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Abstract – A social network is modeled by a complete graph of N nodes, with interpersonal
relations represented by links. In the framework of the Heider balance theory, we prove numerically
that the probability of each balanced state is the same. This means in particular, that the
probability of the paradise state, where all relations are positive, is 21−N . The proof is performed
within two models. In the first, relations are changing continuously in time, and the proof is
performed only for N = 3 with the methods of nonlinear dynamics. The second model is the
Constrained Triad Dynamics, as introduced by Antal, Krapivsky and Redner in 2005. In the
latter case, the proof makes use of the symmetries of the network of system states and it is
completed for 3 ≤ N ≤ 7.

Copyright c© EPLA, 2017

Introduction. – “War is the father of all things”
—this quote from Heraclitus reveals that conflicts are
ubiquitous in our life, and peace is rather an exception
than a rule. Here we are going to consider the probability
of accordance vs. conflict as a combinatorial problem,
much simplified in comparison with its general formula-
tion. The framework chosen here is the Heider balance, a
flagship example of an application of networks in social
sciences [1,2]. It is often presented in the form of four
statements [3]:

– a friend of my friend is my friend;
– an enemy of my friend is my enemy;
– a friend of my enemy is my enemy;
– an enemy of my enemy is my friend.

The process towards a state defined in this way, the so-
called balanced state, can be interpreted as a removal of a
cognitive dissonance [4], which we feel when, for example,
a friend of our friend turns out to be an unsuitable com-
panion. Various kinds of algorithms have been proposed
to model such a process. Here we are going to discuss two
of them, one continuous and one discrete. In the contin-
uous one, interpersonal relations are represented by real
variables, and their time evolution is governed by nonlin-
ear differential equations [5]. In the discrete one, known as
“Constrained Triad Dynamics” (CTD), the relations are

just positive or negative (±1), and their time evolution is
modelled by a Monte Carlo method [6].

It is worthwhile to note, that —despite obvious
differences— these two processes are inherently similar.
The process CTD is designed as to minimize energy U ,
where U can be defined as a number of unbalanced triads.
The continuous evolution of the relation s(i, j) between
agents i and j in the simplest form can be derived from
the classical mechanical rule ds(i, j)/dt = −dU/ds(i, j).
It is not strange, that the jammed states observed in [6]
are also jammed for the continuous dynamics. In such a
state, energy has a local minimum and the system remains
unbalanced. We should add, however, that the equations
of motion used below are designed as to keep the relations
s(i, j) in a prescribed range (−1, 1), and therefore they
cannot be derived with the above method.

In [6], the authors could prove that although the num-
ber of jammed states is much larger than the number of
balanced states, it is the balanced states that are generic.
This means that the basins of attraction of the balanced
states are much larger than those of the jammed states.
An analogous problem has been raised recently for asym-
metric relations, where s(i, j) �= s(j, i). There the number
of jammed states has been found to be at least N times
larger than the number of balanced states [7]. Here and
there N is the network size. The results of numerical sim-
ulations indicate that, contrary to the case of symmetric

58005-p1



M. J. Krawczyk et al.

relations, it is the jammed states that are generic. This
difference highlights the role of bassins of attraction of
particular stationary states [8].

Here we consider the balanced states for the symmet-
ric relations, where s(i, j) = s(j, i). As proved by [9], for
each balanced state the network is divided into two mutu-
ally hostile groups; this means, that all relations between
members of different groups are negative. On the con-
trary, all in-group relations are positive (friendly). One of
balanced states, the so-called paradise, has special status:
all relations are positive there. Our aim here is to check
what is the probability of this specific state: is it different
from the probability of other balanced states? Again, for
a deterministic rule of evolution the state probability is
equivalent to the size of its basin of attraction.

In two subsequent sections we provide the details of cal-
culations for the continuous model and the discrete model.
In the former case, the analysis is restricted to the sim-
plest case N = 3. In the latter, we work on the network
of 2M states, where M = N(N − 1)/2 is the number of
links in the network of relations s(i, j). The calculations
are carried out for N ≤ 7. The last section is devoted to
discussion.

