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Abstract – The joint statistical properties of two free energies computed at two different temper-
atures in the same sample of (1+1) directed polymers is studied in terms of the replica technique.
The scaling dependence of the reduced free-energies difference F = F (T1)/T1 − F (T2)/T2 on the
two temperatures T1 and T2 is derived. In particular, it is shown that if the two temperatures
T1 < T2 are close to each other, the typical value of the fluctuating part of the reduced free-energies
difference F is proportional to (1 − T1/T2)

1/3. It is also shown that the left-tail asymptotics of
this free-energy difference probability distribution function coincides with the corresponding tail
of the TW distribution.
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Introduction. – In this paper we consider the model of
one-dimensional directed polymers in terms of an elastic
string φ(τ) directed along the τ -axes within an interval
[0, t] which passes through a random medium described
by a random potential V (φ, τ). This model is defined in
terms of the Hamiltonian

H[φ; V ] =
∫ t

0

dτ
[1
2
[
∂τφ(τ)

]2 + V [φ(τ), τ ]
]
, (1)

where the disorder potential V [φ, τ ] is Gaussian
distributed with a zero mean V (φ, τ) = 0 and the
δ-correlations

V (φ, τ)V (φ′, τ ′) = uδ(τ − τ ′)δ(φ − φ′) (2)

with the parameter u describing the strength of the
disorder.

This problem, which is equivalent to the one of the
Kardar-Parisi-Zhang (KPZ) equation [1] describing the
time evolution of an interface in the presence of noise,
has been the focus of intense studies during the past three
decades [2–26]. At present it is well established that de-
pending on the boundary conditions the fluctuations of the
free energy of the model defined by the Hamiltonian (1) are
described by the GUE [14–20], GOE [21,22] or GSE [24]
Tracy-Widom distribution [27]. The two-point as well as
N -point free-energy distribution function which describes

joint statistics of the free energies of the directed polymers
coming to different endpoints has been derived in [28–32].
Besides, the joint statistical properties of the free energies
at two different times has been studied in [33–39].

In the present paper I would like to propose one more
“direction” of the studies of this system, namely, joint
statistics of the free energies (or the interfaces, in the
KPZ language) at two different temperatures defined for
the same quenched disorder. In other words, I am go-
ing to study the joint probability distribution function of
the free energies at two (or more) different temperatures
for a given realization of the disorder potential V [φ, τ ].
Some years ago a similar kind of problem (under the name
“temperature chaos”) has been investigated for spin-glass–
like systems [40–43] as well as for directed polymers on
a hierarchical lattice [44]. In this paper in terms of the
standard replica formalism I derive the general scaling
dependence of the difference of two free energies at two
different temperatures, eqs. (34) and (29), as well as the
left-tail asymptotics of the corresponding universal proba-
bility distribution function, eq. (36). In particular, it will
be shown that if the two temperatures T1 < T2 are close
to each other, so that (1 − T1/T2) � 1, the difference of
the two free energies scales as (1−T1/T2)1/3 t1/3, eq. (41).

Replica formalism. – For a fixed boundary condi-
tions, φ(0) = φ(t) = 0, and for a given realization of
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disorder the partition function of the model defined in
eqs. (1), (2) is

Z(β, t) =
∫ φ(t)=0

φ(0)=0

Dφ(τ) e−βH[φ; V ] = exp
(
−βF (β, t)

)
,

(3)
where β is the inverse temperature and F (β, t) is the
(random) free energy. It is well known that in the limit
t → ∞ this free energy scales as

F (β, t) = f0(β) t +
1
2

(βu)2/3 t1/3 f, (4)

where f0(β) is the (non-random) selfaveraging free-energy
density, and f is a random quantity described by the
Tracy-Widom distribution.

