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Abstract – In this paper, we have studied the B and Bs mesons spectra and their decays within
the framework of nonrelativistic potential model. We have considered a new potential model for the
interaction of mesonic systems, the Coulomb plus exponential type potential. We have applied the
perturbation approach and reported the total wave function. We have used the Nikiforov-Uvarov
(NU) technique to calculate the parent wave function and thereby obtained a series solution for
the perturbative wave function. Besides the decay constant and leptonic decay width, we have
considered the semileptonic decay width which is related to the Isgur-Wise function. The obtained
results are compared with the available experimental and theoretical data.

Copyright c© EPLA, 2016

Introduction. – The investigation and study of bound
states and wave functions of quark-antiquark systems are
of particular interest. The study of the wave function
of the bound state of a quark and an antiquark from the
strong interaction between quark and antiquarks in B and
D mesons gives important information about the prop-
erty of strong interaction and the mechanism of heavy-
meson decays. From the wave function one can specify
the momentum distributions of the quark and antiquark in
mesons, which is a significant quantity for computing the
amplitude of heavy-meson decays, and other decay prop-
erties [1–3]. Because of the importance and application
of the wave function in studying hadronic systems, many
efforts have been made to obtain the wave function and
then investigate the mass spectra and decay properties of
hadronic systems. For instance, in the QCD relativistic
potential model, Cea et al. [4] have obtained the masses
and the leptonic decay constants of charmed and beauty
pseudoscalar and vector mesons. The mass spectra of a
heavy-light quark-antiquark system have been studied by
Liu and Yang [5] where they have presented the relativistic
generalization of the Schrödinger equation and considered
the Cornell potential and spin-dependent interaction. In
the relativistic quark model, Ebert et al. [6,7] have pre-
sented mass spectra and Regge trajectories of light and
heavy-light mesons.

(a)E-mail: b.hodayazarloo@gmail.com,
h.yazarloo@students.semnan.ac.ir

In the present work, we intend to explore the wave func-
tion of the non-relativistic Schrödinger equation under the
Coulomb plus exponential type potential, and then deter-
mine the masses, decay constant, leptonic decay width and
semileptonic decay width of the B and Bs mesons. The
exclusive semileptonic decay processes of heavy mesons
generated a great excitement not only in extracting the
most accurate values of the Cabbibo-Kobayashi-Maskawa
(CKM) matrix elements but also in providing a valu-
able insight into quark dynamics in the non-perturbative
domain of QCD.

The plan of the paper is as follows. In the next sec-
tion we present the formalism of our work and obtain the
wave function of the system under our potential model.
From the obtained results of the next section, we begin to
calculate the s-wave and P -wave masses of the B and Bs

mesons, decay constant, leptonic decay width and semilep-
tonic decay width which are related to the Isgur-wise func-
tion in the third section. Finally in the last section we
draw our conclusions and present our discussion.

Formalism. –

Potential model. For our study of meson properties,
we consider the Coulomb plus exponential type potential,
which is defined as

V (r) =
a

r
+ beαr + V0, (1)

31004-p1



B. H. Yazarloo and H. Mehraban

Fig. 1: Comparison of the Cornell potential (0.18 r − 0.42
r

) [8]
and our potential model.

where a, b and Vo are the potential parameters. If we
expand the exponential part of the potential, this potential
consists of a constant term, a linear term and a harmonic
term and others. By considering α = −μ, a = −4aC/3,
b = −λ/μ and V0 = C + λ [9], this potential changes into
the screened potential model [9]. In fig. 1, we have shown
this potential with the Cornell potential. Here, we take
a/r as parent part and beαr as perturbation part. We
now write the Hamiltonian as

H = H0 + H ′, (2)

where

H0 = −
(
�

2/2μ
)
∇2 + a/r, (3)

H ′ = beαr (4)

and μ = (mqmQ̄/mq + mQ̄) is the reduced mass of the
meson and mq, mQ̄ are the masses of the light and heavy
quarks, respectively. Therefore, the two-body Schrödinger
equation for the Hamiltonian H = H0 + H ′ is

H |Ψ〉 = (H0 + H ′) |Ψ〉 = E |Ψ〉 . (5)

