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Abstract – Qubit(s) transfer through a helical chain is studied. We consider the transfer of
a single state and Bell states across a multiferroic spin chain and the possibility of an electric-
field control of the fidelity of the single state and the Bell pairs. We analyze pure and imperfect
multiferroic spin chains. A scheme for an efficient transfer of spin states through a multiferroic
channel relies on kicking by appropriate electric-field pulses at regular intervals. This electric-field
pulse sequence undermines the effect of impurity on the fidelity and improves the state transfer
through the helical chain.

Copyright c© EPLA, 2017

Introduction. – Spin chains have long been studied
as a credible contender for carrying out quantum infor-
mation processing and transmission [1–12]. Various new
experiments have been carried out and numerous mod-
els proposed for spin chain systems [13–15]. The sys-
tems of interest in the present paper is a multiferroic
spin chain through which, we seek to transfer quan-
tum information or qubits. Multiferroic systems pos-
sess intrinsically coupled magnetic and ferroelectric order
parameters [16–19]. Hence, the strong magnetoelectric
coupling can be utilized as a tool in quantum informa-
tion processing. For spin-driven emergence of ferroelectric
polarization, the ferroelectric order parameter is directly
related to the non-collinear magnetic order. The ferroelec-
tric polarization vanishes in the collinear magnetic (ferro
or antiferromagnetic) phase, while in case of a chiral spin
order a net polarization remains that can couple to an ex-
ternal electric field thus allowing for an electric-field con-
trol of the magnetic order. Under a certain geometry of the
system and the applied external fields, the magnetoelec-
tric coupling term mimics the dynamical Dzyaloshinskii-
Moriya interaction. Breaking of the inversion symmetry
associated with the Dzyaloshinskii-Moriya interaction may
have key consequences for the transfer of quantum infor-
mation. We first investigate the transmission of qubits
through a multiferrroic chain with a static constant elec-
tric field and then also introduce the electric-field kicks at
a regular interval. It is noteworthy that a continuous ap-
plication of the electric field with changing the amplitude
leads to a complex nature of the time evolution operator,

i.e. of an integral form due to the non-commutation of
the exchange interaction and the Dzyaloshinskii-Moriya
interaction terms in the Hamiltonian.

Realistic systems always have a defect (pinning centers)
and/or embedded impurities. Therefore, the study of the
pinning centers and the embedded impurities is not only of
an academic but also of a practical interest. To be more
realistic we consider the effect of doping the spin chain,
i.e. introducing impurities at specific sites and construct-
ing various new models considering the types of impurity.
Embedded impurities locally modify the strength of the
exchange interaction and break the translational invari-
ance. A naive guess is that the impurity or the pining
center embedded in the system hinders the propagation of
the excitation through the chain. We find, as far as the
quantum state transfer fidelity is concerned, the picture is
not trivial. Studying the possibility of the transmission of
a single qubit through the impurity-embedded spin chain
with realistic material parameters we identify case of a
better transmission of the qubit (or at least on par) as
compared to a pure spin chain. Some particular recipes
for an effective transfer of qubits are analyzed.

Initially, the system is prepared in fully polarized state
(all spins down). The qubit is injected to the first site of
the spin chain and received at the last site. The parameter
for good transmission named “fidelity” is discussed later
and the expression is calculated elsewhere given these ini-
tial conditions and information injection approach. Such
a transmission has practical applications insofar as various
quantum communication protocols require the sender and
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the receiver to share one qubit each of a Bell pair [20]. We
also explore the possibility of transfer of Bell pair directly
by injecting it to the first two qubits of the spin chain and
subsequently receiving them at the last and second last
sites of the chain. The transmission channel in our case,
of course, is an open chain.

The paper is organized as follows: Firstly, we specify the
model and its Hamiltonian. Next, we provide analytical
expressions of the quantum state transfer fidelity for a
single qubit and for Bell states. Lastly, we discuss the
results of numerical calculations before summarizing the
study.