The continuous model, N = 3. – The time evolution
of the relations is given by [5]

ds(i, j)
dt

= [1 − s2(i, j)]
N∑

k=1

s(i, k)s(k, j). (1)

The diagonal components s(i, i) are set to zero. The
role of the prefactor H(s) = 1 − s2 is to keep the re-
lations within a prescribed range (−1, 1); otherwise they
tend to infinity. The price we pay for this limitation is to
resign from the analytical solution [10]. For three agents
with symmetric relations s(j, i) = s(i, j), the model can
be conveniently written with new variables x, y, z. The
equations of motion are

dx

dt
= (1 − x2)yz,

dy

dt
= (1 − y2)zx, (2)

dz

dt
= (1 − z2)xy.

It is easy to see that the only stable fixed points
of this system are the following four: (x∗, y∗, z∗) =
(−1, −1, 1), (−1, 1, −1), (1, −1, −1), (1, 1, 1). In these
points, the Jacobian is diagonal, and all three eigenvalues
are equal to −2xyz. Hence all these points are balanced
in the sense of Heider, and there is no other balanced
points. The last fixed point (1, 1, 1) is the paradise state
(see fig. 1). Below we will refer to these balanced points
in the same order as given above.

Now, our problem can be formulated as follows. Sup-
pose that the initial values of x, y, z are taken from a
uniform probability in the ranges (−1, 1). What is the

Fig. 1: (Color online) The cube of states for N = 3. The
balanced states are marked in red. The paradise state is
(+1, +1, +1).

probability that the trajectory ends at each of the bal-
anced points? It is obvious that the probabilities of the
first three balanced points (except the paradise state) are
equal by symmetry. Hence we can denote the probabilities
as (p, p, p, 1 − 3p).

To tackle with the problem, let us start with the case
when the initial point x(0), y(0), z(0) is placed in the cube
(0, 1), (0, 1), (0, 1); in other words, all its coordinates are
positive. In this case, dx/dt is positive and so are other
two, dy/dt and dz/dt. It is clear that the trajectory ends
at (1, 1, 1). The contributions from this cube to the four
balanced endpoints are then 0, 0, 0, 1/8, because the vol-
ume of the considered subspace of the initial points is 1/8
of the total one.

The same scheme of argumentation leads us to the
conclusion that all trajectories started in the volume
(0, 1), (−1, 0), (−1, 0) end at the point (1, −1, −1). This
results from eqs. (2): sign(dx/dt) = sign(yz) > 0,
sign(dy/dt) = sign(zx) < 0, and sign(dz/dt) =
sign(xy) < 0. The related contributions to the prob-
abilities of the four above endpoints are 0, 0, 1/8, 0.
Similarly, when an initial point is within the volume
(−1, 0), (0, 1), (−1, 0), the endpoint must be at (−1, 1, −1),
and for an initial point at (−1, 0), (−1, 0), (0, 1) the trajec-
tory ends at (−1, −1, 1). Summarizing, trajectories which
start within the subvolumes which contain the balanced
points must end at those balanced points. So far, the
distribution of trajectories which end at the endpoints is
(1/8, 1/8, 1/8, 1/8).

When the trajectory starts at the cube
(−1, 0), (−1, 0), (−1, 0), the trajectory must leave this
cube, as there is no balanced points there. Let us take the
plane x = 0; there dx/dt > 0, dy/dt = dz/dt = 0, i.e.,
the trajectory crosses the plane, entering the neighboring
volume (0, 1), (−1, 0), (−1, 0). As shown above, such a
trajectory ends at (1, −1, −1). By symmetry, the cube of
all negative coordinates of the initial points gives equal
contributions (1/3, 1/3, 1/3, 0)/8 to the probabilities of
particular balanced points. The last zero is due to the
fact that the cube has no common walls with the cube
(0, 1), (0, 1), (0, 1).
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At last, we have three remaining cubes which do
not contain any balanced points. Consider the one
(0, 1), (0, 1), (−1, 0). This cube has common walls with
three other cubes with the balanced points. These
are: (−1, 0), (0, 1), (−1, 0), (0, 1), (−1, 0), (−1, 0) and
(0, 1), (0, 1), (0, 1). By symmetry, the contributions to the
first two cubes are equal. Also, they are different from
zero: for example, at the plane x = 0 the trajectory
crosses the plane, as dx/dt < 0. Hence the contribu-
tions from the cube (0, 1), (0, 1), (−1, 0) can be written as
(0, a, a, b = 1 − 2a)/8.

