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Abstract – Boundary-induced pattern formation is investigated using spatially one-dimensional,
two-component reaction-diffusion equations. Temporal oscillation is successively transformed into
a spatial pattern, triggered by diffusion from the fixed boundary. We introduced a spatial map,
whose temporal sequence, under selection criteria from multiple stationary solutions, can com-
pletely reproduce the emergent pattern, by replacing the time with space. The relationship of
the pattern wavelength with the period of oscillation is also obtained The pattern wavelength is
proportional to the period of the oscillation when the emergent pattern is periodic. The generality
of the pattern selection process and algorithm is discussed with possible relevance to biological
morphogenesis.
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Introduction. – Spatial patterns are ubiquitous in
non-equilibrium systems, and the process of spontaneous
pattern formation has been extensively studied as one of
the main issues in non-linear dynamics. Topic areas in
pattern formation include fluid, solid-state, optical, geo-
physical, chemical, and biological systems [1–5].

In particular, the reaction-diffusion system, which was
pioneered by Turing [6], has been a focus of non-
equilibrium studies. In his celebrated study, Turing showed
how a spatial pattern or temporal rhythm is spontaneously
formed from a spatially homogeneous and temporally sta-
tionary state, which is unstable against perturbations.
Turing classified such pattern formation processes into six
cases, one of which is known as the Turing pattern, a sta-
tionary periodic pattern with the finite wavelength given
by linear stability analysis. While Turing originally pro-
posed his theory as a model of morphogenesis, it has been
applied to general pattern formation dynamics beyond de-
velopmental biology [7,8].

Turing also noted that, in a reaction-diffusion system,
spontaneous pattern formation from temporally dynamic

states is also possible. [6]. Destabilization of a spatially
homogeneous and temporally oscillatory state by diffusive
interaction often results in spatiotemporal dynamics such
as waves, spirals, and turbulence [9]. Spatiotemporal dy-
namics by combination of Turing instability for pattern
formation and Hopf bifurcation for temporal oscillation
have been studied as Turing-Hopf bifurcation [10–12].

However, an important factor that has not been fully ex-
plored is the influence of boundary conditions on spatial
patterns. In particular, pattern formation from tempo-
rally dynamic states may be crucially influenced by the
introduction of a fixed boundary. The influence may be
globally propagated to alter the pattern dynamics. (See
also [13,14] for the relevance of boundary conditions in
pattern dynamics.)

In the present letter, we are concerned with such
boundary-induced pattern formation, namely, how a fixed
boundary condition induces pattern formation of spatially
non-uniform and temporally fixed pattern, from a tempo-
rally periodic and spatially uniform attractor that exists
under Neumann or periodic boundary condition.
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The question of boundary-induced pattern formation is
not only of theoretical interest but also of experimental
interest in developmental biology. In the somitogenesis
of vertebrate development, temporal oscillation in protein
expression is fixed into a spatial pattern [15,16]. In chick
development, the gene expression of c-hairy1, which ini-
tially oscillates in the presomitic mesoderm, is fixed into
a striped pattern along aligned cells. So far, such spa-
tial pattern formation has been studied by introducing
external inputs that move in space with time development
(clock and wavefront) [17]. Diffusive interaction has been
introduced by Meinhardt in addition to external input us-
ing a spatial gradient [18]. In his theoretical study, the
use of an external input is essential to induce formation of
spatial inhomogeneous pattern. Some recent experiments,
however, suggested that an external input may not be es-
sential, and intrinsic instability due to diffusion might re-
sult in somitogenesis [19,20]. If boundary-induced pattern
formation is possible without imposing an external input
throughout the space, it will provide a plausible mecha-
nism for vertebrate somitogenesis.

Here, we demonstrate that temporal oscillation in a spa-
tially one-dimensional reaction-diffusion system is fixed
into a stationary periodic spatial pattern by introduc-
ing fixed boundary condition. In this case, in contrast
to the celebrated Turing pattern, the wavelength of the
generated pattern cannot be obtained using linear stabil-
ity analysis around the fixed point. Instead, to predict the
selected pattern, we introduced a one-dimensional spatial
map, whose attractor gives the one-dimensional pattern
by replacing time with space. The generality of this os-
cillation fixation and the pattern selection mechanism will
be discussed.

