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Abstract — Many two-phase materials suffer from grain growth due to the energy cost which is
associated with the interface that separates both phases. While our understanding of the driving
forces and the dynamics of grain growth in different materials is well advanced by now, current
research efforts address the question of how this process may be slowed down, or, ideally, arrested.
We use a model system of two bubbles to explore how the presence of a finite surface elasticity may
interfere with the coarsening process and the final grain size distribution. Combining experiments
and modelling in the analysis of the evolution of two bubbles, we show that clear relationships can
be predicted between the surface tension, the surface elasticity and the initial/final size ratio of
the bubbles. We rationalise these relationships by the introduction of a modified Gibbs criterion.
Besides their general interest, the present results have direct implications for our understanding

of foam stability.

Copyright © EPLA, 2016

Introduction. — Materials consisting of grains sepa-
rated by well-defined interfaces are ubiquitous. Examples
include polycrystalline solids [1], magnetic garnet films [2],
two-phase ferrofluidic mixtures [3], superconducting mag-
netic froths [4], foams [5,6] or emulsions [7]. In such sys-
tems, the positive energy associated with the interfaces is
the driving force of a characteristic grain growth or “coars-
ening” process by which smaller grains tend to disappear
while larger grains grow, leading to a progressive reduc-
tion of the overall interfacial energy and to characteristic
asymptotic grain size distributions.

While our understanding of the main mechanisms of
grain growth in these different systems has advanced sig-
nificantly, much effort is now dedicated to the question
of how this grain growth may be controlled or, ideally,
completely arrested. Since the historic work by the metal-
lurgist C. S. Smith [8], liquid foams have served repeatedly
as model systems for related questions. We return here to

(a)Present address: Biological and Soft Systems, Cavendish Labo-
ratory, University of Cambridge - JJ Thomson Av., CB3 OHE, Cam-
bridge, UK.

this model system in order to tackle the question of how
grain growth may be arrested by the presence of a sur-
face elasticity [9,10]. In this case, the interfaces have a
surface tension v which depends on the interfacial area A
leading to an additional resistance to grain growth. This
resistance is characterised by a dilational elastic surface
modulus E defined as

_ O
E=gma (1)

In this context, a classical prediction for the growth arrest
was given by Gibbs [9]. Tt consists in considering a single
spherical bubble of radius R and of surface area A = 47 R?
in a liquid at constant pressure pjq. In the absence of
surface elasticity, the gas pressure pg,s inside the bubble
exceeds that in the liquid, the corresponding pressure drop
being given by the Young-Laplace law:

(2)

This pressure drop increases with decreasing bubble size
(0Ap/IOR < 0), leading to an accelerated bubble dissolu-
tion. Gibbs showed that this evolution can be not only

Ap = Pgas — Pliq — 27/R
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slowed down but even fully arrested by the presence of a
sufficiently high surface elasticity. Indeed, egs. (1), (2) im-
ply that 9Ap/OR = 25 (2E—7). Hence, when E/y > 1/2,
which is now known as the Gibbs criterion [9], the bubble
evolution is stopped (g—g < 0). This criterion has been
verified by simulations more recently [10].

In the case of a single bubble, such a surface elastic-
ity arises naturally when working with stabilising agents
which are irreversibly adsorbed to the gas/liquid interface.
Systems which are very much en vogue for this purpose
consist of bubbles stabilised by nano- or micron-sized par-
ticles [11-13] or special proteins [14]. In this case, during
the shrinking process, the agents are compacted at the in-
terface, hence the surface tension v decreases which may
lead to E/v > 1/2.

Many irreversibly adsorbed systems have been used to
stabilise foams, which have indeed proven to stop coars-
ening, with a surprisingly good agreement with the Gibbs
criterion [14-18]. However, many questions remain as to
how the behaviour of a single bubble can be related to
that of a complex foam which contains bubbles of different
sizes since some of them will shrink and others will grow.
Moreover, the coarsening process can be slowed down or
arrested for other reasons, the bubble surfaces might be-
come impermeable to gas arresting the diffusion process
or the shear viscoelasticity of the bubbles might stop re-
arrangements which would hinder coarsening. Thus, it is
not clear at this stage how to provide a reliable criterion
for the coarsening to stop in a foam, and to predict the
final bubble size distribution [10].