Models. – The Hamiltonian of the multiferroic system
reads [12]

H = −J1

∑
i

�Si.�Si+1 − J2

∑
i

�Si.�Si+2 + B
∑

i

�Sz
i

+ E(t)gME

∑
i

(�Si × �Si+1)
z
. (1)

The constants J1 and J2 characterize the nearest and
next-nearest-neighbour interaction strengths. Taking com-
peting nearest ferromagnetic J1 > 0 and next-nearest
ferromagnetic J2 < 0 antiferromagnetic interactions lead
to a spin frustration and a non-collinear spin order. B is
the magnetic field and E(t) is the electric field coupled
to the ferroelectric polarization. gME is the magnetoelec-
tric coupling strength. The time varying electric field af-
fects the electric polarization �P in a manner such that
−�E(t) · �P = E(t)gME

∑
i (�Si × �Si+1)

z
. Here (�Si × �Si+1)

z

is the z-component of the vector chirality. The time-
dependent electric field E(t) = gMEE(t) has two com-
ponents, namely the static field E0 at times between the
kicks and E1 at t = nτ i.e. at the kick time. The embed-
ded impurity is described by an additional term and the
corresponding sites are excluded from the above Hamil-
tonian according to the subscribed impurity model. We
adopt open boundary conditions in all the cases discussed
in the paper. We consider the following cases in the paper.

Pure spin chain with kicked electric field. The Hamil-
tonian considered is the above one but with a peculiar
twist: Apart from a small static electric field which is
switched on at all times, the system is also kicked with
an electric-field pulse at regular time intervals. The tem-
poral profile of the kicking electric field can be taken as
delta function, meaning that the actual duration of the
electric-field pulse is much smaller that the characteris-
tic time scale of the system (in our case below this time
scale is in the ps regime, in which case sub-ps electric
(laser) field pulses are suitable) [21]. As discussed in [21]
such pulses allow a non-perturbative treatment of the non-
equilibrium quantum dynamics. The kicking scheme is
illustrated in fig. 1 and will be used for other spin mod-
els in this manuscript. Actually, the Hamiltonian has the

Fig. 1: (Colour online) Kicking scheme showing that the elec-
tric field is switched on at a certain regular time interval and
can be modelled by delta functions.

following form:

H = H0 + H1, (2)

H0 = −J1

∑
i

�Si.�Si+1 − J2

∑
i

�Si.�Si+2

+ E0

∑
i

(�Si × �Si+1)
z
, (3)

H1 = E1

n=∞∑
n=1

δ
(
t/τ − n

) ∑
i

(�Si × �Si+1)
z
, (4)

where n indicates the number of kicks applied, E0 =
gMEE0 the static background field and E1 = gMEE1 the
amplitude of the kicked field. Only at the interval of τ
does the electric field kick term assume non-zero value
and contributes to the Hamiltonian. We have confined
our studies to the effect of electric field only and hence
Bz = 0 at all times. The time evolution operator eval-
uated between mτ+ and (m + 1)τ+ (here t+ denotes the
time just after the kick) is given by U(m) = (Û1 Û0)m [22],
where

Û0 = exp
(

iJ1τ
∑

i

�Si.�Si+1 + iJ2τ
∑

i

�Si.�Si+2

− iE0

∑
i

(�Si × �Si+1)
z
)

,

Û1 = exp
(
− iE1

∑
i

(�Si × �Si+1)
z
)

, (5)

and the state after the m-th kick (or at time t = mτ+) is

|ψ(t = mτ+)〉 =
(
Û1 Û0

)m |ψ(t = 0)〉. (6)

Type-I impurity. An impurity is introduced at a site
(say between n and n+1) in the spin chain with the usual
nearest-neighbour and the next-nearest-neighbour spin ex-
change terms. Actually, we consider it to be at the n + 1
site by modifying the label of the spins. The introduc-
tion of an impurity between the n, n + 1 and n + 1, n + 2
sites may lead to a local modification of the exchange con-
stants J1 and J2 terms for these most affected spins i.e.
a few surrounding the impurity [23]. Keeping in mind
that both nearest and next-nearest exchange interactions
remain the same with respect to the impurity, to accom-
modate this arrangement, the change in the interaction
terms between the subsequent neighbours to n and n + 2
is considered. It is well known and has also been exper-
imentally proved that the lattice spacing does affect the
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n-3      n-2          n-1           n           n+1       n+2         n+3        n+4  …….
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(d)

