc-
tion provided the target site is empty. The steady state
obeys detailed balance and is the same as that in the uni-
directional model [29]. As a result, the correlation length
exponent ν is given by (6); however, the dynamic exponent
z = 2 in this case [31].

To study the slow quench dynamics, we introduce time
dependence in the hop rates and write

u(n, t) = 1 +
b(t)
n

, n > 0, (7)

where, for simplicity, we work with linearly varying b
given by

b(t) =
bτ t

τ
, 0 ≤ t ≤ τ. (8)

The quench protocol was carried out by changing the pa-
rameter b from zero (in the fluid phase) to a final value
bτ = bc (critical point) and 2bc (jammed phase) keeping
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Fig. 2: (Colour online) The main panel shows that the re-
maining time tr to the critical point obeys the Kibble-Zurek
prediction (10) for the unidirectional model when bτ = bc. The
inset shows the collapse of the excess defect density with the
Kibble-Zurek scaling (11) for time t∗ < t < τ when the system
is quenched to bτ = bc = 2.3.

the density fixed at ρc given by (5). Our quantity of in-
terest is the domain wall density (which is the interface
between the particle and hole) in the lattice gas model.

From the inset of fig. 1, we see that the number of do-
main walls is equal to two times the number of occupied
sites in the ZRP. For finite inverse quench rate τ , as the
system is far from its steady state and has more domain
walls than in the stationary state, we consider the excess
defect density given by

δρd(t) = 2ρc[p(0, t) − p(0)], (9)

where p(0, t) is the probability that a site is empty at time
t in ZRP when the parameter b is time-dependent and
p(0) is given by (1). In Monte Carlo simulations of the
models described above, we measured δρd(t) for system
sizes in the range 15000–20000 and averaged the data over
2000–4000 independent initial conditions.

Results. – When the quench rate τ−1 is very small,
the parameter b changes very slowly allowing the system
to relax to the stationary state. But for faster quench,
the system is farther from the steady state. Indeed, as
fig. 1 shows, the excess defect density δρd(t) decreases with
increasing τ . Our objective here is to understand how
δρd(τ) decays with τ when the system is quenched slowly
to bτ .

Dynamics in the fluid phase close to the critical point :
When the system is far from the critical point, it relaxes
quickly. But as the critical point is approached, the re-
laxation time increases and at time t∗, the remaining time
tr = τ − t∗ to reach the critical point becomes comparable
to the relaxation time in the stationary state which can
be expressed as [5,7]

τ − t∗ ∼ ξz
∗ ∼ (bc − b(t∗))−zν ∼

(
1 − t∗

τ

)−zν

, (10)
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Fig. 3: (Colour online) Power law decay of the probability
p̂(0, t)− p(0) with time after a fast quench to the critical point
starting from b = 0 at density ρc in the unidirectional model.
The lines show the scaling (12), and the triangular open sym-
bols show the numerical data when the system is quenched
instantaneously to bc = 2.3 from the initial value one.

so that tr ∼ τ
zν

1+zν . As the system falls out of equilibrium
at t∗, in numerical simulations, we picked the time t∗ to be
the one where the excess domain wall density is 10−3 and
found the time tr. Using the exponents ν and z quoted in
the last section, we find that for the unidirectional model,
the time tr ∼ τ3/(2bc−1) for 2 < bc < 3 and as τ3/5 for
bc ≥ 3 which is in good agreement with the numerical
data in the main panel of fig. 2. (We have checked that
our scaling results are not affected if t∗ is determined by
the criterion that the excess defect density � 10−3.)

Assuming that the system does not evolve after time
t∗, the defect density after crossing the critical point is
posited to be δρd(τ) ∼ ξ−1

∗ ∼ τ−ν/(1+νz) [5,7]. However,
we find that the Kibble-Zurek scaling works well for times
smaller than τ but not at or after the critical point is
crossed (see below). Our simulation results for the unidi-
rectional model shown in the inset of fig. 2 for a quench
to the critical point demonstrate that the excess defect
density is of the form

δρ
(uni)
d (t) =

⎧⎨
⎩

τ− 2
2bc−1 f1(t/τ), 2 < bc < 3,

τ−2/5f2(t/τ), bc ≥ 3,
(11)

where f1(x) and f2(x) are the scaling functions, and t∗ <
t < τ . We also find that the above scaling form breaks
down at times of order t∗.

Dynamics at the critical point : Close to the critical
point, the system undergoes critical coarsening during the
time interval tr [13]. We therefore turn to a discussion of
the fast quench dynamics of the ZRP in which the system
initially in the fluid phase is quenched instantaneously to
the critical point. To distinguish between the quantities
obtained using slow and fast quench, in the following, we
use ˆ to refer to quantities obtained using the fast quench
protocol.