To calculate b, we have to refer to the concept of invari-
ant sets [11]. If a trajectory starts at an invariant set, it
must remain there. Consequently, if a plane is invariant, a
trajectory cannot go through it. Here we have at least six
invariant planes: x = ±y, y = ±z, z = ±x. This is seen di-
rectly from eqs. (2): once x = y, then dx/dt = dy/dt, etc.

Coming back to our exemplary cube
(0, 1), (0, 1), (−1, 0), we have three invariant planes
cutting it, but only two z = −x and z = −y are relevant
here. For initial points where z > −x, the endpoint
cannot be (−1, 1, −1). For initial points where z > −y,
the endpoint cannot be (1, −1, −1). The argument is
that no trajectory can go through the invariant plane,
which is between the initial and the final point. Hence, if
both these conditions are fulfilled, the trajectory ends at
(1, 1, 1). Note that for z < −x or z < −y, the endpoint
(1, 1, 1) cannot be reached. Hence

b =
∫ 1

0
dx

∫ 1

0
dy

∫ 0

max(−x,−y)
dz =

1
3
, (3)

hence a = 1/3 as well.
By symmetry, the cube (0, 1), (−1, 0), (0, 1) gives

the contributions (1/3, 0, 1/3, 1/3)/8, and the cube
(−1, 0), (0, 1), (0, 1) gives (1/3, 1/3, 0, 1/3)/8. Summa-
rizing, all balanced points are reached with the same
probability.

In a supplementary animation (see ref. [12]), we can see
a bunch of trajectories started from randomly selected ini-
tial points in the cube (0, 1), (0, 1), (−1, 0), the same as dis-
cussed above. Each trajectory reaches either (1, −1, 1−),
(−1, 1, −1), or (1, 1, 1). There is no path to (−1, −1, 1).
The animation shows three invariant planes: (x + z = 0),
(y + z = 0), and (x − y = 0) which cross this cube. We
can see that the trajectories never go through the planes.

The discrete model (CTD). – As described in [6],
the algorithm used in CTD is as follows. A link s(i, j) is
selected randomly, and an attempt is made to change its
sign. If the energy U , defined as

U = −
∑
ijk

s(i, j)s(j, k)s(k, i) (4)

decreases, the change is carried out. If U increases, the
change is withdrawn. If U remains constant, the change
is done with probability 0.5. Therefore, the network of

states is weighted and directed, on the contrary to the
network of relations s(i, j). Our task here is to compare
the probabilities of different balanced states in a fully con-
nected graph of N nodes. However, if the network is
not fully connected, this probability distribution is not
unique, but it depends on an initial state. Therefore we
allow for a finite probability of processes where energy
increases.

According to [13], we construct a network of graph
states: two states are connected if one state can be at-
tained from the other by a change of sign of one link.
There is M = N(N − 1)/2 links in the initial graph, and
the network of states contains 2M nodes. Some of them
are balanced, and their energy Ub is given by the binomial
coefficient

Ub = −
(

N

3

)
. (5)

Recall that the algorithm by [13] in the case of directed
and weighted network, which is such as that we are an-
alyzing here, consists of the following steps. At first we
identify nodes of the state network which have the same
in- and out-degrees. Next, they must be distinguished as
each node is characterized by the energy of the state it rep-
resents. This allows us to identify classes of nodes which
reflect the structure of connection between nodes. Two
nodes are classified to the same class if their neighbors are
in the same classes. Now note that the dynamics of the
initial graph is equivalent to a random walk of the system
in the network of states, with weighted and directed links.
The states which belong to the same class have the same
probability.

The above procedure is applied to the graph of relations
s(i, j). For numerical reasons, the calculations have been
performed to graphs of N = 7 nodes at most; then we have
21 degrees of freedom s(i, j) and 221 nodes in the network
of states. The result is that in each case, the paradise state
has been found to belong to the class of balanced states;
there is only one such class in the whole network of states,
and all balanced states belong to this class. Clearly, the
energy of each of these balanced states is the same as given
in eq. (4). We note that all states in the same class have
the same energy.

Summarizing, the probability of each balanced state is
equal.

