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Abstract – The mean velocity of a finite-size short light pulse in a far zone is defined as the
vectorial sum of velocities of all rays forming the pulse. Because of diffraction, the mean pulse
velocity defined in this way is always somewhat smaller than the speed of light. The conditions are
found when this slowing-down effect is sufficiently pronounced to be experimentally measurable.
Under these conditions the original Gaussian shape of a pulse is found to be strongly modified
with significant lengthening of the rear wing of the field envelope. Schemes for measuring these
effects are suggested and discussed.

Copyright c© EPLA, 2017

Introduction. – Propagation of light pulses in vac-
uum is a rather widely investigated process [1–9], the
main features of which are well established and known.
But, to the best of our knowledge, there is at least one
question which is not sufficiently analyzed in the litera-
ture and the importance of which is not fully recognized.
This is the question about propagation velocities of light
pulses in vacuum: whether the pulse-propagation veloc-
ity in vacuum is identical to or different from the speed
of light c = 3 × 1010 cm/s. For answering this question
one needs a clear definition of the pulse-propagation ve-
locity. Such definition used below can be explained qual-
itatively in terms of geometrical optics with a finite-size
light pulse considered as consisting of a very large num-
ber of rays, such that in each ray light propagates with
the same speed c but with different directions of the indi-
vidual ray velocities. The difference of ray-propagation
directions is assumed to be determined by the diffrac-
tion of pulses having finite transverse dimensions. Then,
the vectorial sum of appropriately weighted individual ve-
locities of light in rays can be considered as the mean
velocity of a pulse 〈�v 〉 or as the velocity of pulse as a
whole. Clearly enough, in a general case, the defined
in this way pulse-propagation velocity |〈�v 〉| is somewhat
smaller than the speed of light c. In many cases the dif-
ference c − |〈�v 〉| is rather small. But, as shown below,
in the case of very short and narrow pulses, in their far
zone, the difference between |〈�v 〉| and c can be sufficiently

well pronounced and measurable. Below we find explicit
expressions for the pulse-propagation velocity by using a
solution of the boundary problem with Gaussian boundary
conditions and with the field obeying Maxwell equations.
We show that the slowing-down of the pulse propagation is
related closely to the rather well pronounced and caused
by diffraction lengthening of the pulse at its rear front.
Some experimental schemes for observing this effect will be
discussed.

Note that, though not used earlier for classical free-
space light pulses, the described-above definition of the
mean pulse-propagation velocity is not absolutely new.
Historically such approach originates from features of the
particle propagation in the special-relativity theory ap-
plied to pairs of noncollinear photons [10,11]. Evidently,
the vectorial sum of momenta of two noncollinear photons
is a vector, the absolute value of which is less than the sum
of photon energies divided by c. Owing to this the system
of two noncollinear photons as a whole can be character-
ized by its nonzero Lorentz-invariant mass. The appear-
ance of a nonzero mass means immediately that the system
of two noncollinear photons as a whole moves with a veloc-
ity smaller than the speed of light, though each individual
photon of the system moves with its own velocity equal to
the speed of light. Moreover, as shown in [10,11], for any
pair of noncollinear photons one can identify its rest frame
where absolute values of photon’s momenta have equal ab-
solute values but opposite directions. In this frame the
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system of two photons as a whole does not move at all.
This is an extreme manifestation of the slowing-down ef-
fect owing to the noncollinearity of the wave vectors of
photons.

Much later the slowing-down effect arising owing to non-
colliearity was seen explicitly in the experiment [12] with
pairs of photons obtained in the process of noncollinear
Spontaneous Parametric Down-Conversion. In this pro-
cess the initial beam is a sequences of well-separated from
each other pairs of simultaneously produced photons. Ow-
ing to different conditions of propagation, photons in one
of the two channels were slightly delayed compared to pho-
tons in the other channel, and this delay was registered in
a very nice way with the help of coincidence measurements
in the well-known Hong-Ou-Mandel effect [13]. Two im-
portant points to be emphasized concern the reasons of
noncollinearity and temporal delay in the experiment [12].
First, the original noncollinearity of photon propagation in
the SPDC process arises owing to the appropriately chosen
orientation of a crystal which is not related to diffraction.
And second, for making the effect more visible and more
easily observable, it was strengthened by means of focus-
ing and than defocusing the photon beam in one of the
channels in a set of two confocal lenses, which produced
a temporal effective additional noncollinearity also not re-
lated to diffraction.

