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Abstract – Microscopic theories of alpha decay and cluster radioactivity explain these decay
modes as a quantum tunnelling of a preformed cluster at the nuclear surface. In the present work
we show that in a spontaneous cold-fission process the shell plus pairing corrections, calculated
with Strutinsky’s procedure based on the two-center shell model, may give a strong argument
for preformation of a light fission fragment near the nuclear surface. It is obtained when the
radius of the light fragment, R2, is increased linearly with the separation distance, R, of the two
fragments, while for R2 = const one gets the well-known two-hump potential barrier for heavy and
superheavy nuclei. Nuclear-physics community also contributed to nanocluster physics by applying
the macroscopic-microscopic method to explain the shell effects experimentally observed since
1984. Applications are shown for two nuclei, 260Rf and 264Sg, whose half-life against spontaneous
fission is very well known. We stress a new aspect of the cold spontaneous fission, unifying its
theory with that of α- and cluster decays, all having in common a preformed light cluster which
will penetrate the potential barrier by quantum tunelling.

Copyright c© EPLA, 2017

Introduction. – In 1928 Gamow [1] as well as Condon
and Gurney [2] gave the first explanation of alpha de-
cay as a quantum tunnelling of a preformed particle at
the nuclear surface. It was the first application of quan-
tum mechanics to nuclear physics. Soon after the ex-
perimental discovery in 1984 by Rose and Jones [3] of
cluster radioactivity, confirming the earlier (1980) pre-
dictions [4], a microscopic theory [5] also explained the
phenomenon in a similar way. After 1928 the microscopic
theories of α-decay have been developed, see, e.g., [6]. Sim-
ple relationships are also very useful [7,8] to estimate the
half-lives.

Spontaneous fission was discovered in 1940 by Flerov
and Petrzhak. Usually the fission fragments are deformed
and excited; they decay by neutron emission and/or
γ-rays, so that the total kinetic energy (TKE) of the
fragments is smaller by about 25–35 MeV than the re-
leased energy, or Q-value. The asymmetric mass distri-
butions of the fission fragments and the spontaneously
fissioning shape isomers [9] could not be explained un-
til 1967, when Strutinsky reported [10] his macroscopic-
microscopic method. His calculations gave for the first

time a two-hump potential barrier. Shape isomers occu-
pied the second minimum. A brief presentation, at a level
of non-specialist, of the large diversity of nuclear decay
modes may be found in ref. [11].

Superheavy nuclei with atomic numbers Z = 104–118
are produced by fusion reactions [12,13]. The simplest
way to identify a new superheavy element synthesized in
such a way is to measure its α-decay chain, down to a
known nuclide. Sometimes this is not possible since its
main decay mode could be spontaneous fission. For atomic
numbers larger than 121 cluster decay may compete as
well [14]. Among the many theoretical papers in this field
one should mention [15–17].

It is also important to mention the contribution of nu-
clear physicists, e.g., [18,19], who adapted the nuclear
macroscopic-microscopic theory to atomic cluster physics,
where the shell effects have been observed since 1984 [20].

We reported [21,22] results obtained within the
macroscopic-microscopic method using cranking iner-
tia [23] and the best two-center shell model [24] in the
space of two independent variables (R, η), where R is the
separation distance of the fragments and η = (A1 −A2)/A
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is the mass asymmetry with A, A1, A2 the mass numbers
of the parent and nuclear fragments. Phenomenological
deformation energy, EY +E , was given by the Yukawa-
plus-exponential model [25], and the shell plus pairing
corrections, δE = δU + δP are based on the asym-
metric two-center shell model (ATCSM). This time we
give more detailed arguments for two superheavies (SHs)
with well-known spontaneous fission (SF) half-lives: 260Rf
and 264Sg. The deep minimum of total deformation en-
ergy near the surface is shown as a strong argument for
light fragment preformation in cold fission, discovered in
1981 [26]. It is obtained when the radius of the light frag-
ment, R2, is increased linearly with the separation dis-
tance, R, of the two fragments, while for R2 = const one
gets the well-known two-hump potential barrier.

While usually the disagreement of calculated sponta-
neous fission half-lives, even with the most advanced
models like density functional theory [16] or Hartree-Fock-
Bogoliubov approach with the finite-range and density-
dependent Gogny force with the D1S parameter set [17]
may be as high as ten orders of magnitude, we succeeded
with our method to get values under one order of magni-
tude —looking very promising. Our work gives an inter-
esting new aspect of the cold spontaneous fission, unifying
its theory with that of α- and cluster decays, all having
in common a preformed light cluster which will penetrate
the potential barrier by quantum tunnelling.