In fig. 2 and subsequent figures 3, 4, 5, 6 we show the
obtained networks of classes, for N = 3, 4, 5, 6 and 7,
respectively. For N = 3 and 4, the networks of states are
also presented. Let us consider the simplest case where
N = 3 (fig. 2). On top, we see the network of states.
There, positive links are marked with red, and the nega-
tive ones with blue color. There are eight possible states,
four of them are balanced. In the middle network of fig. 2,
the balanced states are marked with stars, and the un-
balanced ones with triangles. As we see, each star has
three triangles as neighbors, and each triangle has three
neighboring stars. This means, that there are two kinds
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Fig. 2: (Color online) For N = 3, we show the network of states
(top), where positive links are marked with red, and negative
links with blue color. If colors are exchanged (red → blue,
blue → red), the picture is reflected in a vertical mirror. In the
middle picture, balanced states are marked by stars. At the
bottom, we see the network of classes. In the latter, nodes are
marked as circles, with the energy written inside. The class
which includes the balanced states is marked with red. For
N = 3, there are only two classes.

Fig. 3: (Color online) The network of states for N = 4. Here
a state is marked by a small graph, with positive links red
and negative links blue. If colors are exchanged (red → blue,
blue → red), the picture is reflected in a vertical mirror.

of nodes, i.e., two classes. At the bottom of the figure, we
show the resulting network of classes. In fig. 3, the same
scheme is shown for N = 4. For higher N (see figs. 4, 5,
6), only the network of classes are presented.

Fig. 4: (Color online) The network of classes for N = 5. Note
that in this and the other networks of classes, there is only one
neighbor class of the balanced class, and its energy is enhanced
by 2(N − 2) (see the text).

Fig. 5: (Color online) The network of classes for N = 6.

Fig. 6: (Color online) The network of classes for N = 7. The
original network of states contains 221 = 2097152 nodes.

Discussion. – It is tempting to postulate that our re-
sults could remain valid for larger networks. In the case of
the discrete algorithm, a qualitative change of the system
behavior could appear for N = 9, where jammed states are
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possible for symmetric relations. This can raise doubts,
where the jammed states are placed in the network of
classes. We can check it at least for the jammed states
identified in [6]. The answer is that even if the energy
of states is neglected as a criterion, the local structure of
the network of states around a jammed state is different
from the one for a balanced state. This is because the
latter state has a specific feature: whichever link is se-
lected to be modified, the energy of the system is always
increased by the same amount: ΔU = 2(N − 2). In other
words, the only unbalanced triads are those which contain
the modified link, and their number is equal to N −2, i.e.,
the number of “third” nodes which enter the triad with the
modified link. This is never true for the jammed states,
as there are more unbalanced triads there. For N = 9, we
have checked numerically that a modification of different
links can lead the system from a jammed state to states of
different energies. Yet, direct application of the method
for N = 9 would demand calculations for a network of 236

states, which —at the moment— remains unfeasible.
On the other hand, when we consider undirected and

unweighted networks, the difficulty vanishes. Then, the
stationary distribution depends only on the node de-
gree [14,15]. As for each state the number of neighboring
states is the same M = N(N − 1)/2, hence each state has
the same probability for any N .

For the continuous model, the case N = 4 demands an
identification of invariant subspaces in a six-dimensional
space of relations. However, a 5-dimensional subspace
is not invariant. For example, if we set the condition
s(1, 2) = s(1, 3), then ds(1, 2)/dt − ds(1, 3)/dt = [1 −
s2(1, 2)][s(1, 4)(s(3, 2) − s(4, 3))] is, in general, different
from zero. On the other hand, a subspace of dimension
lower than five cannot separate a six-dimensional space
into mutually inaccessible parts. Then, either invariant
subspaces are more complex for N > 3, or they do not
exist at all. Neither of those options does undermine the
hypothesis that the balanced states are equiprobable; how-
ever, the method of the proof must be also more complex
than the one applied above.

Concluding, our results indicate that all balanced states
are equally probable, and the fraction of initial states
which are driven to the paradise state is just 21−N .
In other words, the state of conflict is generic. The
proof is limited to small systems; for larger N and di-
rected and weighted networks of states, the result remains
hypothetical.

The problem of Heider balance has been applied sev-
eral times to analyze international conflicts (see [16–20]
and references therein). Recently, a proof has been pro-
vided that it is possible to control the outcome of the

Heider dynamics by the modification of the links of one
agent [19,21]. In the context of international relations,
potential profits and threads of such a manipulation must
be remarkable. Our results indicate that the state of all
positive relations should not be expected to appear spon-
taneously.
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