The wave function. In order to obtain the masses of
B and Bs mesons and other decay properties, we need
to obtain the wave function of the systems. To find the
unperturbed wave function corresponding to H0, we use
the two-body radial Schrödinger equation (with � = 1){

− 1
2μ

(
d2

dr2
+

2
r

d
dr

)
+

a

r
+

l(l + 1)
2μr2

}
Rn,l(r) =

En.lRn,l(r); (6)

to obtain the solution of the above equation, we utilize the
NU method. According to the appendix below, we have

α1 = 2, α2 = α3 = 0, ξ1 = −2μEn,l,

ξ2 = −2μa, ξ3 = l(l + 1) (7)

and, therefore, the wave function and the energy read

En,l = −
{

2μa2/(2n + 2l + 2)2
}

, (8)

Rn,l(r) = Nrle−
√

−2μEn,lrL2l+1
n

(
2
√

−2μEn,lr
)
. (9)

The ground-state solution. For the ground state n =
l = 0, we have

E0,0 = −
(
μa2/2

)
, R0,0(r) = Ne−

√
−2μE0,0r, (10)

where N is the normalization constant of the parent wave
function. The first-order perturbed eigen function R′

0,0(r)
can be calculated using the following relation [10]:

H0R
′
0,0(r) + H ′R0,0(r) = W 0R′

0,0(r) + W ′R0,0(r), (11)

where W = E0,0 and the perturbed eigen energy W ′ can
be computed from

W ′ = 4π

∫ ∞

0

r2 |R0,0(r)|2 H ′dr (12)

from eqs. (3), (4) and (10), eq. (11) can be written as{
d2/dr2 + (2/r) d/dr − (2μa/r) + 2μE0,0

}
R′

0,0(r) =
{2μbeαr − 2μW ′}R0,0(r) (13)

by choosing the perturbed wave function as

R′
0,0(r) = N ′Q(r)R0,0(r), (14)

where N ′ is the normalization constant of the perturbed
wave function and Q(r) is given as [10]

Q(r) =
∞∑

l′=0

Al′r
l′ . (15)

Inserting eqs. (10), (14) and (15) in eq. (13) we reach

∑
l′

Al′ l
′(l′ − 1)rl′−2 − 2

√
−2μE0,0

∑
l′

Al′ l
′rl′−1

+ 2
∑
l′

Al′ l
′rl′−2 + ζ

∑
l′

Al′r
l′−1 = (2μbeαr − 2μW ′) (16)

with the help of eq. (16) and equating the corresponding
powers of r−1, r, r2, r3, r4 and r0 on both sides of eq. (16)
and the expanding eαr part, we find

A0 = − (2/ζ) A1, (17a)

A1 = (2μb − 2μW ′ − 6A2)
/(

ζ − 2
√
−2μE0,0

)
, (17b)

A2 = (2μbα − 12A3)
/(

ζ − 4
√

−2μE0,0

)
, (17c)

A3 =
(
μbα2 − 20A4

)/(
ζ − 6

√
−2μE0,0

)
, (17d)

A4 =
((

μbα3/3
)
− 30A5

)/(
ζ − 8

√
−2μE0,0

)
, (17e)

A5 = − (1/12)
(
μbα4/14μa

)
, (17f)
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by replacing the coefficients of the Q(r) function
(eqs. (17)) and using eqs. (14) and (16), we obtain the
following perturbed wave function:

R′
0,0(r) =

N ′ (A0+A1r+A2r
2+A3r

3+A4r
4+A5r

5
)
e−

√
−2μE0,0r.

(18)

Thus, we obtain the total wave function as

Rtotal
0,0 (r) = N total

0,0

(
R′

0,0(r) + R0,0(r)
)
, (19)

where Ntotal is the normalization constant of the total
wave function.

