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PACS 03.75.Lm – Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials,
solitons, vortices, and topological excitations

PACS 05.45.Yv – Solitons
PACS 67.85.-d – Ultracold gases, trapped gases

Abstract – We observe nonlinear scattering of 39K atomic bright solitons launched in a one-
dimensional (1D) speckle disorder. We directly compare it with the scattering of non-interacting
particles in the same disorder. The atoms in the soliton tend to be collectively either reflected or
transmitted, in contrast with the behavior of independent particles in the singlescattering regime,
thus demonstrating a clear nonlinear effect in scattering. The observed strong fluctuations in the
reflected fraction, between zero and 100%, are interpreted as a consequence of the strong sensitivity
of the system to the experimental conditions and in particular to the soliton velocity. This
behavior is reproduced in a mean-field framework by Gross-Pitaevskii simulations, and mesoscopic
quantum superpositions of the soliton being fully reflected and fully transmitted are not expected
for our parameters. We discuss the conditions for observing such superpositions, which would find
applications in atom interferometry beyond the standard quantum limit.

editor’s  choice Copyright c© EPLA, 2017

Introduction. – The physics of transport of particles
in disorder is associated with different scenarios. In the
absence of interaction, the simplest description is based
on diffusion [1], but the coherence of the matter waves de-
scribing the particles can play a role, as in the phenomena
of coherent backscattering [2–4] and Anderson localiza-
tion [5–14]. However, in many physical systems, inter-
actions cannot be ignored. In condensed-matter physics,
interactions between electrons can strongly affect electric
conductivity [15] and in optics, high-intensity light induces
a nonlinear response of dielectrics, leading, for instance, to
the optical Kerr effect, and thus spatial and/or temporal
fluctuations of the index of refraction. Understanding the
interplay between disorder and interactions in the trans-
port of quantum particles is thus an important challenge.

In a mean-field approach, one can use nonlinear wave
equations in disordered media [16,17] in order to describe
experimental observations of the competition between a
weak nonlinearity and localization, in optics [18,19] or in
ultra-cold quantum gases [20]. Beyond the mean-field ap-
proximation, many-body localization phenomena, leading
to non-ergodic behavior, are predicted [21,22]. In this con-
text, several problems of transport of interacting quantum
gases in disorder have been studied [23–33]. We report here
on a new phenomenon of nonlinear transport of quantum

particles: nonlinear scattering of atomic bright solitons in
an optical disorder.

A soliton is a stable non-spreading wave packet, solu-
tion of a nonlinear wave equation, where a strong non-
linearity compensates dispersion. Solitons are ubiquitous
in nonlinear wave physics [34,35]. Their propagation in
a disordered medium is intriguing since the effect of the
nonlinearity cannot be treated as a small perturbation of
the non-interacting problem [36]. An atomic bright soli-
ton is a 1D Bose-Einstein condensate of atoms with at-
tractive interactions [37,38]. At the mean-field level, it
is described by the Gross-Pitaevskii equation, which is
identical to the so-called “nonlinear Schrödinger equation”
used to describe the 1D propagation of light in Kerr me-
dia. This approach has been used to numerically study
soliton nonlinear scattering on a narrow barrier [39–44].
Qualitatively similar results for a 1D disordered poten-
tial in the single-scattering regime can be expected. Ex-
perimentally, atomic bright soliton scattering has only
been studied in the regime of negligible interaction energy,
where the behavior resembles the one of non-interacting
particles [45–47].

In this paper, we report the observation of nonlinear
scattering of an atomic bright soliton in the regime where
the interaction energy is of the order of the center-of-mass
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kinetic energy [48]. As the experiment is repeated, we find
that the atoms tend to be collectively either reflected or
transmitted. More precisely, the histogram of the reflected
fraction shows two distinct peaks at low (close to 0) and
high (close to 1) reflected fractions, in contrast with the
observed bell-shaped histogram for non-interacting parti-
cles in the single-scattering regime. This behavior is a sig-
nature of the nonlinear behavior of solitons in scattering.
We find that Gross-Pitaevskii simulations are sufficient
to account for our observed double-peaked histogram, be-
cause of their strong sensitivity to small fluctuations of the
experimental parameters and in particular to the soliton
velocity. We argue, however, that mesoscopic quantum
superpositions of all atoms being reflected and all atoms
being transmitted [49–51], could be observable in similar
conditions provided that the number of atoms is signifi-
cantly reduced.