(e)

(f)

(g)

(h)

Fig. 2: (Colour online) The introduction of two types of impu-
rities is depicted. Such impurities cause the local compression
or elongation of the bonds between its nearest and next-nearest
neighbour. In (a) a pure chain is shown. The impurity site is
chosen as n + 1, as shown in (b). In (c) the rearrangement
of spins due to type-I impurity is shown. The modification in
the nearest-neighbour interaction (J1) and in the next-nearest-
neighbour interaction (J2) due to this impurity is shown in (d).
The other interactions remain unchanged. Panel (e) again gives
a pure spin chain for reference. Impurity site is shown in (f).
Panel (g) shows the rearrangement of spins due to the intro-
duction of type-II impurity. The modifications in the nearest-
neighbour interaction (J1) and in the next-nearest-neighbour
interaction (J2) due to impurity are shown in (h). The other
interactions remain unchanged.

exchange integral [24], i.e. J1 and J2. We just consider
the final effect without going into the microscopic details
and the exact relation by which this parameter changes
with the lattice spacing. However, the magnitude of in-
creasing/decreasing the distance between the lattice sites
due to the embedded impurities is assumed to be in tune
with changes in J1 and J2. The following can be noted re-
garding the impact of introducing such an impurity on the
interaction between the sets of two spins surrounding the
impurity as shown in fig. 2(a), (b), (c), (d): The nearest-
neighbour exchange integrals (J1) are affected: (n − 1,
n —increased (J11)), (n, n + 1(impurity) —unchanged),
(n + 1(impurity), n + 2 —unchanged), (n + 2, n + 3
—increased (J11)). Next-nearest-neighbour exchange in-
tegrals (J2) are affected: (n − 2, n —increased (J22)),
(n−1, n+1(impurity) —unchanged), (n, n+2 —decreased
(J222)), (n + 1(impurity), n + 3 —unchanged), (n + 2,
n + 4 —increased (J22)). The bonds are being referenced
from the zero-impurity model and would correspond to a
change in the bond parameters (J1 or J2), i.e., smaller
magnitude for the stretched bond and larger magnitude

s1 s2 r1 r2

Fig. 3: (Colour online) Spin channel for transmission of
qubit(s). The first two (s1, s2) (one) sites are substituted with
the Bell pair (single qubit) and correspondingly are received
on the other side at sites r1, r2 (or simply r2).

for the compressed bond [24]. In a nutshell, the impurity
changes the interaction strength in such a way that the
nearest and next-nearest bonds of the impurity are un-
changed. Other bonds which are changed are mentioned
in fig. 2 and clearly, the effect of introduction of impurity
is localized to 3-4 sites near the impurity. The Hamilto-
nian is modified according to the aforementioned scheme
to include the impurity terms.

Type-II impurity. The model is the same as the second
one but with just one change. The embedded impu-
rity locally reduces the strength of the exchange interac-
tion between nearest and next-nearest-neighbouring spins.
Similar to the above, we consider the impurity to be em-
bedded at the n + 1 site by modifying the label of spins.
The following can be noted regarding the impact of inter-
action between sets of two spins surrounding the impurity
as shown in fig. 2 (e), (f), (g), (h):

Nearest-neighbour exchange integrals (J1) are affected:
(n − 1, n —decreased (J111)), (n, n + 1(impurity)
—unchanged), (n+1(impurity), n+2 —unchanged), (n+2,
n + 3 —decreased (J111)). Next-nearest-neighbour ex-
change integrals (J2) are affected: (n − 2, n —decreased
(J222)), (n − 1, n + 1(impurity) —unchanged), (n, n + 2
—increased (J22)), (n + 1(impurity), n + 3 —unchanged),
(n + 2, n + 4 —decreased (J222)). The bond parameters
are changed in the same way as discussed in the previous
model.