For a given realization of the disorder potential V [φ, τ ]
let us consider the above system at two different temper-
atures T1 �= T2. More specifically, we are going to study
how the two free energies F (β1, t) and F (β2, t) of the same
system are related to each other. In the present paper we
are going to study the statistical and scaling properties of
the quantity

F(β1, β2; t) = β1F (β1, t) − β2F (β2, t), (5)

where, in what follows it will be assumed that β1 > β2

(or T1 < T2). According to the definition (3)

exp
{
−F(β1, β2; t)

}
= Z(β1, t)Z−1(β2, t). (6)

Taking the N -th power of both sides of the above relation
and averaging over the disorder we get∫

dFPβ1,β2,t(F) exp
{
−NF

}
= ZN (β1, t)Z−N (β2, t),

(7)
where (. . .) denotes the averaging over the random po-
tential V and Pβ1,β2,t(F) is the probability distribution
function of the random quantity F , eq. (5). Introducing
the replica partition function

Z(M,N ; β1, β2; t) = ZN (β1, t)ZM−N (β2, t) (8)

the relation (7) can be formally represented as∫
dFPβ1,β2,t(F) exp

{
−NF

}
= lim

M→0
Z(M,N ;β1, β2; t).

(9)
Following the standard “logic” of the replica technique,
first it will be assumed that both M and N are integers
such that M > N . Next, after computing the replica
partition function Z(M,N ; β1, β2; t) an analytic continu-
ation for arbitrary (complex) values of the parameters M
and N has to be performed and the limit M → 0 has to
be taken. After that, the relation (9) can be considered
as the Laplace transform of the probability distribution
function Pβ1,β2,t(F) over the parameter N . In the case the
function Z(0, N ; β1, β2; t) had “good” analytic properties
in the complex plane of the argument N , this relation,

at least formally, would allow to reconstruct by inverse
Laplace transform the probability distribution function
Pβ1,β2,t(F). At present, for the considered problem it is
possible to derive an explicit expression for the function
Z(0, N ; β1, β2; t) only in the limit N � 1. Nevertheless,
using the relation (9) this allows to reconstruct the left
tail (F → −∞) of the distribution function Pβ1,β2,t(F).
Moreover, it also allows to derive the scaling dependence
of free-energy difference F on β1, β2 and t. Indeed, in the
case in which the replica partition function has an expo-
nential asymptotics

Z(0, N → ∞;β1, β2; t → ∞) ∼ exp
{
A(β1, β2)tNα

}
,
(10)

the left tail of the probability distribution function
assumes the stretched-exponential form

Pβ1,β2,t(F → −∞) ∼ exp
{
−B(β1, β2; t) |F|ω

}
. (11)

Then the saddle-point estimate of the integral on the l.h.s.
of eq. (9) yields∫

dF exp
{
−B |F|ω + N |F|

}
∼

exp
{
(ω − 1)ω− ω

ω−1 B− 1
ω−1 N

ω
ω−1

}
∼ exp

{
AtNα

}
. (12)

From this relation we find that

ω = α/(α − 1) (13)

and
B = (α − 1)α− α

α−1
(
At

)− 1
α−1 . (14)

Substituting this into eq. (11) we get

Pβ1,β2,t(F → −∞) ∼ exp

⎧⎨
⎩−(α − 1)

(
|F|

α
(
At

)1/α

) α
α−1

⎫⎬
⎭ .

(15)
If we assume that the (unknown) entire probability distri-
bution function has a universal shape, the above asymp-
totic behavior implies that the considered quantity F
scales as follows:

F =
(
A(β1, β2)

)1/α
t1/α f, (16)

where the random quantity f ∼ 1 is described by some
(unknown) probability distribution function P(f) with the
left asymptotics P(f → −∞) ∼ exp

{
−(const)|f |α/(α−1)

}
.

Thus, the above speculations demonstrate that even if
we know the replica partition function only in the limit
N � 1, we can still derive not only the left tail of the
distribution function, but also (supposing that the entire
distribution function is universal) the general scaling of
the free energy. In the next section we will demonstrate
how this replica scheme can be applied for the concrete
system under consideration.
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Mapping to quantum bosons. – According to
eqs. (1)–(3) and (8), after performing the averaging over
the random potential we get

Z(M,N ;β1, β2; t) =
M∏

a=1

∫ φa(t)=0

φa(0)=0

Dφa(τ) exp
{
−HM [φ]

}
,

(17)
where HM [φ] is the replica Hamiltonian

HM [φ] =
∫ t

0

dτ

[
1
2

M∑
a=1

βa

(
∂τφa(τ)

)2

− 1
2

u2
M∑

a�b=1

βaβb δ(φa − φb)