At last, in our recent work [14] the ideas of two non-
collinear photons and their Lorentz-invariant mass [10,11]
were generalized for the case of an extremely high number
of photons forming a light pulse. The latter was character-
ized quantum mechanically as a superposition of infinitely
many multiphoton states in the form of multimode coher-
ent states [15]. A light pulse was considered as a relativis-
tic beam of photons and its Lorentz-invariant mass and
propagation velocity were found from general relativistic
formulas relating total energy, total momentum and mass.
In this approach diffraction is immanently present. But it
was supposed to be very weakly pronounced and, in anal-
ogy with [12], the effect was suggested to be strengthened
by focusing and defocusing beam in the confocal lenses. In
contrast to this, in the present work we consider a purely
classical light beam, and we rely only on diffraction. By
comparing the results to be described below with those of
ref. [14] we find that the approaches of these two works
are absolutely compatible and supporting each other. We
believe that both the given above definition of the mean
pulse-propagation velocity and its explicit derivation given
below are fundamentally important. In principle, these
results can be important also in practice, e.g., for correct
high-precision measurements of distances with femtosec-
ond laser pulses.

The far-zone structure of short Gaussian
pulses. – Let us reproduce briefly the well-known pro-
cedure of solving a boundary problem for the electric field
of a Gaussian pulse [14]. Let the pulse be propagating
along the z-axis, and at the boundary z = 0 its electric

field E be modeled by the Gaussian form both in trans-
verse coordinate �r⊥ and time t

E(�r; t)
∣∣
z−=0

= E0 exp
(
− r2

⊥
2w2

− t2

2τ2

)
cos (ω0t) , (1)

where w, τ , and ω0 are the waist of the pulse at z = 0,
pulse duration and central frequency. We do not specify
here the polarization of the field and do not consider its
magnetic component as this detailing is unnecessary for
the problem under consideration.

The Gaussian exponents in eq. (1) can be Fourier-
transformed to reduce this equation to the form

E(�r; t)|z=0 = E0
w2τ

(2π)3/2
Re

∫
d�k⊥dω ei�k⊥�r⊥e−iωt

× exp
(
−k2

⊥w2

2
− (ω − ω0)τ2

2

)
. (2)

With the integrand on the right-hand side of this equa-
tion multiplied by eikzz with kz = (ω2

c2 −�k2
⊥)1/2, the same

expression determines the field in all the half-plane z ≥ 0.
Let us write down this result in the paraxial approxima-
tion, in which |�k⊥| � ω/c and, hence, kz ≈ ω

c − c�k2
⊥

2ω .
Under this condition

E(�r; t) = E0
w2τ

(2π)3/2
Re

∫
d�k⊥dω exp

[
iω

(z

c
− t

)]

× exp
[
i�k⊥�r⊥ − k2

⊥
2

(
w2 + i

cz

ω

)
− (ω − ω0)τ2

2

]
. (3)

The integral over d�k⊥ is easily taken to give

E(�r, t) =
E0τ√

2π
Re

{ ∫
dω

LD(ω)
iz + LD(ω)

exp
[
iω

(z

c
− t

)]

× exp
[
− (ω − ω0)2τ2

2
− �r 2

⊥
2c

ω

iz + LD(ω)

]}
, (4)

where LD(ω) = w2ω/c ≡ LD × [1 + (ω − ω0)/ω0] is the
diffraction length for a light wave with frequency ω and
initial (at z = 0) transverse size w; LD ≡ LD(ω0). Let us
assume now that light pulses under consideration consist
of many periods,

cτ 	 λ, or |ω − ω0| ∼ 1/τ � ω0, (5)

and the function ω/(LD(ω) + iz) in the second line of
eq. (4) can be expanded in powers of the parameter
(ω − ω0)/ω0 � 1 up to the first order to give

ω

iz + LD(ω)
≈ ω0

LD + iz
+

iz

(iz + LD)2
(ω − ω0).