In order to understand the mechanisms of the arrest
of coarsening it is necessary to carry out model experi-
ments which allow to discriminate between the different
processes. Very recently studies were carried out on a
single bubble in a pressure-controlled solution [19]. The
pressure of the solution controls the concentration of the
dissolved gas and hence its partial pressure, and is used
to explore the stability to coarsening of isolated bubbles.
The authors [19] propose a model taking into account the
energy dissipation due to the buckling of the interface in
contradiction with the Gibbs criterion.

To get one step closer to foams, we propose, in this
article, a two-bubble experiment, where the bubbles are
connected by a tube. This allows to incorporate a first
degree of polydispersity (the size difference between both
bubbles). Moreover, in this experiment, the coarsening
is driven by the pressure difference between the two bub-
bles as in foams [20], rather than by the liquid/bubble
pressure difference as in a single-bubble experiment. In
the following we thus compare successfully a simple two-
bubble experiment presented in the next section with a
model developed in the third section. In the fourth sec-
tion, we show that the Gibbs criterion can be recovered
theoretically in specific conditions.

Two-bubble experiments. — The setup we are inter-
ested in is schematised in fig. 1. A small bubble (1) and
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Fig. 1: (Colour online) Experimental setup and bubble volume
evolution. Top: photographs of the bubbles at four different
times (the distance between both needle axes is about 7.5 mm).
Bottom, right: setup. Two bubbles are prepared in a nanopar-
ticle dispersion and left to equilibrate. A valve connects both
bubbles. It is opened at ty. Gas exchange between both bub-
bles occurs until their volumes reach their final values. Bottom,
left: evolution of the bubble volumes (mm?) for three differ-
ent experiments. Arbitrary time shifts have been applied for
clarity. Experiment A (respectively, B and C) is represented
by squares (respectively, circles and triangles). Filled symbols
are for the growing bubbles while open symbols stand for the
shrinking bubbles. The present study focuses on the black data
points corresponding to monotonically changing volumes and
surface areas. The last such point is marked in green and the
corresponding time is called ty. Points outside this range are
represented in blue. Red points for experiment A correspond
to a regime of larger surface elasticity, see fig. 2(b).

a big bubble (2) are connected by a tube. More precisely,
two syringes are immersed in the same solution and their
outlets are positioned at the same altitude. The gas is
pushed through the syringes manually to generate a bub-
ble at the syringe outlet (fig. 1, bottom, right). Both
syringe outlets are connected by a tube which is initially
closed by a valve. The bubble evolution is recorded with
a video camera (fig. 1, top). The pictures are then treated
by the software included in the Tracker device (Teclis,
France) to extract the volume, surface area, surface ten-
sion, apex altitude and apex radius of curvature of each
bubble as a function of time. The experimental setup was
tested with bubbles made in a solution of sodium dodecyl
sulphate (SDS) at 10 mM purchased from Sigma Aldrich.
The transfer of gas from the smaller to the larger bubble
occurs very rapidly once the tubes are connected indicat-
ing that the resistance of the tubing is small.

The bubbles are created in an aqueous dispersion of sil-
ica nanoparticles (Ludox, TMA from Sigma Aldrich) with
a 25nm diameter. The dispersions are stable as the silica
particles are negatively charged at the pH used, which is
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close to 7. In order to make the particle surface active, a
positively charged surfactant, cetyl trimethyl ammonium
bromide (CTAB), is added [21]. The surfactant adsorbs
onto the surface of the particles and makes them partially
hydrophobic. The CTAB is also purchased from Sigma
and used without further purification. The samples are
prepared in Milli-Q water (conductivity 18.2 M -cm™1)
with 1mM of NaBr to promote adsorption (in line with
previous experiments [21]). The experiments are carried
out with 1wt% silica particles and 107*M CTAB. In
this system the surface elasticity is constant at sufficiently
large bubble shrinkage and should be high enough to fulfill
the Gibbs criterion [21]. We varied the initial size of the
bubbles, which impacts the final state, as we will show in
the following. We discuss here in detail three experiments
with different initial bubble sizes.