]
(18)

and

βa =
{

β1, for a = 1, . . . , N
β2, for a = N + 1, . . . ,M,

(19)

Introducing

Ψ(x1, . . . , xM ; t) ≡
M∏

a=1

∫ φa(t)=xa

φa(0)=0

Dφa(τ) exp
{
−HM [φ]

}
(20)

one can easily show that Ψ(x; t) is the wave function
of M -particle boson system with attractive δ-interaction
defined by the Schrödinger equation:

−∂tΨ(x; t) =
M∑

a=1

1
2βa

∂2
xa

Ψ(x; t)

+
1
2
u2

M∑
a�=b

βaβbδ(xa − xb)Ψ(x; t) (21)

with the initial condition Ψ(x; 0) = ΠM
a=1δ(xa). According

to the definitions (17) and (20),

Z(M,N ;β1, β2; t) = Ψ(x1, . . . , xM ; t)
∣∣∣
xa=0

. (22)

The time-dependent wave function Ψ(x; t) of the above
quantum problem can be represented in terms of the lin-
ear combination of the eigenfunctions Ψ(x) defined by the
solutions of the eigenvalue equation

2EΨ(x) =
M∑

a=1

1
βa

∂2
xa

Ψ(x) + u2
M∑

a�=b

βaβbδ(xa − xb)Ψ(x).

(23)
Unlike the case with all β’s equal [45–47], for the time
being, the general solution of this equation is not known.
However, if we do not pretend to derive the exact result for
the entire probability distribution function Pβ1,β2,t(F) but
we want to know only its left-tail asymptotics in the limit
t → ∞, then it would be enough to get the behavior of the
replica partition function Z(0, N → ∞; β1, β2; t → ∞)
which is defined by the ground-state solution only:

Ψ(x; t → ∞) ∼ exp
{
−Eg.s.t

}
Ψg.s.(x). (24)

One can easily check that the ground-state solution of
eq. (23) is given by the eigenfunction

Ψg.s.(x) ∝ exp

{
−1

2
u

M∑
a,b=1

γab

∣∣xa − xb

∣∣}, (25)

where

γab =
β2

a β2
b

βa + βb
. (26)

The corresponding ground-state energy is

Eg.s.(M,N, β1, β2) = −1
2
u2

M∑
a=1

1
βa

(
a−1∑
b=1

γab−
M∑

b=a+1

γab

)2

.

(27)
Note that in the trivial case β1 = β2 = β, using
eqs. (25)–(27), one easily recovers the well-known ground-
state solution ψg.s. ∝ exp

{
− 1

4 uβ3
∑M

a,b=1

∣∣xa − xb

∣∣} and
Eg.s. = − 1

24u2β5(M3 − M). Substituting eqs. (19)
and (26) into eq. (27) after simple algebra in the limit
M → 0 we obtain

Eg.s.(0, N, β1, β2) = −u2

24
λ(β1, β2)N3 +

u2

24
(
β5

1 − β5
2

)
N,

(28)
where

λ(β1, β2) = 4
(
β5

1 − β5
2

)
− 6

(
β1 − β2

)2β4
1β2 + 2β4

2β1 + β5
1 + β5

2

β1 + β2

+ 3
(
β1 − β2

)2 β3
1(2β2 + β1)2 − β3

2(2β1 + β2)2

(β1 + β2)2
.

(29)

According to eqs. (22) and (24) we find

Z(0, N → ∞;β1, β2; t → ∞) ∼

exp
{u2

24
λ(β1, β2)N3t − u2

24
(
β5

1 − β5
2

)
Nt

}
. (30)

The second (linear-on-N term) in the exponential of
the above relation provides the contribution to the self-
averaging (non-random) linear in time part of the free-
energy variance F . Substituting eq. (30) into eq. (9) and
redefining

F =
1
24

u2
(
β5

1 − β5
2

)
t + F̃ (31)

we find that in the limits t → ∞ and N → ∞ the left tail
of the probability distribution function for the random
quantity F̃ (as F̃ → −∞) is defined by the relation

∫
dF̃ Pβ1,β2,t(F̃) exp

{
−N F̃

}
∼ exp

{u2

24
λ(β1, β2)N3t

}
.