With this expansion substituted into eq. (4) and with
LD(ω) approximated by LD in the pre-exponential fac-
tor, we get again the Gaussian integral in the frequency
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Fig. 1: The field distribution in a far zone in the (xz) plane (the
gray area) and the suggested scheme of measurement, indicat-
ing the effect of slowing-down propagation along the z-axis of
peripheral rays of the pulse; the fat lines with arrows are the
propagation velocities of light in rays and their projections on
the the z-axis; D denotes detectors (e.g., open-end fibers).

variable ω which is easily taken to reduce eq. (4) to the
form

E(�r, t) = E0Re

⎧⎨
⎩ LD

iz + LD
exp

[
iω0

(z

c
− t

)]

× exp
[
− ω0�r

2
⊥

2c (iz + LD)

]

× exp

⎡
⎣− 1

2(cτ)2

(
z − ct − z�r 2

⊥/2
(iz + LD)2

)2
⎤
⎦

⎫⎬
⎭ .

(6)

In a general case this expression for the field strength can
be rewritten as E(�r, t) = A(�r, t) cos[ω0(z/c − t) + Φ(�r, t)]
with real amplitude A(�r, t) and phase Φ(�r, t). The phase
Φ(�r, t) determines internal structure of oscillations in the
pulse, the analysis of which is beyond the scope of this
work. As for the field amplitude, it takes a rather simple
form in the far-zone limit, when z 	 LD:

A(�r, t) = E0
LD

z
exp

[
−ω0�r

2
⊥LD

2cz2

]

× exp

[
− 1

2(cτ)2

(
z − ct +

�r 2
⊥

2z

)2
]

. (7)

The first of the two exponents in this equation character-
izes diffraction. It determines the light diffraction angle:
α = r⊥/z ≤

√
c/ω0LD = c/ω0w = λ0/2πw, where λ0

is the central wavelength of the pulse. The second expo-
nent in eq. (7) characterizes the pulse structure. The field
structure is axially symmetric, and its section by the plane
(xz) is shown schematically in fig. 1. This picture, as well
as all further consideration correspond to the case when
the pulse length cτ is much shorter than the diffraction
length LD and, hence, much shorter than the distance be-
tween the initial plane z = 0 and the observation region
around z ≈ ct. Under these conditions and at any given

value of r⊥ the peak of the pulse envelope A(�r, t) (7) is
achieved at z and t obeying the equation

z − ct +
r2
⊥

2z
= 0, (8)

the solution of which is given by

zpeak =
ct

2
+

√
(ct)2

4
− r2

⊥
2

≈ ct − r2
⊥

2(ct)
. (9)

In the last approximate expression of this equation it is
taken that r⊥ � z ≈ ct. Equation (8) determines the
location of a spreading short pulse in the far zone in a
region shown as a gray arc in fig. 1. Such distributions
have been seen earlier, e.g., in the theoretical researches
of refs. [4,9]. Below, this geometry of the field distribution
is used for the analysis of the mean propagation velocity
of a pulse.

The mean propagation velocity of a diverging
light pulse. – The lines OC, OB, OG in fig. 1 describe
three examples of rays in a pulse. The light in these rays
propagates with the speed of light c for equal distances
OC = OB = OG = ct 	 LD. The distance OA is the
projection of the upper-ray trajectory OC on the z-axis.
As seen clearly from fig. 1, OA < OB, i.e., the projections
on the z-axis of paths of rays non-parallel to this axis are
shorter than their own total path-length ct and than the
path-length ct of the ray propagating along the z-axis.
At small values of the angle α between the propagation
direction of rays and the z-axis the difference of path-
lengths is easily estimated as

Δz = OB − OA = ct − ct cos α ≈ r2
⊥

2ct
� ct. (10)