Fidelity. – For the purpose of transmission of qubit, fi-
delity may be used as a figure of merit. Note that as a case
in all the models considered, a single spin is substituted
at one end of the chain (sender) and the qubit is expected
to be transmitted to the other end of the chain (receiver).
Also, initially the system is prepared in fully spin down po-
larized state. The fidelity of qubit transfer is given by [1]:
F = 〈ψin|ρout|ψin〉 which on calculation for a single qubit
(Ω0) comes out to be F = |fr,s(t0)| cos γ

3 + |fr,s(t0)|2
6 + 1

2 ,
where γ = arg(fr,s(t0)) and fr,s(t) = 〈r| exp(−iHt)|s〉,
where r and s are receiver and sender states, respectively,
and the Hamiltonian corresponds to a single excitation.
A qubit transmitted through a classical channel has a fi-
delity of 0.66 [1]. Hence, our interest lies in conditions for
the above systems to exhibit high fidelity, at least greater
than 0.66. Another case in consideration is the transmis-
sion of two qubits through the chain with a protocol very
similar to the first case, i.e., the qubits are substituted at
the sites s1, s2 and are received at r1, r2 (fig. 3). However,
we consider only the case where the maximally entangled
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Fig. 4: (Colour online) (a) Fidelity of Ω2 state transfer with E1 = 0 (red) and E1 = 1 (blue). (b) Fidelity of Ω1 state transfer
with E1 = 0 (red) and E1 = 1 (blue). (c) Fidelity of single-state transfer with E1 = 0 (red) and E1 = 1 (blue). All chains with
parameter J2/J1 for N = 10, J1 = 1 and E0 = 0.1. The kicked electric field is seen to affect the fidelity.

Bell pair is transported. The fidelity is given by [25]

F̄ (t) =
1
3

(
|fN−1,1|2 + |fN,2|2 +

|fN−1,2|2
2

+
|fN,1|2

2

)

+
1
3
Re

[
fN,2f

∗
N−1,1

]
(7)

for the Bell pair |Ω1〉12 = b|01〉 + c|10〉, and

F̄ (t) =
1
2
− 1

6

N−2∑
n=1

(
|gn,N−1

1,2 |2 + |gn,N
1,2 |2

)

+
1
3

(
|gN−1,N

1,2 |2 + Re
∣∣∣gN−1,N

1,2

∣∣∣) (8)

for |Ω2〉12 = a|00〉 + d|11〉 [25]. Here, gb1,b2
a1,a2

= 〈b1, b2|
exp(−iHt)|a1, a2〉. In this case, the subspace of the Hamil-
tonian corresponds to two spin-up excitations among all
other spins in down polarized state.

Results. – Through studying the variation of fidelity
transfer of a single state with the kick interval (τ) for a
pure chain with E1 = 1, J1 = 1, J2 = −1 and E0 = 0.1, we
found that the fidelity has a periodic behaviour control-
lable by the kick interval (τ). This emergence of period-
icity helps us limit the number of kicks that are sufficient
for obtaining the maximum fidelity for spin chains. The in-
crement in number of kicks beyond a certain value is of
no use as the fidelity pattern repeats. Now that we have
an insight into the behaviour of fidelity with a control pa-
rameter, i.e., time interval between the kicks, we move to
ascertain the spin chain characteristics for efficient trans-
mission of qubit(s) which is the central idea of the paper.

The chains have their maximum fidelity shown in all
cases subject to variable kick interval τ (0.1 to 10) and
also the number of kicks (up to 500). Without the kicked
field, the chain is time evolved through the time inter-
val ranging from 1 to 5000 in tune with the maximum
time evolution considered for the kicked chain (500× 10).
These parameters are controllable in a physical system and
hence, may be tuned to achieve high fidelity as obtained
in the simulation and the chain engineered to achieve the
maximum fidelity (characterized by the J2/J1 ratio or im-
purity strength). For the first case, we compare the results

of a spin chain with kicked electric field and without elec-
tric field as shown in fig. 4.