Results. – An outline of the model was presented pre-
viously [21]. Here we repeat just few lines. The parent
AZ is split in two fragments: the light, A2Z2, and the
heavy one, A1Z1, with conservation of hadron numbers
A = A1+A2 and Z = Z1+Z2. The corresponding radii are
given by R0 = r0A

1/3, R2f = r0A
1/3
2 , and R1f = r0A

1/3
1

with r0 = 1.16 fm. The separation distance of the frag-
ments is initially Ri = R0 and at the touching point it is
Rt = R1f + R2f . The geometry for linearly increasing R2
from 0 to R2f = Re is defined by

R2 = R2f
R − Ri

Rt − Ri
. (1)

We consider only spherical shapes allowing to have
only two shape independent coordinates: the separa-
tion distance, R, and the mass asymmetry parameter
η = (A1 − A2)/A. An example of the shape evolution,
corresponding to the above equation and to R2 = const is
given in fig. 1 for symmetrical fission of 264Sg. There are
6 stages for x = 0, 0.2, 0.4, 0.6, 0.8 and 1, meaning from a
parent nucleus, x = 0, to the touching point of the two
fragments, x = 1. The pear-shapes in the early stages are
clearly witnessing the octupole deformation, but near the
scission one has again reflexion symmetric shapes. This
transition leads to higher fission barriers. Two examples
of microscopic calculations may be seen in refs. [27,28].

According to the macroscopic-microscopic method
the total deformation energy contains the macroscopic
Yukawa-plus-exponential (Y+EM) term and the shell plus

x=0 0.2 0.4 0.6

0.8

0.8 1.0x=0

x=0 0.2 0.4 0.6 0.8 1.0

Fig. 1: Shape evolutions during the symmetrical spontaneous
fission of 264Sg from one parent nucleus, to two touching frag-
ments vs. x = (R − Ri)/(Rt − Ri) when the radius R2 of
the light fragment is linearly increasing (top) and R2 = const
(bottom).

pairing corrections,

Edef = EY +E + δE. (2)

In units of h̄ω0
0 = 41A−1/3 the shell corrections are calcu-

lated with the Strutinsky procedure as a sum of protons
and neutrons contributions,

δu = δup + δun. (3)

One obtains a minimum when there are important bunch-
ings of levels (high degeneracy of the quantum state: the
same energy corresponds to several states).

The BCS [29] theory was first introduced in condensed
matter in order to explain the superconductivity at a very
low temperature. It was extended to nuclei for the expla-
nation of the pairing interaction, see, e.g., [23].

For pairing corrections we have first to solve the
BCS [29] system of two equations with two unknowns,
Fermi energy λ and the pairing gap Δ,

0 =
kf∑
ki

εk − λ√
(εk − λ)2 + Δ2

, (4)

2
G

=
kf∑
ki

1√
(εk − λ)2 + Δ2

, (5)

where ki = Z/2 − n + 1, kf = Z/2 + n′ for proton levels.
We use G = const, and the energy window corresponds to
about one shell, enough to make any further contribution
of other levels negligibly small.

Finally the total shell plus pairing corrections in
MeV are

δE = δU + δP. (6)

Pairing correction is in general smaller in amplitude and in
antiphase with shell correction; it has an effect of smooth-
ing and reducing the total shell plus pairing correction en-
ergy. The experience of using Strutinsky’s method, gained
by several nuclear scientists (e.g., S. Bjørnholm), was also
successfully employed to study shell effects in atomic clus-
ter physics and nanotechnology.

In fig. 2 we present the contour plot of the macroscopic
(Y+EM) deformation energy for 264Sg with two fission
paths corresponding to R2 = const and R2 linearly in-
creasing. One can see how complicated can be the path

22001-p2



Cluster preformation at the nuclear surface in cold fission

Fig. 2: (Colour online) Contour plot of macroscopic (Y+EM)
deformation energy for symmetrical spontaneous fission of
264Sg vs. separation x = (R−Ri)/(Rt−Ri) and mass asymme-
try η = (A1 − A2)/A. Two fission paths are shown: for linearly
increasing R2 with continuous line and for R2 = const with
dashed line. The deformation energy scale: from a minimum
of −42 MeV to a maximum of 28 MeV.

for linearly increasing R2, compared to the simple one for
R2 = const. What is missing is the exit from the bar-
rier for linearly increasing R2; one should take it at the
small asymmetry near η = 0.1. The least action trajec-
tory, determined by our computer program, goes through
the minima of the action integral, which depends on the
product of total deformation energy and the cranking iner-
tia, and the jumps shown by the cyan line are determined
by this rule.

We can understand better the reality by looking at fig. 3
in which the total deformation energy (at the top) and
the cranking inertia (at the bottom) along this path are
shown. The product of these two quantities is determining
the half-life as shown in eq. (10). While the inertia is very
large at small x, the deformation energy is small there; its
highest peak stands around R = 10, where the inertia is
already equal to the reduced mass, as it should be at the
touching point. By multiplying cranking inertia by total
deformation energy, which is quite small there, and then
taking the square root in a narrow interval of R, as may
be seen from fig. 3, the total effect on the half-life is not
very big.

Any component of the inertia tensor [23] is given by

Bij =2h̄2
∑
νμ

〈ν|∂H/∂βi|μ〉〈μ|∂H/∂βj |ν〉
(Eν + Eμ)3

(uνvμ+uμvν)2,

(7)

where H is the single-particle Hamiltonian allowing to
determine the energy levels and the wave functions |ν〉;
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Fig. 3: Total deformation energy and cranking inertia for 264Sg
symmetrical spontaneous fission vs. separation distance R
along the fission path for linearly increasing R2 shown in fig. 2.
m is the nucleon mass.

u2
ν , v2

ν are the BCS occupation probabilities, Eν is the
quasiparticle energy, and βi, βj are the independent shape
coordinates.