Results. – Now, consider a spatially one-dimensional
reaction-diffusion system of two components X and Y . We
assume that the diffusion of X is much faster than that of
Y , and the diffusion of the latter is neglected for simplicity
(the formalism to be discussed is valid even without this
approximation). Then, the equation is written as

∂X

∂t
= f(X, Y ) + D

∂2X

∂x2 ,

∂Y

∂t
= g(X, Y ),

(1)

where f(X, Y ) and g(X, Y ) are the reaction functions for
X and Y , D is the diffusion constant of X , and the attrac-
tor of the dynamical system without the diffusion term is
a limit cycle1.

1When this limit cycle is generated by a Hopf bifurcation from the
fixed point (X∗, Y ∗), the eigenvalues of the Jacobi matrix around
the fixed point are complex with a positive real part and a non-zero
imaginary part, so that a + d > 0 and −2 < d−a√−bc

< 2 [6], where

(
a b
c d

)
=

(
∂f
∂X

∂f
∂Y

∂g
∂X

∂g
∂Y

)
X=X∗,Y =Y ∗

. (2)

Fig. 1: (Color online) (A) The nullclines f(X, Y ) = 0 (red)
and g(X, Y ) = 0 (black) as well as the limit cycle orbit (green)
are plotted in the state space for the model (2), for the case
D = 0. Flow in the state space is also illustrated by arrows.
(B) State space plot of nullclines of f(X, Y ) + D ∂2X

∂x2 (black)
and g(X, Y ) = 0 (red) are plotted at some location x. Flow in
the state space is also illustrated as arrows. The nullcline of
X is shifted horizontally from the D = 0 case with the spatial
gradient at each location (see also fig. 3). The series of cross-
points of the nullclines at Y ∼ 1 or Y ∼ 0 at each location give
the emergent stationary pattern orbit (green).

We consider the case in which the spatially uniform os-
cillatory state is stable against perturbations so that under
Neumann or periodic boundary conditions, the spatially
uniform oscillation is the attractor of the system. On the
other hand, under a fixed boundary condition, oscillation
in the vicinity of the boundary is strongly suppressed. In
the present case, the variable X there reaches a fixed value.
This fixation from the uniform oscillatory state propagates
downflow (see fig. 2), and a fixed periodic spatial pattern
is generated.

As a specific example, consider the following system,

f(X, Y ) =
1

1 + e−β(Y −1/2) − X,

g(X, Y ) =
1

1 + e−β(Y −X) − Y

(3)

which describes the protein expression dynamics with two
genes, where X inhibits the expression of Y and Y acti-
vates the expressions of both X and Y [21,22]. If β > 8
and D = 0, this system has one unstable fixed point
(X∗, Y ∗) = (1/2, 1/2), and the limit cycle is an attrac-
tor (see fig. 1(A)). Indeed, from initial conditions close to
a spatially homogenous state, a uniform, limit-cycle state
is reached if the boundary condition is of Neumann type
or periodic. In contrast, if a fixed boundary condition is
adopted for at least one end, i.e., X(0, t) = X0, temporal
oscillation is replaced by a fixed pattern2 (see fig. 2(A)
and (B) where ∂X

∂x |x=L = 0 is adopted at the other end).
Note that a pattern of the same wavelength is organized
independently of X0 as long as X0 is in the range [0, 1]
(see fig. 3). Here, initially a uniform oscillatory state ex-
ists for x > 0. Then, the oscillation ceases in the vicinity
of x = 0, while the oscillation continues in the free end.

2A boundary condition for Y is not required as diffusion in Y is
neglected.
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Fig. 2: (Color online) Time development of the model (2) under
a fixed boundary condition, X(0) = 0. (A) X(x, t) is displayed
with a color scale given by the side bar. The abscissa is time
t, and the ordinate is space x. (B) The generated stationary
pattern X(x) and Y (x). The abscissa is the concentration of
X(x) or Y (x), and the ordinate is space x. β = 40 and D =
1.6 × 10−3.

