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Abstract – Many real-world complex networks simultaneously exhibit topological features
of scale-free behaviour and hierarchical organization. In this regard, deterministic scale-free
(DSF) (Barabási A.-L.et al., Physica A, 299 (2001) 559) and pseudofractal scale-free (PSF)
(Dorogovtsev S. N. et al., Phys. Rev. E, 65 (2002) 066122) networks constitute notable
models which simultaneously incorporate the aforementioned properties. The rules governing the
formation of such networks are completely deterministic. However, real-world networks are pre-
sumably neither completely deterministic nor perfectly hierarchical. Therefore, we suggest here
initially perfectly hierarchical scale-free networks with subsequently randomly rewired edges as
better representatives of practical networked systems. In particular, we preserve the scale-free
degree distribution of the deterministic networks but successively relax the hierarchical structure
while rewiring them. We utilize the framework of master stability function in investigating the
synchronizability of dynamical systems coupled on such rewired networks. Interestingly, this re-
veals that the process of rewiring is capable of significantly enhancing, as well as, deteriorating
the synchronizability of the resulting networks. We investigate the influence of rewiring edges on
the topological properties of the rewired networks and, in turn, their relation to the synchroniz-
ability of the respective topologies. Finally, we compare the synchronizability of DSF and PSF
networks with that of random scale-free networks (generated using the classical Barabási-Albert
(BA) model). We find that the BA random scale-free networks promote synchronizability better
than the rewired versions of their deterministic counterparts of DSF and PSF networks.

Copyright c© EPLA, 2017

Introduction. – Complex systems involving large col-
lections of dynamical elements interacting with each other
on complex networks are abundant across several disci-
plines of sciences and engineering [1]. This has gener-
ated a consolidated effort towards unveiling structural
properties of manifold real-world networked systems and
uncovering fundamental principles governing their orga-
nization. A significant milestone amid such explorations
was the exposition of the small-world behaviour of di-
verse real networks, characterized by a small average path
length between nodes and a high clustering coefficient [2].
Further, the interplay between topological properties of
complex networked systems and the collective dynam-
ics exhibited by them has been simultaneously investi-
gated, particularly with reference to the phenomenon of
synchronization [1,3,4].

Synchronization is among the most relevant emergent
behaviours in complex networks of dynamical systems and
is often critical to their functionality [3–9]. As a result,
there has been a persistent drive towards unravelling the
influence of topological features of networks on their abil-
ity to synchronize, often with the objective of designing
topologies for better synchronizability [10–19]. In this re-
gard, small-world networks have been particularly known
to facilitate synchronization of dynamical systems coupled
on them [20–23]. Besides the small-world property, real-
world networks often exhibit two other remarkable generic
features, namely, scale-free behaviour [24] and hierarchical
structure [25,26].

Scale-free behaviour is characterized by the probability
P (k) that a randomly selected node has exactly k links de-
caying as a power law (P (k) ∼ k−γ) and appears in good
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(a) (b)

Fig. 1: Topology of the (a) deterministic and (b) pseudofractal
scale-free networks developed over 2 generations.

approximation in diverse real networked systems such as
the internet [27], the world wide web [24], networks of
metabolic reactions [28], protein interaction networks [29],
the web of Hollywood actors linked by movies [30], social
networks such as the web of human sexual contacts [31],
etc. In this context, the Barabási-Albert (BA) model [24]
has been suggested for realizing random scale-free net-
works with growth and preferential attachment, where an
incoming node is more likely to get randomly linked to an
existing node with higher connectivity.

Also, manifold real-world systems such as metabolic
networks in the cell [25], ecological niches in food webs [26],
the scientific collaboration network [32], corporate and
governmental organizations [33], etc. exhibit hierarchi-
cal organization where small groups of nodes organize
in a stratified manner into larger groups, over multi-
ple scales. This definition of hierarchical structure, also
used throughout this letter, relates to that proposed by
Clauset et al. [26].

Naturally, collective dynamics on scale-free [34–36] and
hierarchical topologies [8,9,37–40] have been investigated
intensively, but mostly separately, leaving sufficient room
for further explorations concerning synchronization in net-
works simultaneously exhibiting the two topological prop-
erties mentioned above. Notably, the coexistence of the
generic feature of scale-free topology along with a hierar-
chical organization in many networks in nature and society
is immensely intriguing [41]. Examples in this direction
constitute the internet at the domain level, the world wide
web of documents, the actor network, the semantic web
viewed as a network of words, biochemical networks in
the cell, etc. [25,41].