(32)
Redefining

N = 2(u2λ)−1/3s (33)
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we find that the free-energy difference F̃ scales as

F̃ =
1
2

u2/3
(
λ(β1, β2)

)1/3
t1/3 f, (34)

where the left tail of the universal probability distribution
function P(f) of the random quantity f is defined by the
relation ∫

dfP(f) exp
{
−s f

}
∼ exp

{1
3

s3
}

. (35)

A simple saddle-point estimate of the above integral (for
s � 1 and |f | � 1) yields

P(f → −∞) ∼ exp
{
−2

3
|f |2/3

}
. (36)

Note that this tail coincides with the corresponding
asymptotics of the usual free-energy TW distribution [27].

Let us consider in more detail the scaling relation (34)
which demonstrates the dependence of the typical value of
the fluctuating part of the reduced free-energy difference,
eq. (5), on the strength of disorder u, on the inverse tem-
peratures β1 and β2, and on time t. First of all, one notes
that the disorder scaling ∼ u2/3 as well as the time scal-
ing ∼ t1/3 coincide with the ones of the usual free-energy
scaling in (1 + 1) directed polymers, which, of course, is
not surprising. On the other hand, the dependence on the
inverse temperatures β1 and β2 turns out to be less trivial.

First of all, using the explicit expression (29) one easily
finds that in the limit β1 � β2 (or T1 � T2)

λ
(
β1, β2

)∣∣
β1�β2


 β5
1 , (37)

so that in this limit the scaling relation (34) turns into the
usual one-temperature free-energy scaling

F̃ 
 β1F̃1 =
1
2
(
u2β5

1

)1/3
t1/3f. (38)

In other words, in this case the free energy F1 of the poly-
mer with the temperature T1 is much lower than that of
the polymer with the temperature T2 � T1, and the free-
energy difference F̃ is dominated by the free energy F1 as
it should be.

Let us consider now what happens if the two tempera-
ture parameters β1 and β2 are close to each other. Intro-
ducing a small (positive) parameter

ε =
β1 − β2

β1
� 1 (39)

and substituting β2 = (1−ε)β1 into eq. (29) in the leading
order in ε � 1 we get

λ 
 2β5
1ε. (40)

Substituting this into eq. (34) we find that in this case
the fluctuating part of the the corresponding free-energy
difference F̃ , eq. (5), scales as

F̃ 
 1
2
(
2u2β5

1

)1/3

(
β1 − β2

β1

)1/3

t1/3f, (41)

where the random quantity f is described by a universal
distribution function P(f) whose left-tail asymptotics is
given in eq. (36). The above eq. (41) constitutes the main
result of the present study.

Conclusions. – In this paper we have studied the
joint statistical properties of two free energies computed
at two different temperatures in the same sample (i.e.,
for a given realization of the disorder) of (1 + 1) directed
polymers. In particular, it is shown that if the two tem-
peratures T1 < T2 are close to each other, the typical
value of the fluctuating part of the reduced free-energies
difference F = F (T1)/T1 − F (T2)/T2 is proportional to
(1 − T1/T2)1/3, eq. (41), which implies “one more 1/3”
exponent in these type of systems. On the other hand,
the joint distribution function of these two free energies
for the time being remains unknown. The left tail of
this free-energy difference probability distribution func-
tion, eq. (36), coincides with corresponding tails of the
TW distributions (both GUE, GOE and GSE) but this
tells nothing about its entire exact shape.

Unfortunately, in real experimental studies of the KPZ-
type systems, typically for a given realization of the dis-
order the measurement of the statistical properties of
the evolving interface profile (which by mapping to the
directed polymers corresponds to the free energy) can
be done only once. In other words, each subsequent
measurement implies a new realization of the disorder
(see, e.g., [48]). For that reason, at the present stage the
possibility of a real experimental study of the effects con-
sidered in this paper looks rather problematic. On the
other hand, the numerical investigation seems to be quite
accessible. Compared with the usual protocol of the pre-
vious “one-temperature” studies (see, e.g., [49] and refer-
ences therein), one has just to repeat each measurement
twice: keeping the same realization of the disorder but
changing the temperature parameter to another value.
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