Fig. 3: (Color online) Stationary pattern (Xst(l), Yst(l)) of the
reaction diffusion (3) and the predicted pattern of (Xl, Yl) ob-
tained from the spatial map (6). The predicted pattern (given
by ◦) agrees well with the stationary pattern (lines). Three
patterns with boundary values of X0 = 0.0 (purple), X0 = 0.5
(green), and X0 = 1.0 (yellow) are considered. β = 40 and
D = 4.0 × 10−4.

The uniform temporal oscillation, per one period, is re-
placed by a temporally fixed, spatially periodic pattern
with one wavelength, which works as a boundary condi-
tion for (X(x), Y (x)) for larger x. Accordingly, the tem-
poral oscillation is successively replaced by a temporally
fixed spatially periodic pattern.

Note that this pattern formation dynamics takes place
far from the uniform fixed-point solution. Hence, the stan-
dard linear stability analysis for the Turing pattern con-
cerning around the uniform fixed-point solution cannot
explain the wavelength observed here. (See supplemental
fig. 1 in [23].)

Meanwhile, the emergent stationary pattern has to
satisfy

f(X, Y ) + D
∂2X

∂x2 = 0,

g(X, Y ) = 0.
(4)

Equation (4) describes nullclines of X and Y of the emer-
gent stationary pattern, at each location. Since the

Fig. 4: (Color online) (A) The nullcline of Y , given by
g(X,Y ) = 0 (red solid line). Crossing points of g(X, Y ) and
X = Xl (black dashed line) show candidate solutions of spa-
tial map at l (green circles). (B) State space plot of the null-
cline of Y (red solid line) and the nullcline of X when D = 0
(black solid line). The two dashed lines are nullclines of X
assuming Yl = Y +

l (the upper one with the crossing point
(Xl, Y

+
l )) and that assuming Yl = Y −

l (the lower one with the
crossing point (Xl, Y

−
l )). The distance between each dashed

lines and the original nullcline F (X,Y ) = 0 corresponds to
the diffusion terms, i.e., D+ = D′|X+

l+1 − 2Xl + Xl−1| or
D− = D′|X−

l+1 − 2Xl + Xl−1|.

nullcline of X is changed by the diffusion term from the
original ordinary differential equations, under the diffusion
term D ∂2X

∂x2 , novel fixed points can appear.
At each location, crossing-points of two nullclines indi-

cate such novel fixed points. The stationary pattern is
described as the chain of such novel fixed points along
the space. Actually, for the given stationary pattern, we
confirmed that the stationary state (X, Y ) is the same as
a novel stable fixed point given by the calculated diffu-
sion term at each location (see fig. 4(B)). Thus, under the
diffusion term at each location, the stationary pattern is
computed.

By adopting spatial discretization, this condition is
given by

f(Xl, Yl) + D′(Xl+1 − 2Xl + Xl−1) = 0,

g(Xl, Yl) = 0,
(5)

where l is the discretized space index with a as the dis-
cretized unit length, i.e., x = al and Xl = X(x/a),
Yl = Y (x/a). Here, D′ is the rescaled diffusion constant
which satisfies D′ = D/a2. From these equations, we can
derive the spatial map as follows:

Xl+1 = 2Xl − Xl−1 − f(Xl, Yl)
D′ ,

Yl = g−1
Xl

(0),
(6)

where g−1
Xl

is the inverse function of g(X, Y ) given that
X is fixed to Xl, which corresponds to the cross-points
of the two nullclines. With these equations, Xl+1 can be
determined from Xl, Yl and Xl−1, while Yl is determined
as g−1

Xl
(0) (for the use of a “spatial map” in the analysis

of a spatial pattern, see also [24,25]). Hence the spatial
pattern is determined as a time-series of the mapping (6),
by replacing l into the spatial sequence.
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Here, however, multiple branches in the solution can
exist for Yl = g−1

Xl
(0), as shown in fig. 4(A). All of these

give potential, stationary solutions, but not all of the can-
didate solutions (Xl, Yl) are stable in terms of dynamical
systems (1). In addition to the stability, we need to choose
such solution that is attracted from the (vicinity of) spa-
tially homogeneous initial condition. These properties give
constraint on the selection of the branch Yl = g−1

Xl
(0). (As

will be argued in the “Discussion” section, different pat-
terns could be reached starting from the initial condition
far from uniformity, which are realized as a different choice
of the branches from those below. Note that the attractor
reached from the vicinity of the uniform initial condition
is unique.)