Methods. – Our experiment starts with a 39K con-
densate in the |F = 1, mF = −1〉 state, produced by
evaporative cooling in an optical trap [52] close to the
561 G Feshbach resonance [53]. A soliton, containing N =
5500(800) atoms, is then created by ramping the mag-
netic field close to the scattering length zero crossing at
504.4 G [48,53]. The atoms then have a negative mean-
field interaction energy, which binds them together. The
elongated trap is made of two horizontal far-detuned opti-
cal beams (at 1064 nm and 1550 nm), and it has identical
radial frequencies of ω⊥/2π = 195 Hz and a longitudinal
frequency of ωz/2π = 44 Hz.

The soliton scattering in a 1D disordered potential is
studied through the measurement of the reflected fraction
of the cloud sent with a low velocity in a far off reso-
nance speckle field. The sequence is the following (see
fig. 1). The longitudinal (along z) confinement is sud-
denly removed and the soliton starts to propagate along z
in a 1D tube. We control the initial longitudinal acceler-
ation through the addition of a small magnetic-field gra-
dient. The latter is subsequently ramped down between
10 ms and 40 ms after trap release such that the accel-
eration then vanishes (see footnote 1). We choose the
initial acceleration in order to reach a velocity of either
v0 = 0.51(16)mm · s−1 or v0 = 0.90(20)mm · s−1, cor-
responding to a center-of-mass kinetic energy per particle
Ekin/h = mv2

0/2h = 13(8)Hz or 40(17)Hz, where m is the
atomic mass and h the Planck constant. The fluctuations
of the initial velocity exceed, by a factor ∼25, those associ-
ated with the quantum fluctuations of the soliton center of
mass in the ground state of the initial trap. They are due
to uncontrolled and undamped residual dipole oscillations
in the initial trap.

A 1D disorder potential is then turned on for 50 ms and
the atoms are partially scattered or reflected, since we
are in a 1D situation. After a waiting time of 150 ms,

1In practice, we have an additional residual anti-trapping curva-
ture of frequency i×1.9Hz [48], which only plays a role on long time
scales and that we take into account in the analysis.

Fig. 1: (Color online) Schematic of the experimental sequence.
A soliton is launched into a 1D waveguide along z (continu-
ous blue line) from a longitudinal trap (dotted red line). The
soliton is first accelerated to a controlled velocity v0 before a
1D speckle at 532 nm (green curve) is shone on the atoms for
50ms. The reflected and transmitted parts are finally sepa-
rated and observed after an additional 150 ms wait time, when
an image of the density distribution is taken.

the transmitted and reflected components are well sep-
arated, and the radial trap is switched off. Each cloud
expands for another 22 ms, and the separated components
are observed (fig. 1) by resonant fluorescence imaging as
presented in [48]. The atom numbers in each component
are directly obtained (within a multiplying constant) by
integration over two zones corresponding to positive and
negative velocities (see fig. 1), whereas the background is
estimated from neighboring zones. We thus have a mea-
surement that is independent of any assumption on the
cloud shapes. The accuracy of atom number detection
permits us to determine the reflected fraction with a 10%
accuracy for each individual run.

The disorder is created from a laser speckle at 532 nm,
which yields a repulsive conservative potential for the
atoms [54]. The laser beam, propagating perpendicularly
to z, passes through a diffusing plate and is focused on
the atoms. Its cross-section intensity distribution on the
diffusing plate is elliptical, with the long axis along z and
the short axis perpendicular to z. The speckle pattern
shone on the atoms has an intensity autocorrelation func-
tion whose widths along these two directions are, respec-
tively, σz = 0.38 μm, and 2.4 μm (half-width at 1/

√
e).

Along the propagation axis of the laser beam, this autocor-
relation width is 10 μm. The two correlation lengths per-
pendicular to z exceed the r.m.s. radial size of the cloud
given by the ground-state extension of the harmonic oscil-
lator

√
h/4πmω⊥ = 0.8 μm. The disordered potential is

thus one-dimensional for the atoms moving along z. The
disorder correlation width σz = 0.38 μm corresponds to
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kσz = 0.12(4) and kσz = 0.21(5), where k = 2πmv0/h is
the k-vector of the de Broglie wave of an individual atom
moving at the velocity v0 of our two sets of data. Conse-
quently, individual atoms experience quantum scattering
(quantum tunneling and quantum reflection) in this dis-
order [6,10]. Scattering experiments with non-interacting
atoms at various velocities and disorder amplitudes allow
us to calibrate the speckle amplitude (see supplementary
material Supplementarymaterial.pdf). For the study
reported in this paper, we use VR/h = 13.5(2.0)Hz, where
VR is the mean value of the exponential probability dis-
tribution of the potential due to the laser speckle (VR is
equal to both its average and r.m.s. value). The probabil-
ity for a single atom to be reflected during its interaction
with the speckle is typically ∼35% and we work in the
single-scattering regime.