The P-wave state solution. For the case n = 0, l = 1,
from eqs. (8) and (9), we find

E0,1 = −
(
μa2/8

)
, R0,1(r) = N0,1r e−

√
−2μE0,1r, (20)

according to the approach of the previous subsection,
the perturbed wave function and the total wave function
obtain as

R′
0,1(r) =

N ′
0,1

(
A′

0r+A′
1r

2+A′
2r

3+A′
3r

4+A′
4r

5+A′
5r

6
)
e−

√
−2μE0,1r

(21)
Rtotal

0,1 (r) = N total
0,1

(
R′

0,1(r) + R0,1(r)
)
. (22)

where

A′
0 = − 4A′

1(
−2μa − 4

√
−2μE0,1

) , (23a)

A′
1 =

2μb − 2μW ′ − 10A′
2(

−2μa − 6
√

−2μE0,1

) , (23b)

A′
2 =

2μbα − 18A′
3(

−2μa − 8
√

−2μE0,1

) , (23c)

A′
3 =

μbα2 − 28A′
4(

−2μa − 10
√

−2μE0,1

) , (23d)

A′
4 =

μbα3

3 − 40A′
5(

−2μa − 12
√

−2μE0,1

) , (23e)

A′
5 =

1
12

μbα4(
−2μa − 14

√
−2μE0,1

) . (23f)

The masses and decay properties of mesons. –
From the results of the previous section, we are going to
compute the mass spectra and decay properties of the B
and Bs mesons. For the first step, we calculate the masses
of the mesons in the following subsection.

The masses of the mesons. The masses of the B and
Bs mesons are defined as

M = mq̄ + mQ + E + 〈HSS〉 + 〈HL.S〉 + V0, (24)

Table 1: Values of the parameters used in our model.

Parameter Value Parameter Value
mb 4.812 (GeV) a −0.5
mu 0.35 (GeV) αs 0.32
ms 0.45 (GeV) b 0.385 (GeV)

Table 2: The calculated masses of s-wave B and Bs mesons
(α = 0.075 (GeV), V0 = 0.192 (GeV)) in MeV.

2S+1LJ M (present) M (others)
B± 1S0 5271.7 5279.29 ± 0.15 [11]

5302 [12]
B∗ 3S1 5327.05 5324.83 ± 0.32 [11]

5356 [12]
B0

s
1S0 5384.7 5366.79 ± 0.23 [11]

5340 [12]
B∗

s
3S1 5408.5 5415.4+1.8

−1.5 [11]
5384 [12]

where 〈HSS〉 is the spin-spin interactions, and the form
generally used is [13]

HSS =
32παs

9mQmq̄

�SQ.�Sq̄δ(�r), (25)

from the above equation we obtain

〈HSS〉 =

⎧⎪⎪⎨
⎪⎪⎩

8παs

9mQmq̄
|Ψ(0)|2 , for �S = 1,

− 8παs

3mQmq̄
|Ψ(0)|2 , for �S = 0.

(26)

To calculate the value of |Ψ(0)|2 we have used the following
relation for the ground state:

|Ψ(0)|2 =
μ

2π�2

〈
dV (r)

dr

〉
(27)

we have also applied the value of |Ψ(0)|2 to determine
various decay rates for the B and Bs mesons. The spin-
orbit interactions are defined as

HL·S =
(
− 1

2μ2r

dV (r)
dr

)(
�L · �S

)
, (28)

and we have〈
�L · �S

〉
=

1
2

(j(j + 1) − l(l + 1) − S(S + 1)). (29)

In table 1, we have reported the values of the parameters
used in our model. The calculated masses are represented
in tables 2 and 3.

Decay constant. In the non-relativistic limit, the
decay constant of the vector and the pseudoscalar mesons

31004-p3



B. H. Yazarloo and H. Mehraban

Table 3: The calculated masses of P -wave B and Bs mesons in MeV (α = 0.02 (GeV), V0 = 0.592 (GeV)).

B meson Bs meson
States M (present) M (others) M (present) M (others)

5743 [11] 5840 [11]
3P2 5743.1 5741 [7] 5840.44 5842 [7]

5714 [14] 5820 [14]
5732 [11] 5833 [7]

3P0 5745.09 5749 [7] 5842.52 5804 [14]
5706 [14]

1P1 5743.80 5841.13
3P1 5744.45 5841.83

is given by the Van Royen-Weisskopf formula [15] and with
QCD radiative corrections taken into account [16]

f2
p/v =

12 |Ψ(0)|2

mp/v
, (30)

f̄2
p/v =

12 |Ψ(0)|2

mp/v
C2(αs), (31)

where

C(αs) = 1 − αs

π

(
Δp/v − mQ − mq̄

mQ + mq̄
ln

mQ

mq̄

)
(32)

and Δp = 2 and Δv = 8/3. In table 4 the evaluated decay
constants of pseudoscalar and vector mesons are repre-
sented, respectively. We have also calculated the decay
constants including the QCD correction factor (f̄p/v) in
the table.