As during a given propagation time t the rays non-parallel
to the z-axis cross a smaller distance along this axis, the
velocities of their propagation in this direction are smaller
than that of the ray ‖Oz, and they are detrmined by the
projections of total velocities �v on the z-axis as shown in
the inset of fig. 1:

vz(r⊥) = c cos α = c − Δz

t
= c

(
1 − r2

⊥
2z2

)
. (11)

As mentioned in the introduction we are interested here
primarily in the propagation velocity of a pulse as a whole,
i.e., in the mean velocity 〈�v 〉 defined as the vectorial sum
of velocities of all rays of a pulse coming into the sum with
the weighting function given by the squared diffraction
part of the pulse amplitude (the first exponent in eq. (7)).
Because of the axial symmetry, transverse components of
the mean velocity are equal to zero, 〈vx〉 = 〈vy〉 = 0,
whereas its z-component is given by

〈vz〉 = c

⎧⎪⎪⎨
⎪⎪⎩1 − 1

2z2

∫
d�r⊥r2

⊥ exp
[
−ω0�r

2
⊥LD

cz2

]
∫

d�r⊥ exp
[
−ω0�r

2
⊥LD

cz2

]
⎫⎪⎪⎬
⎪⎪⎭ . (12)
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With integrals easily calculated, we get immediately the
final expression for the mean propagation speed of a di-
verging laser pulse in a far zone:

〈vz〉 ≡ |〈�v 〉| = c

(
1 − c

2ω0LD

)
= c

(
1 − λ2

0

8π2w2

)
. (13)

Interesting enough, this result coincides exactly with that
derived in our previous work [14] in the frame of an ab-
solutely different approach. We have considered there di-
verging pulses as relativistic objects characterized by their
nonzero Lorentz-invariant mass, which was calculated. As
usual in relativistic physics, objects with nonzero mass
move with a velocity smaller than the light speed c. Based
on this idea, the mean propagation velocity of a light pulse
was found from relativistic equations connecting the total
energy, momentum, invariant mass and propagation veloc-
ity of an object. In this way the mean pulse-propagation
velocity was found to be given by the same equation as de-
rived here, eq. (13). We believe that the present derivation
is also very important because it clarifies the physics of the
phenomenon in terms of geometrical optics and diffraction
of finite-size light pulses.

The mean pulse-propagation velocity (13) is related di-
rectly to the mean shortening of the pathways along the
z-axis, summed over all rays of a pulse:

〈Δz〉 = (c − 〈vz〉)t = z

(
1 − 〈vz〉

c

)
= z

λ2
0

8π2w2
. (14)

Conventionally, the quantity z−〈Δz〉 can be referred to as
the z-coordinate of the pulse’s “center of gravity” though,
of course, it is not related at all to the true gravity features
of light.

Observation in experiments. – Concerning seeing
in experiments the described slowing-down effect, one of
the possible schemes is shown in fig. 1. Measurements
are assumed to be done by two detectors located at dif-
ferent distances from the z-axis but in the same obser-
vation plane perpendicular to the z-axis. Detectors can
be represented simply by open-end fibers. With parame-
ters given by eq. (16) detectors can be installed at a dis-
tance of z = 1m from the light source, for example, in
the horizontal plane, at transverse coordinates x1 = 0 and
x2 = 1 cm. With fibers of equal length signals from detec-
tors can be sent to the knife-edge prism to merge into a
single beam which has to be sent to a device like FROG
(Frequency-Resolved Optical Gating) pulse analyzer. The
expected result to be seen at the monitor has to represent
a double-pulse structure qualitatively shown in fig. 1 with
the spacing between pulses to be given by Δz of eq. (10)
numerically equal to ∼ 0.128mm at values of parameters
of eq. (16).