Results. – The measurements of the reflected frac-
tions are performed for solitons and for non-interacting
clouds. For a scattering length a = −2.0(2) a0 (a0 is the
Bohr radius), a strongly bound soliton is formed, close to
the collapse threshold [48,55]. An approximate value of
the chemical potential can be obtained based on the 1D
formula: μ1D/h = − 1

2mω2
⊥N2a2/h = −25(12)Hz. This

value is comparable to the center-of-mass kinetic energy
per particle and we expect an effect of the interactions in
the scattering process. On the contrary, for a = −0.9(2) a0,
the interaction energy is barely sufficient to hold the atoms
together after the trap release and the cloud is observed to
slowly spread at long time. Choosing such a value of the
scattering length permits to avoid the spread in velocity
that would be given by

√
hωz/4πm = 0.47 mm · s−1 for a

non-interacting condensate. Regarding the scattering in
the disorder, in this case, the atoms can be considered as
non-interacting.

For each set of parameters, we repeat the scattering
experiment several times. In similar experimental condi-
tions, the measured reflected fractions fluctuate between
0 and 100%, as reported in the histograms of the reflected
fractions (fig. 2). At Ekin/h = 13(8)Hz (fig. 2(a)), the his-
togram shows two distinct peaks centered around reflected
fractions of ∼0.2 and ∼0.85. Moreover, the soliton rarely
splits into two equal reflected and transmitted parts. This
histogram thus shows a tendency for the atoms to be col-
lectively either reflected or transmitted. This is in contrast
with the observed behavior for non-interacting clouds at
the same kinetic energy (fig. 2(c)): the histogram then
exhibits a single broad peak around a reflected fraction
of ∼0.35. This observed striking difference between inter-
acting and non-interacting situations is a clear indication
of an effect of the nonlinearity in the scattering of bright
solitons.

We now compare those findings with experiments per-
formed at a larger center-of-mass kinetic energy Ekin/h =
40(17)Hz (fig. 2(b) and fig. 2(d)). We find that the double-
peak feature in the histogram obtained with solitons tends
to disappear (fig. 2(b)). These additional results show that

Fig. 2: (Color online) Histograms of the experimentally mea-
sured reflected fractions of solitons ((a) and (b) in red) and
non-interacting atoms ((c) and (d) in blue). The double-peak
structure in (a) is a clear signature of nonlinear scattering. The
chemical potentials of solitons in (a) and (b) are estimated to
be µ1D/h = −25(12) Hz. The center-of-mass kinetic energies
are Ekin/h = 13(8) Hz in (a) and (c) and Ekin/h = 40(17) Hz
in (b) and (d). The error bars are given by

√
Nb, where Nb is

the number of events in each bin. The number of repetitions
per histogram is ∼ 90.

the ratio α = −μ/Ekin is an important parameter, com-
paring the chemical potential to the kinetic energy. Its
value is, respectively, α ∼ 2 and α ∼ 0.6 in fig. 2(a)
and (b). In our experiment, the nonlinear behavior is thus
observed to set in for α of the order of 1. Note that when
α > 4, it becomes energetically forbidden to split the soli-
ton into two equal parts [41,44].

In order to interpret our results more quantitatively, we
compare them with numerical simulations of the 1D Gross-
Pitaevskii equation. For each given set of parameters we
find a unique value of the reflected fraction, and in order to
compare to our histograms, we repeat the simulations tak-
ing into account the fluctuations in velocities and speckle
amplitudes corresponding to the ones in the experiments.
Moreover, we also sample over different speckle realiza-
tions, although we keep the same speckle pattern in the
experiment (see the discussion below). The simulated his-
tograms (see fig. 3) are similar to the experimental ones for
non-interacting atoms and for solitons with a chemical po-
tential μ/h = −35 Hz. A good match with the experimen-
tal data is obtained in the range −27 Hz > μ/h > −43 Hz.
Such a chemical potential is in agreement with the previ-
ously estimated experimental value. For more negative val-
ues of the chemical potential, the simulation results tend
toward full reflection or transmission of the solitons. For
less negative values of the chemical potential, the results
are close to those expected for non-interacting atoms, con-
sistently with the importance of the ratio α = −μ/Ekin.