Typically, the fidelity of transfer for Ω0 remains low for
such a system [9]. However, the electric field has a sub-
tle positive effect on the fidelity of single-state transfer for
some chains and also shows a normalizing behaviour as
seen in fig. 4(c). It pushes up the otherwise low-in-fidelity
chains (characterized by a value of J2/J1) and diminishes
the difference of fidelity in different chains at the same
time. However, some cases are found to have been nega-
tively affected by electric-field kicks for single-state (Ω0)
transfer.

Now we analyse the fidelity of transfer of two sets of Bell
pairs in the same way as described above in fig. 4 (a), (b).
It is observed that using the electric-field kicks improve
the fidelity in case of Ω1 particularly. A large fidelity en-
hancement is obtained (reflected in the mean line position)
and the normalizing behaviour is also seen. The state Ω2

is negatively affected by the kick subtly but shows the
normalizing behaviour. However, the Ω1 state is poorly
transferable in such a quantum channel with respect to
a classical one albeit few peaks (J2/J1 = −1 to 0.8) are
obtained beyond this limit even without the kicked elec-
tric field. It remains the worst amongst all states despite
the enhancement in fidelity due to kicking. Chains char-
acterized by J2/J1 = −2 to 3 (with some exceptions) are
suitable for transfer of all the states as they are the only
ones better than the classical ones (fig. 4(b)) or almost
the same for transfer of Ω1 which exhibits least fidelity
for transfer among all the states. We now select the ra-
tio J2/J1 by seeing its performance in other input states.
It is readily seen from fig. 4(a) that chains characterized
by J2/J1 = −1.6 to 0.8 are the best for the Ω2 state as
well. Now, turning to single-state transfer (fig. 4(c)), we
see J2/J1 = −1 to be the best for our cause exhibiting a
fidelity of > 0.9, although many other chains also suffice
for our purpose. We are particularly interested in the case
J2/J1 = −1 as a real material LiCu2O2 having approxi-
mately the same parameters can be tested experimentally.
Now the electric field is changed for the selected chain as
shown in fig. 5.

Except some deviations, it can be readily observed that
as the kicked electric field is increased, the fidelity gener-

30001-p4



Qubit(s) transfer in helical spin chains

Electric Field 
0 0.5 1 1.5 2 2.5 3

F
id

el
ity

0

0.2

0.4

0.6

0.8

1

Electric Field 
0 0.5 1 1.5 2 2.5 3

F
id

el
ity

0

0.2

0.4

0.6

0.8

1

Electric Field
0 0.5 1 1.5 2 2.5 3

F
id

el
ity

0

0.2

0.4

0.6

0.8

1

Ω2 (a) Ω1 (b) Ω0 (c)

Fig. 5: (Colour online) (a) Fidelity of Ω2 state transfer. (b) Fidelity of Ω1 state transfer. (c) Fidelity of single-state transfer.
All chains with parameter E1 on the x-axis and J2/J1 = −1 for N = 10, J1 = 1, E0 = 0.1. The electric field is seen to affect
fidelity.
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Fig. 6: (Colour online) (a) Fidelity of Ω2 state transfer with E1 = 0 (red) and E1 = 1 (blue). (b) Fidelity of Ω1 state transfer
with E1 = 0 (red) and E1 = 1 (blue). (c) Fidelity of Ω0 state transfer with E1 = 0 (red) and E1 = 1 (blue). All chains taken
with parameter larger nearest-neighbour exchange integral J11 in chain as shown in fig. 2. The ratio J11/J1 which is indicative
of bond size changes (increases), similarly J22/J2 (next-nearest-neighbour exchange ratio) and J222/J2 (next-nearest-neighbour
exchange ratio) also change as shown in fig. 2. N = 10, J1 = 1, J2 = −1, E0 = 0.1 and E1 = 1. The kicked electric field is seen
to affect fidelity.

ally decreases for Ω2 and increases for Ω1 whereas single-
state transfer fidelity remains largely unaffected (fig. 5).
Therefore, the optimum electric fields can be selected
again by the peaks of Ω1 graph as it exhibits the minimum
fidelity among all states considered. These are found to
be 0.3, 1.0, 1.4. When considered for all the states E1 = 1
is found to be the most suitable. Interestingly, in fig. 4,
we considered E1 = 1 which gives the optimum fidelity as
found.