Network construction. Notable instances among
models simultaneously incorporating the prominent topo-
logical features of scale-free behaviour and hierarchical or-
ganization under one roof are the deterministic scale-free
(DSF) [42], pseudofractal scale-free (PSF) [43], Apollo-
nian [44] and the hierarchical network model [41]. We
specifically study DSF and PSF networks in this letter,
the topology of them developed over 2 generations is il-
lustrated in fig. 1(a), (b). Evidently, these models are
completely deterministic, leading to a perfectly hierarchi-
cal assembly of the associated networks. However, it is
most natural to assume that real-world topologies are nei-
ther completely deterministic, nor perfectly hierarchical.

(a) (c)(b)

Fig. 2: (Color online) (a) We randomly select two (distinct)
edges of the network with the first edge (red) connecting nodes
numbered 1 and 2 and the second edge (blue) connecting nodes
numbered 3 and 4. We rewire (b) the first edge to connect
nodes 1 and 3 and the second edge to connect nodes 2 and 4
(provided there does not already exist an edge between nodes
1 and 3 or between 2 and 4). Otherwise, we rewire (c) the first
edge to connect nodes 1 and 4 and the second edge to connect
nodes 2 and 3 (provided there does not already exist edges
between the respective nodes as well). If the aforementioned
steps fail, we choose a new pair of edges to rewire. Clearly, we
preserve the scale-free degree distribution of the deterministic
networks we start with, but successively loose the hierarchical
structure while rewiring them. Also, note that we allow for
a multiple selection of the same edge in subsequent rewiring
steps.

Thus, a realistic model of practical networked systems
should feature an aspect of randomness, besides simul-
taneously manifesting not far from scale-free and hierar-
chical design. Henceforth, as a preliminary solution to
this problem, we suggest in the following perfectly hier-
archical networks (generated by the deterministic rules of
the aforementioned models) with randomly rewired links
as better representatives of associated connected architec-
tures in the real-world. The mechanism used throughout
this letter for rewiring edges, while preserving the (scale-
free) degree distribution of the otherwise perfectly hierar-
chical networks, is illustrated in fig. 2.

The desired operational state in complex networks is
often associated with the synchronized motion of its dy-
namical components [3]. In this work, we investigate
the synchronizability of the proposed network models us-
ing the master stability function (MSF) framework [45].
We recall that real-world topologies exhibiting the small-
world property are known to facilitate network synchro-
nization [46,47] as well as to be more robust to random
perturbations [47]. In this regard, the classical network
model of Watts and Strogatz [2] is particularly notable
for capturing the small-world property. In strong anal-
ogy with the present work, the Watts-Strogatz model
generates graphs by randomly rewiring completely reg-
ular architectures (ring lattices), thus interpolating be-
tween absolutely regular and random graphs with the
small-world property appearing for intermediate rewiring
probability. However, MSF-based [45] measurements of
synchronizability of the Watts-Strogatz model [2] surpris-
ingly do not reveal exclusive features in the small-world
regime [21]. In such networks, synchronizability is only
enhanced for an initial increase of the number of rewired
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edges, which then saturates afterwards as further links
are rewired. In fact, the synchronizabilities of the rewired
networks (for a given number of rewired edges) are not
much different from one another. On the other hand, net-
works resulting from rewiring hierarchical scale-free net-
works considered here exhibit both significantly enhanced
as well as deteriorated synchronizability (compared to that
of their completely deterministic counterparts).

In a related context, Donetti et al. [12] proposed en-
tangled networks, constructed by starting with a random
network of a certain size and rewiring it using a modified
simulated annealing-based approach, while keeping its av-
erage degree fixed. In contrast, we start with the deter-
ministic networks of DSF and PSF and rewire them using
a different mechanism (fig. 2), where we instead main-
tain a fixed degree distribution. Further, the scheme of
constructing entangled networks is aimed at achieving op-
timal synchronizability. However, we focus on exploring
the synchronizability of an ensemble of rewired networks
and, in turn, obtaining the “optimal” synchronizability of
the representative network among the different members
of this ensemble. Further, Donetti et al. found that the
topological features of the average distance between nodes
and betweenness centrality exhibit negative correlations
with the synchronizability of entangled networks. Simi-
larly, Dwivedi et al. [48] investigated the optimization of
synchronizability in multiplex networks and demonstrated
that a stronger interlayer connectivity as compared to the
connections within each layer leads to better synchroniz-
ability. Moreover, they obtained results similar to those
of Donetti et al. [12] where the latter have shown that en-
tangled networks with more homogeneous degree distribu-
tions, distances between nodes and betweenness centrality
distributions exhibit better synchronizability.