Figure 1 (bottom, left) displays the evolution of the
volumes V; (open symbols) and Va2 (filled symbols) of
the small and big bubbles, respectively (different sym-
bols correspond to three different data sets). Initially, the
bubbles are not connected, yet the volumes V; and V5 de-
crease weakly with time (see fig. 1, bottom, left). This
indicates a slow dissolution of the bubbles into the bath.
Then, at some time ¢y (note that for each experiment, the
times have been shifted arbitrarily for clarity), the valve
is opened and the gas is free to flow from one bubble to
the other. The smaller bubble then shrinks while the big-
ger one grows, the dynamics of exchange being set by the
surface viscosity. This coarsening behaviour stops after
typically 20-30s (at a time we call ty) and the bubbles
reach a stable final volume —apart from the drift due to
slow dissolution. Note that the bubbles are still connected
by a tube at this time. This shows that the coarsening has
stopped.

The evolution of the measured surface tensions are plot-
ted in fig. 2(a). At time ¢ = 0, when the bubbles are put in
contact, the surface tensions of both bubbles are roughly
equal (71 = 72 &= 60mN/m for all three experiments, see
fig. 2(a), in line with [21]) and stationary, which indicates
that, at that time, each bubble has reached equilibrium.

Figure 2(a) shows that the surface tension v; (open,
dotted symbols) of the smaller bubbles decreases with time
once the valve between the two bubbles has been opened.
If E, defined by eq. (1), is constant, then this equation
can be integrated, leading to

Y () = 70 + Eln(A (t)/A?). (3)
71 is thus plotted vs. In(A;/AY) in fig. 2(b). The varia-
tion is rather linear, showing that the elasticity £ can be
considered as both reproducible and almost independent
of the surface area. It is equal to Ey = 35 mN/m. Note
that for experiment A, the slope becomes larger (E ~
80 mN/m) for small surface areas A, corresponding to ten-
sions below 30 mN/m. This probably results from the par-
ticles starting to be in contact with each other. This led
us to define an effective elasticity E4; = 43 mN/m, which
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Fig. 2: (Colour online) Evolution of the bubbles in time. The
colour and symbol code is the same as in fig. 1. (a) Sur-
face tensions (mN/m) extracted from bubble shapes and sizes.
(b) Surface tension 1 of the small bubbles as a function of
the logarithm of their surface areas A;. Two straight lines are
plotted as guides for the eye. The first one is an estimate of
the surface elasticity Eo at large A;. The second one is the
chord of the curve obtained for experiment A. It gives an es-
timate of the effective surface elasticity EZ;. (c) Evolution of
the polydispersity index = defined by egs. (6) and (7) for all
three experiments. (d) Final polydispersity index ;. The full
curves represent eq. (10) with the parameters given in table 1
while dashed curves are obtained with zero gravity. Parameter
xo is measured at the first black point. The data points corre-
spond to the value of z; measured at time ¢y (green points).
For experiment A, the purple square corresponds to EF = Ey,
while the green square corresponds to E = E;, as in (b).

is the value of E defined by eq. (3) evaluated at the final
time considered for experiment A (green point in fig 2).
In the following, we will use Ej for experiments B and C
and both Ey and Eé}f for experiment A.

By contrast, the surface tension of the bigger bubbles is
almost constant during the three experiments (filled sym-
bols in fig. 2(a)), which suggests that particle adsorption
takes place on much shorter timescales than those of the
experiment so that the surface elasticity of these bubbles
can be neglected.

In other words, the difference between the behaviour of
the surface tension 7 of the smaller bubbles (which shrink)
and the bigger bubbles (which expand) reveals an asym-
metry between (slow) desorption and (fast) adsorption.