Consider the case of eq. (3). Figure 4(A) shows the can-
didate solutions at a given l. There are three candidate
solutions of Yl, namely Y +

l , Y mid
l and Y −

l , given by dif-
ferent branches of g−1

Xl
(0). Here, (Xl, Y

mid
l ), which comes

from the original unstable fixed point in eq. (3), is an un-
stable fixed point, as can be directly seen in the flow in
fig. 1(B) (see also the supplementary text in [23]). Thus,
there remain two candidates for the emergent stationary
pattern, i.e., (Xl, Y

+
l ) or (Xl, Y

−
l ). Both these candidate

solutions are stable fixed points, as seen in fig. 1(B) and
analyzed in the supplementary text in [23].

Then, the constraint that the fixed point at (Xl, Yl)
is attracted from a uniform oscillatory state under the
boundary condition determines the solution to be selected:
Since the pattern emerges from a uniform state and X is
under diffusion to homogenize the solution, such solution
with a smaller diffusion term |Xl+1 − 2Xl + Xl−1| should
be selected. From eq. (5), this diffusion term is given by
|f(Xl, Yl)|, which is identical to the distance from the orig-
inal nullcline of X , i.e., f(X, Y ) = 0. Then, as shown in
fig. 4(B), once a given branch (say Y +) is selected, the dif-
fusion term |X+

l+1 −2Xl +Xl−1| is smaller than that of the
other branch (i.e., |X−

l+1 − 2Xl + Xl−1|), up to a certain
lattice point l∗ (to be shown below). Due to the continuity
of ∂2X

∂x2 , the solution at the same branch (say, Y +
l+1) will

be selected at the next location (see fig. 4(B)). Now, by
taking the same branch (say + in fig. 4(B)), |f(Xl, Yl)|,
and accordingly, the distance between (Xl, Yl) and the
original X-nullcline increases. Then, at a certain lattice
point l = l∗, |f(Xl, Y

+
l )| turns to be equal to |f(Xl, Y

−
l )|,

beyond which the latter is smaller. Hence, beyond l = l∗,
|X+

l+1 − 2Xl + Xl−1| exceeds |X−
l+1 − 2Xl + Xl−1|. Then.

Y +
l is no longer selected but Y −

l is selected, due to the
proximity to uniformity.

Here it should be noted that by the original dynamics
given by eq. (3), (X, Y ) moves along the limit cycle at-
tractor. Then starting from (X+

l , Y +
l ), (X, Y ) is directed

toward (X−
l , Y −

l ). Hence the − branch of the solution
that gives rise to a smaller diffusion term is accessible by
the original dynamics, so that the selected branch switches
from + to −. Then, the minus branch remains to be se-
lected due to the continuity, until |X−

l+1 − 2Xl + Xl−1|

exceeds |X+
l+1 − 2Xl + Xl−1|. Repeating the above proce-

dure, the emergent periodic pattern is predicted.
Since the present model has point symmetry with re-

spect to (X, Y ) = (0.5, 0.5), the condition for the selection
of the solution branch is simply written as

Yl =
{

Y +
l (|D′(X+

l+1 − 2Xl + Xl−1| < 0.5),
Y −

l (otherwise).
(7)

An example of the pattern obtained from the spatial
map with the above selection criterion is shown in fig. 3,
which completely agrees with the numerically obtained
pattern. The above procedure works independently of the
parameter values, demonstrating its validity.

Note that the spatial periodic pattern is obtained as an
attractor of the spatial map (6). Hence, independently of
the initial condition in the map, the same periodic pattern
is selected as long as the initial condition in the spatial
map belongs to the basin of the above attractor. The ini-
tial condition in the spatial map corresponds to the value
of the fixed boundary. Hence, a pattern of the same wave-
length is reached independently of the boundary value,
while the phase of the wave pattern is different, which is
consistent with the numerical result (see fig. 3).

This procedure also suggests that there can be a
relationship between the period of oscillation T and the
wavelength λ. First, by rescaling the spatial scale, the
wavelength λ is proportional to

√
D. (The period is

scaled by τ if f and g are similarly scaled by 1/τ , but
this is already set to unity in (1).) Then, we have found
λ/

√
D ∝ T . In fact, we numerically confirmed that one

stripe is generated in correspondence with one period of
oscillation from a uniform limit-cycle state in the free
end, except for the vicinity of the Hopf bifurcation (see
fig. 2(A)).