Leptonic decay widths. Purely leptonic decays of
charged B mesons proceed in the Standard Model (SM)
via the W -mediated annihilation tree diagram, with a
branching fraction given by [17]

Br
(
B+ → l+υl

)
= Γ
(
B+ → l+υl

)
× τB , (33)

where

Γ
(
B+ → l+υl

)
=

G2
F MB

8π
m2

l

(
1 − m2

l

M2
B

)2

f2
B |Vub|2 ,

(34)
and τB+ = (1.638 ± 0.004) × 10−12 (s) is the B meson
lifetime [11]. To evaluate the leptonic decay width and the
branching ratio we have employed the calculated f̄B+ and
MB+ , from tables 2 and 4, and tabulate them in table 5.

Semileptonic decay width. The differential semilep-
tonic decay rate B → D∗lῡ is calculated to be [18]

dΓ
dω

=
G2

F

48π3
|Vcb|2 M3

D∗ (MB − MD∗)2
√

(ω2 − 1) (ω + 1)2

×
[
1 +

4ω

ω + 1
1 − 2ωr∗ + r∗2

(1 − r∗)2

]
F 2

D∗(ω), r∗ =
MD∗

MB
, (35)

Table 4: Decay constants of pseudoscalar and vector B mesons
(in MeV).

fp/v f̄p/v Othersun

B± 243.64 250.23 149 [12]
189 [19]
195 [20]

B∗ 242.37 232.47 238 ± 18 [21]
151+15

−13 [22]
B0

s 179.21 178.56 187 [12]
218 [19]
193 [20]

B∗
s 178.82 166.03 272 ± 20 [21]

236+14
−11 [22]

where the form factor FD∗(ω) is given by

FD∗(ω) = hA1(ω)

√√√√H̃2
+(ω) + H̃2

−(ω) + H̃2
0 (ω)

1 + 4ω
ω+1

1−2ωr∗+r∗2

(1−r∗)2

. (36)

The helicity amplitudes H̃j(ω)

H̃±(ω) =
√

1 − 2ωr∗ + r∗2

(1 − r∗)

[
1 ∓
√

ω − 1
ω + 1

R1(ω)

]
,

H̃0(ω) = 1 +
ω − 1
1 − r∗

[1 − R2(ω)] r∗, (37)

are expressed through form factor ratios

R1(ω) =
hV (ω)
hA1(ω)

, R2(ω) =
hA3(ω) + r∗hA2(ω)

hA1(ω)
. (38)

In the limit mQ → ∞, R1 = R2 = 1 due to spin-
flavour symmetry [18]. In the limit of an infinitely heavy
quark all form factors are expressed through the Isgur-
Wise function

hA1(ω) = hA3(ω) = hV (ω) = ξ(ω),
hA2(ω) = 0. (39)

31004-p4
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Table 5: Leptonic decay width and branching ratio of the B+ meson.

Γ(GeV) Br (present) Br (others)
B+ → e+ῡe 8.6235 × 10−24 2.1467 × 10−11 < 9.8 × 10−7 [11]

6.22 × 10−12 [12]
< 7.7 × 10−6 [23]

B+ → μ+ῡμ 3.6852 × 10−19 9.174 × 10−7 < 1.0 × 10−6 [11]
2.63 × 10−7 [12]
< 11 × 10−6 [23]
4.8 × 10−7 [24]

B+ → τ+ῡτ 8.1955 × 10−17 2.040 × 10−4 (1.14 ± 0.27) × 10−4 [11]
0.59 × 10−4 [12]

(1.8 ± 0.6) × 10−4 [23]
(0.8 ± 0.12) × 10−4 [25]

Table 6: Semileptonic decay width and branching ratio of the B+ meson.

Γ (GeV) Br (present) Br (others)
B+ → D∗0l+υ 3.5771 × 10−14 8.904% (5.69 ± 0.19) % [11]

The Isgur-Wise function is the overlapping of the wave
functions of two hadrons and it can be written as

ξ(ω) =

√
2

ω + 1

〈
RB(r) |RD∗

(r)
〉

. (40)

By integrating the differential decay width over the 1 ≤
ω ≤ M2

B+M2
D∗

2MBMD∗ range, we have reported the decay width
and branching ratio of B+ → D0∗lῡ in table 6.