Two-bubble coarsening model. — We will now pro-
pose a model to describe the above observations. Building
on the experimental observations concerning the asym-
metry between adsorption and desorption, we propose to
write the surface tensions of both bubbles with different
expressions. The surface tension ~; is given by eq. (3)
where F is taken as either Fj or E?H. The surface tension
of the big bubble can be considered as constant

Y2(t) = Yo (4)
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Fig. 3: (Colour online) Final polydispersity z; of the bubble
volumes: expected effect of surface elasticity, adsorption and
gravity for irreversibly adsorbed surfactants. The final volume
of the big (respectively, small) bubble is proportional to 1+
(respectively, 1 — zy). Black curves correspond to initially
identical bubbles (initial polydispersity factor o = 0) while
coloured curves correspond to zo = 0.03, 0.1 and 0.3. (a) Pre-
diction of eq. (10). Further adsorption onto the big (growing)
bubble is assumed to be present. Gravity is taken into account
and the ratio of the average bubble radius Ry to the capillary

length Leap = \/70/(pg) is taken equal to 1.0. (b) Prediction
of eq. (12). The effect of gravity on the pressure is neglected

and it is assumed that there is no further adsorption onto the
big (growing) bubble.

We can now write the pressure in each bubble. The lat-
ter must include the effect of gravity. In the experiment,
the syringe outlets are positioned at the same altitude.
As a consequence, the average altitude of the big bub-
ble is higher than that of the small one, which increases
the pressure difference between them and accelerates the
coarsening process. Correspondingly, we take into account
both the Laplace pressure and the hydrostatic pressure in
writing the pressure p;(t) in bubble i as’

pi(t) = 27i(t)/Ri(t) — 4pgRi(t)/3, (5)

where the reference pressure is that of the liquid near the
needle outlets and R; is the radius of bubble 7 in the
spherical approximation, defined from its actual volume:
4T pP3 _
TR =V,

Let us now introduce the effective average radius Ry
and the polydispersity factor x through 2R} = R} + RS
and 2z = (R3 — R3)/R3, which yields

Ry = (1 —12)'3 Ry,
Ry = (1+2)"? Ry,

(6)
(7)

IEquation (5) for the gas pressure in the bubble was obtained in
the following way. The shape of a bubble of fixed volume V; = %Rf
attached to an outlet of radius rout < R; was solved numerically
in the presence of gravity g. Then, the first-order term in g was
retained from the limit of zero gravity (pgR?/'yi — 0). Finally,
the outlet radius was taken to the zero limit (rout — 0). This
procedure sets the coefficients in eq. (5) unambiguously. The same
limit was also obtained analytically, see Supplementary Material at
https://hal.archives-ouvertes.fr/hal-01416793.

where x = 0 if the bubbles have exactly the same size while
x — 1 in the limit where the smaller bubble shrinks en-
tirely and disappears. In the three experiments presented,
the initial value xg of the polydispersity factor is varied
in the range accessible in the experiment (xo = 0.01-0.3,
fig. 2(c)). For simplicity, we assume that all of the gas
leaving bubble 1 is transferred to bubble 2 entirely, which
is reasonable as the volume variation after the opening of
the valve is much larger than that due to the bubble dis-
solution into the solution (see fig. 1). Moreover, the gas
is considered as incompressible because the pressure dif-
ference between the two bubbles p; — po ~ 120 Pa for a
bubble radius of 1 mm is much smaller than the pressure
itself p; =~ py ~ 10° Pa. As a result of these assumptions,
the total volume remains constant, i.e., Ro(t) = Rg. Using
Ay = 4w Ry? as an approximation of the small bubble sur-
face area, and eqs. (3), (4), (5), (6) and (7), the pressure
in each bubble can be written as

270 + %Eln (1_796

1—“30) 4 1/3
= — —pgRo (1 — )3, (8
p1 o (1 )13 3P9Ro (1 —2)7%, (8)
270 4 1/3
=— 20  ZgRe (1 . 9
D2 Ro (14 2)1/3 3P9 o(1+z) (9)

At equilibrium, both pressures are equal, hence egs. (8)
and (9) yield a prediction, in implicit form, for the final
polydispersity z; as a function of two control parameters,
namely the initial polydispersity xzo and the surface elas-
ticity E:

ElnGi?)i’)[ 1 1 ]
(

l—2)5  (1+ay)

Wl

R2
+ [(1 +ap)

cap

W=

—(1-zpt]. (o)

Here the capillary length is defined as loap = 1/70/(p9)-
The prediction for the final polydispersity z; is plot-
ted in fig. 3(a) for various initial polydispersities x( for
Ry = leap.