In [30], critical coarsening dynamics of the ZRP have
been investigated in mean-field geometry and in one
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Fig. 4: (Colour online) Power law decay of the probability
p̂(0, t) − p(0) with time after a fast quench to the critical
point starting from b = 0 at density ρc in the bidirectional
model. The lines show the power law decay with exponent
given by (12).

dimension. In the latter case, numerical simulations in-
dicate that a measure of the domain length grows with
time as t1/ẑ with the coarsening exponent ẑ = 3 (5) for
unidirectional (bidirectional) model and a scaling argu-
ment suggests that the probability δp̂(0, t) ∼ t−α̂ with the
exponent α̂ = (b − 2)/ẑ for b > 3 (see (35) of [30]). While
our numerical results for ẑ are in agreement with those
of [30], the exponent α̂ for the distribution of empty sites
is not consistent with that in [30]. Instead, our numerical
results shown in figs. 3 and 4 suggest that the exponent α̂
varies with bc for 2 < bc < 3 but it is a constant otherwise,
and the best regression fit gives

α̂≈
{

(bc − 1)/ẑ, 2 < bc < 3,

2/ẑ, bc ≥ 3.
(12)

Using the above results and recalling that the coarsening
process initiates at time of order t∗, we obtain δρd(τ) ∼
t−α̂
r ∼ τ−zνα̂/(1+zν) when the system is quenched to the

critical point. Here we have ignored the dependence on the
quench depth (i.e., bc−b(t∗)) since our numerical results in
fig. 3 suggest that the long-time dynamics are independent
of it. More explicitly, for the unidirectional model, we have

δρ
(uni)
d (τ) ∼

⎧⎨
⎩τ− bc−1

2bc−1 , 2 < bc < 3,

τ−2/5, bc ≥ 3,
(13)

while, for the bidirectional model, we get

δρ
(bi)
d (τ) ∼

⎧⎨
⎩τ− 2(bc−1)

5bc , 2 < bc < 3,

τ−4/15, bc ≥ 3.
(14)

The above predictions for the excess defect density are
consistent with the numerical results shown in figs. 5 and 6
when bτ = bc. We have also checked that the above scal-
ing predictions hold when the system is quenched in the
vicinity of bc.
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)
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bc = 7/2
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Fig. 5: (Colour online) Decay of the excess defect density when
the system is quenched slowly to the critical point (bτ = bc) in
the unidirectional model. Our scaling prediction (13) is com-
pared with numerical data for several values of bc and the er-
rorbars for some representative points are also shown. The
data for b = 2.3 are multiplied by a factor 2 in order to show
all the plots in the same figure.

Dynamics deep in the jammed phase: For bτ � bc, the
system undergoes coarsening in the jammed phase after
the time tc + tr where b(tc) = bc [13]. As the time scale
tc ∼ τ but tr is sublinear in τ , the time left until the
quench is of order τ . Thus, we expect the defect density
to simply decay as

δρd(τ) ∼ τ−1/ẑO , bc > 2, (15)

where the coarsening exponent in the ordered phase, ẑO =
2 (ẑO = 3) for unidirectional (bidirectional) model [4,30].
Figure 7 shows that our numerical results for bτ = 2bc are
consistent with the above scaling prediction. Moreover,
the excess defect density δρd(t) is of a scaling form similar
to (11) as attested by the data collapse shown in the inset
of fig. 7.

Conclusions. – Slow quench dynamics have been stud-
ied extensively when the control parameter is changed
across the critical point of a second-order phase transi-
tion in equilibrium systems [7,8], and recent works have
considered slow quenches deep into the ordered phase [13]
or the critical phase [22]. Here we have performed, to
our knowledge, the first quantitative study of the slow
quench dynamics when a nonequilibrium system with iso-
lated critical point is quenched in the critical region.

The Kibble-Zurek argument assumes that in the critical
region, the dynamics are frozen since the relaxation times
are much longer than the time available. As shown in the
inset of fig. 2, this argument indeed holds when the system
is close to the critical point; more precisely, we find that
the Kibble-Zurek scaling is obeyed over a time window
[t∗, f t∗], f < 1, when the system is quenched to the criti-
cal point. However, it does not apply during ft∗ < t < τ
(and similarly, in the symmetric time window beyond the
critical point in the jammed phase). Instead, we find that
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Fig. 6: (Colour online) Decay of the excess defect density when
the system is quenched slowly to the critical point (bτ = bc)
in the bidirectional model. Our scaling prediction (14) is com-
pared with numerical data for several values of bc; the errorbars
in this case are smaller than the point size. The data for b = 2.5
is multiplied by a factor 1.5 in order to show all the plots in
the same figure.
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Fig. 7: (Colour online) Decay of the excess defect density in
the unidirectional model when the system is quenched slowly
to bτ = 2bc. The lines in the main panel show (15) and the data
collapse with the coarsening exponents in the jammed phase is
shown in the inset for bτ = 2bc, bc = 2.3.

the defect density decays as a power law although with an
exponent smaller than or equal to the Kibble-Zurek pre-
diction, see figs. 5 and 6. While the dynamics outside the
critical region involve only the stationary-state dynamic
exponent (z) and the deep quench in the ordered phase is
determined by the coarsening exponent (ẑO), the critical
point quench dynamics are more complex involving both
static fluctuations and critical coarsening.

For the class of models considered here, a comparison
of the decay exponents shows that the excess defect den-
sity decays faster in the unidirectional model which has
a nonequilibrium steady state than in the bidirectional
model with equilibrium steady state. We also obtain con-
tinuously varying exponents for 2 < bc < 3 where the mass
fluctuations are anomalous but constant otherwise [29].

A detailed exploration of other nonequilibrium and equi-
librium systems with critical point annealing should in-
form us better about the dynamics in the impulse regime
and is a goal for the future.
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[30] Godréche C., J. Phys. A: Math. Gen., 36 (2003) 6313.
[31] Priyanka and Jain K., Phys. Rev. E, 93 (2016)

042104.
[32] Priyanka, Ayyer A. and Jain K., Phys. Rev. E, 90

(2014) 062104.

26003-p6