Now, following the vector field (f(X, Y ), g(X, Y )) in the
state space (see fig. 1(A)), (X(t), Y (t)) oscillates with the
period T . Here, within one period of oscillation, f(X, Y )
increases and takes a local maximum, and decreases to
change the sign, and then takes a local minimum, and in-
creases to change the sign, as in the state space in fig. 1(B).

On the other hand, when a stripe is formed, the “spatial
orbit” (X(x), Y (x)) against x is shaped within the state
space. Recalling that the switch to the other branch occurs
when |f(X, Y )| takes a local maximum, f(X, Y ) changes
along with the spatial sequence as follows: By starting
from the + branch, f(X, Y ) > 0 decreases to take the local
minimum, and then increases to take a local maximum,
and then f(X, Y ) switches its sign. Entering the − branch,
|f(X, Y )| first decreases to a local minimum, and then
increases to take the local maximum to switch to the +
branch. Hence, although the timing of the sign change is
different, f(X, Y ) and its derivative experiences one cycle
of sign change both through the limit cycle and spatial
orbit.

With the parameter change, the magnitude of a vector
(f, g) in the state space changes, which alters the angular
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Fig. 5: (Color online) Relationship between the scaled wave-
length λ/

√
D of the emergent pattern and the period of the

limit cycle orbit T is shown by changing parameter β. Results
from different D values are also plotted with different symbols.
The relationship from the Brusselator equation (8) is also plot-
ted from the obtained data by varying B. A is fixed to 1.

velocity along the limit cycle as well as that of the “spa-
tial orbit” in the same way. Hence, the period T and
wavelength λ (or λ/

√
D) change in proportion. Of course,

this is a rough estimate, but this proportionality approx-
imately holds against changes in the parameter values β
(and D), as shown in fig. 5.

For smaller values of β, the deviation from the propor-
tionality is discernible, where the spatial pattern exhibits
period-doubling (see supplementary fig. 2 in [23]). For a
much smaller value of β, the pattern predicted by the spa-
tial map can be quasiperiodic or chaotic, where, however,
such spatial pattern that is fixed in time turns to be unsta-
ble in the time evolution of the original reaction-diffusion
dynamics. Then, the attractor is no longer a fixed point
in time but is replaced by spatiotemporal dynamics.

The fixation of the temporal to the spatially periodic
pattern as well as the analysis using the spatial map can be
generally applied to a spatially one-dimensional reaction-
diffusion equation that has a uniform limit-cycle attractor.
As another illustration, we have also examined the so-
called Brusselator [1]:

f(X, Y ) = BY − XY 2,

g(X, Y ) = A − (B + 1)X + XY 2.
(8)

In this case, a uniform periodic oscillation is replaced
by a spatial pattern by applying the fixed boundary con-
dition X(0) = X0, for a certain range of parameters. The
selection of the branch for Yl in the spatial map is much
easier for this case than eq. (3). One can just choose the
same branch as long as the branch exists and it is in the
basin of the limit cycle, i.e., the solution satisfies Xl > 0
and Yl > 0. In fact, the switch of the branch due to the
selection of smaller |Xl+1 −2Xl +Xl−1| need not be taken
into account in this case, since the flow in the state space
goes toward the fixed point of the original branch, and the
switch cannot occur starting from the limit-cycle attractor

(this is because the rotation along the limit cycle of the
Brusselator model is counterclockwise).

Again, the pattern predicted through spatial map and
the above selection criteria of branches agrees well with the
emergent pattern (see supplemental fig. 3 in [23]). The ap-
proximate proportionality between the period and wave-
length is worse than the model (2) (see fig. 5), possibly
because the correspondence between the flows in the spa-
tial map and original limit cycle is not so good in the state
space.

Discussion. – In the present letter, we have studied
the formation of a periodic pattern from a uniform oscilla-
tory state induced by the boundary conditions. The emer-
gent pattern is predicted as an attractor of the spatial map
under the selection principle. We have confirmed the gen-
erality of this pattern formation in reaction-diffusion sys-
tems. The periodic oscillation exists in a two-component
reaction system with negative feedback. That is, in a sys-
tem with an activator and an inhibitor, for a certain range
of parameters, there exists an oscillatory attractor. Under
a fixed boundary condition, this state is replaced by the
spatially periodic, temporally fixed state, if the diffusion
of the inhibitor is sufficiently large.