In this case, eq. (10) predicts that if the initial poly-
dispersity ¢ is rigorously zero (black line in fig. 3(a)),
no coarsening occurs (x5 = 0) whenever E/vyo > 5/3. If
E /70 < 5/3, the situation is metastable and any perturba-
tion will lead to disproportionation. This prediction looks
like a modified Gibbs criterion: if the bubbles are initially
monodisperse, a high enough surface elasticity prevents
coarsening. We will come back to this observation later
on to discuss why we find a criterion of 5/3 instead of 1/2.
By contrast, coarsening is expected as soon as E/v9 < 5/3
although it should stop after a finite change in bubble vol-
ume, i.e., for some final polydispersity x ¢ strictly between
0 and 1.

If the initial bubbles have slightly different volumes
(xg > 0), the criterion is less sharp (coloured lines in
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Table 1: Different parameters measured for experiments A, B
and C: initial volumes of the small and big bubbles (V; and V5,
respectively, expressed in mm3), corresponding initial and final
polydispersities (zo and z ), initial surface tension 7o (mN/m),
average effective bubble radius Ry made dimensionless by the
capillary length fcap = 2.45 mm.

Exp |V VR | wo | v |2 |V W ey
A |28 51029 [6035]040]1.0 6.9]0.75
B |35 3.60014]6015| 038 | 1.1 6.2]0.72
C |45 4700022] 603 | 042 |15 7.6 0.66

fig. 3(a)): the larger the surface elasticity, the smaller the
final polydispersity xy. Note that this is in qualitative
agreement with what we observe in the experiment: the
coarsening is observed at the beginning but stops definitely
at a finite polydispersity (i.e., the size of the smaller bub-
ble remains finite).

Let us now draw a quantitative comparison between
the experiment and the model given by eq. (10). The
initial and final values of the bubble volumes V; and
V5 and the corresponding initial and final polydispersity
factors x¢ and xy are given in table 1 for all three ex-
periments, together with the value of the initial surface
tension ~yy. In all experiments, the initial surface tension
vo is close to 60mN/m and the corresponding capillary
length is given by fcap = 2.45 mm. The value of Ry/leap,
where Ry is the effective average radius, is also available
in table 1. The surface elasticity values F = 35mN/m
and Eeg = 43mN/m (see fig. 2(b)) yield the respective
values 0.58 and 0.71 of the ratio F/vyq. In fig. 2(d), the
values of xy extracted from each experiment (see table 1)
are compared to the theory and agree remarkably well.
For experiment A, theory and experiments are compatible
within the error bar due to . Note that with the present
situation Rg/lcap =~ 0.40, gravity has very little influence
onzxy.

Back to the Gibbs criterion. — Let us now go back
to the (two-bubble) criterion we found and see how it com-
pares to Gibbs’ (one-bubble) prediction. Our calculation
predicts no coarsening if 1) the bubbles are initially totally
monodisperse and ii) /7o > 5/3. This criterion is similar
but not identical to the Gibbs criterion, which predicts no
coarsening if F /vy > 1/2. This is because we took into
account gravity and we supposed a fast adsorption during
the growth of the big bubble.

If we now neglect the effect of gravity and adsorption
(implying that both bubbles have the same elasticity), the
hydrostatic pressure has to be removed from eq. (5), and
eq. (4) needs to be replaced by

Y2(t) = 0 + Eln(Ay(t)/A3), (11)

where A9 is the initial area of the bubble 2 and Aa(t) its
evolution with time.