We now assess the impact of introduction of an im-
purity showing distinct compression between nearest and
next-nearest spins (type I) with the exchange integral af-
fected as discussed in the previous section. The variation
of fidelity with increasing compression is shown in fig. 6.
J11/J1 increases as the effect of impurity is increased and
the compression also increases. Starting from J11/J1 =
J22/J2 = J222/J2 = 1, the parameters are slowly changed
to simulate increment in the compression and hence the
strength of impurity. We have resorted to LiCu2O2 as the
base material in which we embed the impurity and for
which, J1 = 11± 3meV and J2 = −7± 1meV and hence,
we can approximately assume J1 = 1 and J2 = −1 in ap-
propriate energy scale. Correspondingly, the energy scale
is in the ps regime, meaning that the electric-field pulses
have to be in the sub-ps time scale for the impulsive ap-
proximation in eq. (5) to be valid.

There is a marked decrease in the fidelity of chains by
the introduction of such an impurity and the increment in

compression (strength) decreases the fidelity for all input
states considered. For the case of two-qubit transfer, the
already low fidelity for Ω1 is very low rendering it virtually
useless for such a transfer especially in stronger impurity
chains except for the one characterized by J11/J1 = 1.2
without kicking. But after kicking, some other chains
characterized by J11/J1 = 1.1, 1.2, 1.3, 1.4, 1.6, 1.7, 2.1 and
2.2 are found suitable as seen from fig. 6(b). On compar-
ing the fidelity for all states it is found that J11/J1 = 1.7
and 2.1 are the best choice.

The highest fidelity obtained for Ω2 was through the
pure chain and was reduced by the kicking (although above
0.60). The electric field draws a kind of normalizing be-
haviour for all impurity strengths as is evident from fig. 6.
In a way, it undermines the presence of impurity effec-
tively for qubit(s) transfer though at an expense of higher
fidelity Ω2 in some regime. This fidelity is lowered and
normalized but the enhancement of fidelity for Ω1 works
to our advantage. For single state also, it is seen to be
advantageous (fig. 6(c)).

Hence, if we implement the kicking scheme with a chain
characterized by a J11/J1 ratio of 1.7 or 2.1, we will be
successfully transferring all the three states with sufficient
fidelity (and relatively better than others). Now, we in-
vestigate the change in maximal fidelity for the selected
chain characterized by such an impurity strength with the
magnitude of the kicked electric field (E1).

Here, an increase in fidelity is observed with increasing
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Fig. 7: (Colour online) (a) Fidelity of Ω2 state transfer. (b) Fidelity of Ω1 state transfer. (c) Fidelity of single-state transfer
In all the cases the parameter is E1 on the x-axis and J11/J1 = 1.7, J22/J2 = 1.7 and J222/J2 = 0.825 for the red graph and
J11/J1 = 2.1, J22/J2 = 2.1 and J222/J2 = 0.725 for the blue graph. N = 10 , J1 = 1 J2 = −1 and E0 = 0.1. The electric field
is seen to affect fidelity.
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Fig. 9: (Colour online) (a) Fidelity of Ω2 state transfer. (b) Fidelity of Ω1 state transfer. (c) Fidelity of a single-state transfer.
In all cases, the parameter is E1 on the x-axis and J22/J2 = 2.1, J222/J2 = 0.725 and J111/J1 = 0.725 for the red graph and
J22/J2 = 3.0, J222/J2 = 0.50 and J111/J1 = 0.50 for the blue graph. N = 10 , J1 = 1 J2 = −1 and E0 = 0.1. The electric field
is seen to affect fidelity.