We also note that the pattern formation process as well
as the nullcline analysis is still valid even for DY �= 0.
As long as DY is small, the present stripe formation will
be preserved under perturbative analysis. The analysis of
the spatial map can be applicable generally, although the
inverse function that includes both X and Y would make
the analysis more difficult.

Pattern formation generally depends on the boundary
and initial conditions. In the spatial map, the former is
represented by the initial condition in the map, while the
latter is considered by the proximity to uniformity, which
indicates that the initial condition is not far from the
uniform oscillatory state. If the initial condition is far
from uniformity, local inhomogeneity can grow. In the
state-space representation, whether such growth occurs
is determined according to the size of the spatial diffu-
sion term, specifically whether the spatial diffusion term
is large enough to go across the nullclines and to induce
a switch to the other branch. In other words, the con-
dition close to uniformity represents the absence of such
inhomogeneity.

On the other hand, for such initial conditions that allow
the local growth in inhomogeneity, the selection criterion
of the solution branch is the proximity to a given initial
condition, which leads to a requested switch to a different
branch of fixed-points. In other words, the choice of the
fixed-point solution corresponding to the initial condition
can predict the emergent pattern. Conversely, control of
an emergent pattern is thus possible by manipulating the
initial condition.

Experimental confirmation of the present pattern for-
mation will be possible in reaction-diffusion systems. In
particular, relevance of boundary condition to pattern

48005-p5
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selection should be of importance because the real exper-
imental system is finite and often under a fixed boundary
condition. By carefully examining the boundary effects,
we can confirm the present pattern formation mechanism,
where the period-wavelength relationship (fig. 5) will be
confirmed.

As mentioned in the introduction, spatial pattern for-
mation based on temporal oscillation is often observed in
biological morphogenesis [15,16] as well as in the numeri-
cal evolution of morphogenesis [26,27], where the relevance
of cell-cell interaction has recently been discussed [20,27].
Considering the simplicity in our mechanism, which only
requires diffusion of the inhibitor and a fixed boundary, we
expect that it could be adopted in biological development,
which will be confirmed by examining cell-cell interaction
and boundary effects.
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Horowicz D. and Pourquié O., Dev. Genet., 23 (1998)
77.

[16] Pourquie O., J. Anatomy, 199 (2001) 169.
[17] Cooke J. and Zeeman E. C., J. Theor. Biol., 58 (1976)

455.
[18] Meinhardt H., Models of Biological Pattern Formation,

Vol. 6 (Academic Press, London) 1982.
[19] Dias A. S., de Almeida I., Belmonte J. M.,

Glazier J. A. and Stern C. D., Science, 343 (2014)
791.

[20] Cotterell J., Robert-Moreno A. and Sharpe J.,
Cell Syst., 1 (2015) 257.

[21] Mjolsness E., Sharp D. H. and Reinitz J., J. Theor.
Biol., 152 (1991) 429.

[22] Goto Y. and Kaneko K., Phys. Rev. E, 88 (2013)
032718.

[23] Supplementary Material: https://drive.google.com/
file/d/0BxIj8cjinuS0SWZUbjhqSi1hS1U/view .

[24] Aubry S., The New Concept of Transitions by Breaking
of Analyticity in a Crystallographic Model, in Solitons and
Condensed Matter Physics (Springer) 1978, pp. 264–277.

[25] Willeboordse F. H. and Kaneko K., Physica D: Non-
linear Phenom., 86 (1995) 428.

[26] Fujimoto K., Ishihara S. and Kaneko K., PLoS ONE,
3 (2008) e2772.

[27] Kohsokabe T. and Kaneko K., J. Exp. Zool. Part B:
Mol. Dev. Evol., 326 (2016) 61.

48005-p6

https://drive.google.com/file/d/0BxIj8cjinuS0SWZUbjhqSi1hS1U/view
https://drive.google.com/file/d/0BxIj8cjinuS0SWZUbjhqSi1hS1U/view