Note that splitting of two pulses in this scheme is
well pronounced if 〈Δz〉 	 cτ . Combined with the as-
sumption (5), this gives the following conditions when
the slowing-down effect is well pronounced and can

Fig. 2: The pulse shape in a far zone (solid curve) and the
original pulse (dashed curve); “c.g.” is the “center of gravity”
of the pulse in units of cτ , (〈Δz〉/cτ) .

be observed:

〈Δz〉 = z
λ2

0

8π2w2
= λ0

z

2Ld
> cτ 	 λ0, (15)

which assumes in particular that z 	 LD. Below is an
example of parameters, which are realistic and at which
the conditions (15) are satisfied:

τ = 30 fs, λ0 = 1μm, w = 10λ0 = 10μm, z = 1m. (16)

These parameters correspond to the pulse length cτ =
9μm, diffraction length LD = 628μm, diffraction angle
α ∼ λ0/2πw = 0.016 = 9◦, transverse size of the light spot
at the measurement plane xD ∼ αz = 1.6 cm, peripheral-
ray path lengthening distance Δz ∼ x2

D/2z = 128μm =
14cτ , and parameter z/2LD = 796 	 1.

In addition to the mean, averaged, parameters of a light
pulse, presentation of its amplitude A(r⊥, z, t) in the form
of eq. (7) can be used to find the total pulse shape by
means of integration of A2 over transverse coordinates at
given z and t. The result of integration is given by

F (ξ) =
∫

d�r⊥A2(r⊥, z, t) =
E2

0L2
Dπ3/2

2z2

× exp
(

a2

4
+ aξ

)
erfc

(a

2
+ ξ

)
, (17)

where ξ = z/c−t
τ , “erfc” is the complementary error func-

tion, and a = (2πw
λ0

)2 2cτ
z . At the above given values of the

pulse parameters (16) a = 0.07, and the function F (ξ) de-
termining the pulse shape is shown in fig. 2. The dashed
curve is the appropriately normalized original pulse. The
solid curve in fig. 2 indicates a rather significant length-
ening and slowing-down of the pulse as a whole owing to
diffraction. The arrow indicates a position of the above-
defined “center of gravity” 〈Δz〉. Figure 2 indicates the
existence of not only a rather well-pronounced effect of
slowing-down of the pulse as a whole, but even a small
delay of its peak value compared to the diffraction-free
position at ξ = 0. Different parts of the curve arise from
different rays forming the light pulse: the part close to
ξ = 0 arises from the central rays, whereas the long wing
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at ξ < 0 corresponds to delayed peripheral rays of the
pulse. In principle, lengthening of the pulse rear wing
can be observed experimentally in the same way as shown
in fig. 1 but with a series of additional fiber detectors in-
stalled along the z-axis between the upper and lower ones,
with equalized lengths of fibers from detectors at z = const
to the arrival-time resolving device. In a more sophisti-
cated way, for reconstructing all the curve in fig. 2, detec-
tors can be installed along rings around the z-axis with
equal spacings between detectors in all rings and with sig-
nals from detectors in each given ring summed together.

Conclusion. – In conclusion, the conditions (15) are
identified under which the effect of slowing-down propa-
gation of short light pulses is well pronounced and can be
observed experimentally. Under these conditions the pulse
shape in the far zone changes significantly compared to
the original one: its rear wing significantly lengthens as
shown in fig. 2. Owing to this, the “center of gravity” of
a pulse appears to be pronouncedly delayed compared to
its front wing, and even the location of the peak of the
pulse envelope appears to be slightly delayed too. All this
indicates unambiguously that owing to diffraction a light
pulse obeying the conditions (15) propagates as a whole
with a mean velocity 〈�v 〉 smaller than the speed of light c.
Schemes of experiments for observing these effects directly
are discussed. Once again, we believe that it is fundamen-
tally important having a) a clear definition of the mean (or
“gravity-center”) velocity of light pulses, b) its explicit ex-
pressions for originally Gaussian pulses, c) identification of
diffraction as the reason for slowing down diverging pulses,
and d) identification of conditions when this effect can oc-
cur. Concerning measurements with very short pulses,
the carried out consideration shows that it is important

to know what is felt by a target, arrival of the front wing
of a pulse or of its “center of gravity” which propagates
with a velocity 〈vz〉 (13) smaller than the light speed c.
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