the magnitude of the kicked electric field for single-state
transfer (fig. 7(c)) and Ω1 (fig. 7(b)). However, the fidelity
of transfer of Ω2 remains largely unaffected (fig. 7(a)).
Also, the trends for both the spin chains are nearly the
same. Again, Ω1 limits the choice of applied electric field
through the kick to E1 = 1, 1.2, 1.4, 1.6 and E1 = 1.8 to 2.4
with some exceptions for both the chains. Isolated peaks
at E1 = 2.8 and E1 = 2.9 are also observed.

We now calculate the fidelity in the presence of another
type of impurity (type II) as discussed in the introduc-
tion section with resulting elongation between nearest and
next-nearest spins. The exchange integrals are assumed
to be affected in the same way as discussed in the in-

troductory section. Starting from J22/J2 = J222/J2 =
J111/J1 = 1, the parameters are slowly changed to sim-
ulate an increase in the impurity strength and the corre-
sponding maximum fidelity is noted for all the input states
considered. We again resort to LiCu2O2 as the base ma-
terial for which we can approximately assume J1 = 1 and
J2 = −1 in appropriate scale.

The results are the same as that obtained in last case
of type-I impurities (fig. 6) with electric field again en-
hancing and normalizing the fidelity and subtle decrease
in fidelity obtained for all input states as the impurity
strength leading to local elongation is increased. Chains
characterized by a J22/J2 = 1.1, 1.2 and 1.7 are found to
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be the good as they allow transfer of Ω1 with sufficient
fidelity even without kicking. By analysing fig. 8, we may
well conclude that chains characterized by a J22/J2 ratio
of 2.1, 3.0 and many others are suitable for transfer in
all the three input cases with kicking. Now the selected
chains characterized by a J22/J2 ratio of 2.1 and 3.0 are
tested against varying electric field.

Once again a marked increase in fidelity is observed for
Ω1 and Ω0. Fidelity for transfer of Ω2 shows subtle de-
crease with increase in electric field. The peaks in Ω1 as
seen in fig. 9 restrict our choice of electric field to E1 ≥ 0.8
with some exceptions for different chains. We then move
on to the transfer of Ω2 and Ω0 for the identification of a
particular E1 which is better suited for the complete job,
which is again E1 ≥ 0.8, as not much advantage is offered
by selecting a specific field.

Conclusion. – We have shown here the effectiveness
of helical multiferroic chains in transferring both single
qubit and Bell pairs (Ω1 and Ω2) from one end of the
chain to the other end. Also, we have found some very
interesting properties associated with the helical chains,
i.e the periodicity of fidelity when subjected to pulsed
(kicked) electric fields. By merely changing the kick inter-
val, the periodicity is changed or even completely lost. We
have also specifically identified the key parameters associ-
ated with efficient transfer of the qubits viz. electric field
and impurity strength for two types of impurity. In the
qubit(s) transfer protocol, the kick interval and number
of kicks are also important for any particular chain to ex-
hibit the desired fidelity. The recipe for a better transfer is
straightforward and involves “kicking” the system (fig. 3)
with electric fields at regular intervals (fig. 1). By care-
fully doping the actual material LiCu2O2 with the impu-
rity whose effect on the exchange integral to the rest of the
chain we have identified in various cases, the chain can be
engineered to ensure high fidelity. At the same time, re-
sults also indicate that kicking the system by the electric
field undermines the presence of impurity, and chains with
distinct strengths of impurity show similar fidelity. This
normalizing behaviour of the kicked electric field is seen
in both types of impurity considered and for all the in-
put states. Further, the role of the kicked electric field in
transmission of qubits was ascertained by testing selected
chains against the variation of the kicked electric field.
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T., übner W. H. and Berakdar J., New J. Phys., 16
(2014) 063018.

[11] Chotorlishvili L., Azimi M., Stagraczynski S.,
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