Conclusion and discussion. – In this paper, we have
explored B and Bs mesons bound states under the non-
relativistic Schrödinger equation with a new potential
model. By introducing the spin-spin and spin-orbit in-
teractions, we have calculated the masses of the B and
Bs mesons. Our computed masses are in good agree-
ment with experimental results. The calculated masses
of s-wave states are M(B±) = 5271.7 (MeV), M(B∗) =
5327.05 (MeV), M(B0

s ) = 5384.7 (MeV) and M(B∗
s ) =

5408.5 (MeV), while the experimental results are 5279.29±
0.15 (MeV), 5324.83 ± 0.32 (MeV), 5366.79 ± 0.23 (MeV)
and 5415.4+1.8

−1.5 (MeV), respectively. Also, we can see that
for the P -wave states our obtained results for 3P2 and
3P0 are very close to the experimental and theoretical
predictions. By applying the perturbation approach and
NU technique we have found the total wave function and
the value of the wave function at the origin of the sys-
tem and obtained some decay properties of the B and Bs

mesons with and without QCD correction. By using the
Van Royen-Weisskopf formula, we have computed the de-
cay constant of pseudoscalar and vector mesons. In this
potential model, we have also calculated the leptonic de-
cay widths and the corresponding branching rations of the
B+ meson. We have seen that the evaluated branching

ratios of BrB+→e+ῡe
= 2.1467 × 10−11, BrB+→μ+ῡμ

=
9.17403 × 10−7 and BrB+→τ+ῡτ

= 2.040 × 10−4 are very
close to the experimental values. With the help of the
Isgur-Wise function and from eq. (40), the semileptonic
decay width and branching ratio of the B → D∗lῡ process
are computed and represented in table 6. Our calculated
Br = 8.904% is comparable with the experimental value
Br = (5.69 ± 0.19)%.

From our analysis we infer that such studies would pro-
vide an impetus to establish better methods for theoretical
calculations of bound states using the fundamental QCD.

∗ ∗ ∗

The authors wish to thank the referee for their valuable
suggestions for improving the paper.

Appendix

The NU method solves many linear second-order differ-
ential equations by reducing them to a generalized equa-
tion of hypergeometric type. This method has been widely
used in the literature to solve various differential equations
of quantum mechanics. The NU technique in its para-
metric form simply solves a differential equations of the
form [26–28]
[

d2

ds2
+

α1 − α2s

s(1 − α3s)
d
ds

+
−ξ1s

2 + ξ2s − ξ3

[s(1 − α3s)]2

]
ψ(s) = 0.

(A.1)
In the NU method, the energy eigenvalues satisfy

α2n − (2n + 1)α5 + (2n + 1)(
√

α9 + α3
√

α8)
+n(n − 1)α3 + α7 + 2α3α8 + 2

√
α8α9 = 0, (A.2)
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and the eigenfunctions are

ψ(s) = sα12(1−α3s)
−α12−α13

α3 p
(α10−1,

α11
α3

−α10−1)
n (1−2α3s),

(A.3)
where

α4 =
1
2
(1 − α1), α5 =

1
2
(α2 − 2α3),

α6 = α2
5 + ξ1, α7 = 2α4α5 − ξ2,

α8 = α2
4 + ξ3, α9 = α3α7 + α2

3α8 + α6,

α10 = α1 + 2α4 + 2
√

α8,

α11 = α2 − 2α5 + 2(
√

α9 + α3
√

α8), α12 = α4 +
√

α8,

α13 = α5 − (
√

α9 + α3
√

α8), (A.4)

with p
(α10−1,

α11
α3

−α10−1)
n (1 − 2α3s) being the Jacobi poly-

nomial. For α3 = 0, we have

lim
α3→0

p
(α10−1,

α11
α3

−α10−1)
n (1− 2α3s) = Lα10−1

n (α11s) (A.5)

and
lim

α3→∞
(1 − α3s)

−α12−α13
α3 = eα13s, (A.6)

therefore, the wave function (A.3) becomes

ψ(s) = sα12eα13sLα10−1
n (α11s). (A.7)
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