One may question the validity of the above comparison,
since, experimentally, we do not move the diffusive plate
and thus do not change the speckle realization. In fact,

10007-p3

http://stacks.iop.org/0295-5075/117/10007/mmedia


A. Boissé et al.

Fig. 3: (Color online) Histograms of the reflected fractions sim-
ulated from the 1D Gross-Pitaeskii equation for our parameters
and for random disorders. The chemical potential of solitons
((a) and (b)) is adjusted to match the experimental findings
to µ = −h × 35Hz. The center-of-mass kinetic energies are
Ekin/h = 13(8) Hz in (a) and (c) and Ekin/h = 40(17) Hz in
(b) and (d). The error bars are given by

√
Nb, where Nb is the

number of events in each bin. The number of repetitions per
histogram is ∼ 500.

the fluctuations in the initial velocity of the condensate
lead also to fluctuations in the region of the disorder ex-
plored by the atoms, during the period when the disorder
is turned on (fig. 1). We have checked that simulations
with variations in the initial velocity and a fixed typical
disorder yield a distribution of the reflected fractions simi-
lar to the one obtained with different disorders. Moreover,
after tens of repetitions of the experimental cycle, thermal
drifts of the position of our trapping beam relative to the
speckle would correspond to an additional disorder aver-
aging. We conclude that the Gross-Pitaevskii equation is
sufficient to simulate our experimental results, provided
that we take into account fluctuations of the experimental
conditions.

It is nevertheless interesting to consider the possibil-
ity that the shot-to-shot variations of the observed reflec-
tion coefficient would stem from a mesoscopic quantum
superposition of most atoms reflected and most atoms
transmitted. Such a beyond mean-field behavior has been
theoretically predicted in the case of a quantum reflection
of a soliton on a thin barrier, when it is energetically pro-
tected from splitting [49–51]. In this case, a key parameter
is Nkσz (where Nk is the soliton k-vector), which governs
the scattering of the N -body bound state. A global quan-
tum behavior is expected only for Nkσz of the order of 1
or below, or equivalently when the de Broglie wavelength
of the giant particle is larger than the defect sizes. With
our parameters, Nkσz ≈ 103 � 1, the soliton as a whole
is expected to behave classically, with either full trans-
mission or full reflection, depending on the relative value
of its kinetic energy compared with the highest poten-
tial peak in the explored disorder sample. It rules out an

interpretation of our results in terms of mesoscopic quan-
tum superpositions, which should be observable for lower
atom numbers.

Conclusion. – In conclusion, we have studied the scat-
tering of bright atomic solitons in a regime where the in-
teraction energy exceeds the center-of-mass kinetic energy,
and compared it to the scattering of non-interacting atoms
with the same velocity. We identify a nonlinear regime
of scattering that is characterized by a tendency for the
soliton to be either fully transmitted or reflected, as
clearly visible in the histograms of reflected fractions. This
behavior is captured in the Gross Pitaevskii mean-field
approach, provided that we take into account the strong
sensitivity of the nonlinear behavior to the fluctuations of
the experimental parameters such as the soliton velocity.

For longer propagation time in the disorder (and pos-
sibly slightly higher α = μ/Ekin), we would enter a
multiple-scattering regime and should observe the strik-
ing situation of a soliton propagating in the disorder with-
out scattering, whereas single atoms at the same velocity
would be Anderson localized [6,36] as previously observed
with superfluid-helium surface solitons [56]. The soliton
is then unaffected by the disorder as a giant classical ob-
ject. Another interesting possibility would be to replace
our static disorder by thermal atoms acting as random
moving scatterers. In this case, Brownian motion of the
soliton is expected [57,58].

Finally, reducing the atom number in the soliton to
10 or 100 particles, while keeping the same value for the
chemical potential [59], would permit one to be in the ap-
propriate regime to observe mesoscopic quantum superpo-
sitions of the soliton behaving globally as a giant quantum
particle [50]. Such states would be interesting for inter-
ferometry beyond the standard quantum limit [44,60–65],
and the study of decoherence of these mesoscopic quan-
tum superposition would be especially interesting. Note
also that in this quantum regime, Anderson localization
of the whole soliton is predicted [66].
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