Under such circumstances, eq. (10) is modified

(Lcap — o0) and the condition p; = py now reads

l1—x 14z
E ln(l_x?> ln(liw;)
0 | T2 Trag)s

3 1 1 12
s [a=e e "
This modifies the prediction for the final volume of the
two bubbles (as shown in fig. 3(b)). The result is qualita-
tively the same, however i) the Gibbs criterion becomes
E/vo > 1/2 for xp = 0 and ii) below the threshold,
the final polydispersity factor z; increases more sharply
with a decreasing surface elasticity. Thus, we recover the
Gibbs prediction in the absence of gravity and with ini-
tially monodisperse bubbles provided the surface elasticity
is identitical for shrinking or growing bubbles.

More generally, taking eq. (10) with 2o = 0 in the limit
x¢ — 0, we obtain a new version of the Gibbs criterion

E 2 R?
= Skaas [14+ 252 ),
— d;<+3€2>

cap

(13)

where ka,qs = 1/2 when no adsorption takes place, as in
eq. (12), and k.gs = 1 for fast adsorption as in eq. (10),
and where .., — 00 in the zero gravity limit.

Conclusion. — This comparison between a model and a
simple experiment performed on two interconnected bub-
bles allows to rationalise why the Gibbs criterion de-
scribes foams qualitatively well even if the threshold of
E/~y > 1/2 is not always recovered experimentally. We
indeed show in this letter that the Gibbs criterion de-
scribes well the case of two bubbles stabilised by agents
which are irreversibly adsorbed to the interface from the
beginning, in the absence of gravity, i.e., for small bub-
bles (where Ry < flcap), and for initially monodisperse
bubbles. In this case, the coarsening does not even start
if E/~vy > 1/2. If the bubbles are initially polydisperse,
the criterion is somewhat relaxed: the coarsening starts,
but it stops before the small bubble can disappear. In the
presence of gravity or in the presence of fast adsorption,
the classical threshold value 1/2 for the Gibbs criterion in-
creases and the total arrest of the coarsening is predicted
by a new version of the Gibbs criterion, given by eq. (13).
We have shown that when all these different effects are
taken into account, the experiments are well captured by
the theoretical description. Coarsening indeed stops ex-
perimentally after a finite time and bubbles reach a finite
volume.

This result is different from the one obtained by Taccoen
et al., which is that their results are in contradiction with
an elastic description of the bubble shape. In our experi-
ment, the coarsening is actually stopped before the crum-
pling of the bubbles, which may explain this discrepancy.

In order to generalise the present study and describe
foam coarsening completely, additional steps still need to
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be taken because it may differ from the present two-bubble
situation for at least two reasons. i) When a given bubble
swells or shrinks, its various facets may expand or shrink,
depending on the dynamics of the neighbouring bubbles.
This leads to different local surface tensions on a given
bubble. ii) In the two-bubble experiment, the contribution
of the Gibbs elasticity and film permeability are decorre-
lated, which allows us to investigate the dominant mech-
anism in the arrest of foam coarsening. The permeability
should be included in a full foam coarsening model. More
generally, the fact that the coarsening behaviour of two
bubbles is very different from that of a single bubble, as
we have shown, suggests that coarsening in 3D foams may
display complex collective behaviours.

We believe that the physical understanding we have
gained from the two-bubble system can be translated di-
rectly to other systems which undergo grain growth. Most
realistic systems are likely to have a more complex elastic
behaviour than the one considered here. Already in the
case of bubbles one may think about more complex sce-
narios, for example when considering soluble surfactants
with slow desorption/adsorption. In this case, the coars-
ening would not be stopped, but the overall coarsening
dynamics would be affected.

In more general terms, our work on bubbles may pro-
vide insight and inspiration to advance our understanding
and control of other systems (emulsions, alloys, ...) which
undergo grain growth. It puts in evidence the importance
of a finite interfacial elasticity, which, in different systems
may be created by different means. For example, in the
case of emulsions, this is achieved by the addition of in-
soluble, interfacially active species (particles, polymers or
proteins), while in the case of alloys a similar effect is ob-
tained by the addition of appropriate dopant atoms [22].
It also points towards a range of subtleties which have to
be taken into account, including the initial polydispersity,
(a)symmetry in the elastic response or additional effects
such as gravity.

) %k Xk
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