For spherical fragments with R, R2 deformation param-
eters, the cranking inertia symmetrical tensor will have
three components, hence the scalar

B(R) = BR2R2

(
dR2

dR

)2

+ 2BR2R
dR2

dR
+ BRR (8)

or B = B22 + B21 + B11. When we find the least action
trajectory in the plane (R, R2), we need to calculate the
three components B22, B21, B11 in every point of a grid of
66×24 (for graphics) or 412×24 (for the real calculation)
for 66 or 412 values of (R − Ri)/(Rt − Ri) and 24 values
of η = (A1 − A2)/A or R2f .

The half-life of a parent nucleus against spontaneous
fission is given by

T = [(h ln 2)/(2Ev)]exp(Kov + Ks) (9)

and is calculated by using the Wentzel-Kramers-Brillouin
(WKB) quasiclassical approximation, according to which
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Fig. 4: Comparison of absolute values of shell and pairing cor-
rection energies for symmetrical fission of 260Rf with R2 con-
stant (dashed line) and linearly increasing R2 (solid line).

the action integral is expressed as

K =
2
√

2m

h̄

∫ Rb

Ra

{[(B(R)/m)][Edef (R)−Edef(Ra)]}1/2dR

(10)

with m the nucleon mass, B = the cranking inertia (see
the equation above), K = Kov +Ks, and the E(R) = Edef

potential energy of deformation. Ra and Rb are the turn-
ing points of the WKB integral where Edef = Edef (Ra) =
Edef (Rb). The two terms of the action integral K, cor-
respond to the overlapping (Kov) and separated (Ks)
fragments.

In order to illustrate the basic idea of this work, namely
there is a minimum of the total deformation energy, Edef ,
near the surface, produced both by microscopic shell and
pairing corrections, δE (fig. 4 and fig. 5 at the top), and
the solutions of the BCS system of two equations; we show
Δp and Δn in the middle and bottom parts of fig. 5.

The next figures presented in this letter are obtained
after finding the least action trajectory, as explained pre-
viously [21]. We compare in fig. 4 the absolute values of
shell and pairing correction energies for symmetrical fis-
sion of 260Rf with R2 constant (dashed line) and linearly
increasing R2 (solid line). While for R2 = const the two-
hump barrier is clearly seen, a completely different shape,
with a deep minimum near the nuclear surface, may be
seen when R2 is linearly increasing. As expected, the gap
for protons, Δp, and neutrons, Δn, solutions of the BCS
system of two equations, in fig. 5 are also following similar
variations. Deep minima around (R−Ri)/(Rt−Ri) = 0.82
are seen in both figures.

Similar results are also obtained for the SH nucleus
264Sg (see fig. 5). In this figure we compare the shell plus
pairing corrections (top) with the BCS gap for neutrons
(solid line) and protons (dashed line) for linearly increas-
ing R2 (central panel) and the BCS gap for neutrons and
protons for R2 = const (bottom). At the touching point,
R = Rt, both kinds of variations of R2 = R2(R) arrive at
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Fig. 5: Comparison of the shell plus pairing corrections (top)
with the BCS gap for neutrons (solid line) and protons (dashed
line) for linearly increasing R2 (central panel) and the BCS gap
for neutrons and protons for R2 = const (bottom).

the same state, hence the shell effects are identical there,
as may be seen in figs. 4 and 5. We observe in all fig-
ures the deep minima near the nuclear surface obtained
by using a linearly increasing R2.

For minimization of action we need not only BRR but
also the values of BR2R2 , BR2R in every point of the above-
mentioned grid. As expected we obtained a dynamical
path very different from the statical one.

We could reproduce, with errors lower than one order
of magnitude, the experimental values of 260Rf and 264Sg
spontaneous fission half-lives, log10 T exp

f (s) = −1.678,
and −1.432, respectively, by obtaining shorter half-lives:
log10 T theor

f (s) = −1.867, and −1.511, respectively.

Conclusions. – In conclusion, with our method of
calculating the spontaneous fission half-life including the
macroscopic-microscopic method for deformation energy
based on asymmetric two-center shell model, and the
cranking inertia for the dynamical part, we could find
a sequence of several trajectories one of which gives the
least action. Assuming spherical shapes, we found that
the shape parametrization with linearly increasing R2 is
more suitable to describe the fission process of SHs in
comparison with that of the exponentially or linearly de-
creasing law, or R2 = const. It is in agreement with the
microscopic finding for α-decay and cluster radioactivity
concerning the preformation of a cluster at the surface,
which then penetrates the potential barrier by quantum
tunnelling. When R2 = const one obtains the well-known
two-hump shape of the barrier.
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The experimental SF half-lives, log10 T exp
f (s) = −1.678,

and −1.432, respectively, have been well reproduced by
minimizing the action integral. Until we perform more
calculations for different nuclides we cannot be sure that
our positive results are obtained only by chance.
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