Methods. – In the following, we briefly review the
framework of MSF [45] and the traditional quantifier of
synchronizability of a network, prior to its application to
the aforementioned network models.

Consider a network of N identical oscillators where the
isolated dynamics of the i-th oscillator is described by

ẋi = F
(
xi

)
; xi ∈ R

d, i = 1, 2, . . . , N, (1)

and coupling is established via an output function
H : Rd → R

d (identical for all i). The topology of in-
teractions is captured by the adjacency matrix A, where
Aij = 1 if nodes i and j(�= i) are connected while Aij = 0
otherwise. The dynamical equations of the networked
system read

ẋi = F
(
xi

)
+ ε

N∑

j=1

Aij

[
H

(
xj

) − H
(
xi

)]

= F
(
xi

) − ε

N∑

j=1

LijH
(
xj

)
, (2)

where ε represents the overall coupling strength and L
is the graph Laplacian such that Lij = −Aij if i �= j

and Lii =
∑N

j=1 Aij = ki is the degree of node i.
Since the Laplacian matrix L is symmetric, its eigen-
value spectrum (λ1, λ2, . . . , λN ) is real and ordered as
0 = λ1 < λ2 ≤ . . . ≤ λN , assuming the network is
connected. Further, L has zero row sum by definition,
guaranteeing the existence of a completely synchronized
state, x1(t) = x2(t) = . . . = xN (t) = s(t) as a solution
of eq. (2). Starting from heterogeneous initial conditions,
the oscillators (asymptotically) approach (and thus evolve
on) the synchronization manifold s(t) corresponding to
the solution of the uncoupled dynamics of the individual
oscillators in eq. (1) (ṡ = F(s)).

The local stability of the completely synchronized state
determined by the framework of MSF [45] relates the syn-
chronizability of a network to the eigenratio R ≡ λN

λ2
. Ir-

respective of F and H (eq. (2)), this condition has been
extensively used to characterize the synchronizability of a
network such that the lower the value of R, the more syn-
chronizable the network and vice versa [4,10–19,23,44,46,
49–51]. Note that the above condition applies to situations
involving bounded MSFs, i.e., where the MSF exhibits
negative values within a range of the normalized coupling
parameter [4]. Also, finite λN is related to the maximum
degree of the network, while λ2 relates to the connectiv-
ity [4]. Given that the degree distribution is preserved
when rewiring the networks considered in this letter, one
does not expect significant variations in λN .

We utilize the above framework in exploring the
synchronizability of the aforementioned network models
(fig. 1) after stochastically rewiring their edges. Further,
we investigate the influence of rewiring on the topological
properties of the resulting networks and, in turn, their re-
lation to the synchronizability of the associated topologies.
For that purpose, we refer the reader to the Supplementary
Information Supplementarymaterial.pdf (SM) for a dis-
cussion of the topological properties of average path length
(L), maximum betweenness centrality (bcmax), average lo-
cal clustering coefficient (CL), global clustering coefficient
(transitivity, CG) and assortativity (r) of a network, to be
studied in this letter.

Results. – We consider two paradigmatic network
topologies simultaneously exhibiting scale-free degree dis-
tributions and hierarchical organization. On the one hand,
we study a DSF network developed over 3 generations
comprising N = 81 nodes and E = 130 edges. On the
other hand, we investigate a 3-generation PSF network
with N = 123 nodes and E = 243 edges. In both cases,
we generate an ensemble of 104 networks by rewiring e
(equivalently, a fraction f = e

E ) pairs of edges of the com-
pletely deterministic networks, using the mechanism de-
scribed in fig. 2. Further, for a particular value of f , we
compute the values of L, bcmax, CL, CG, r and R of each
network with e randomly rewired links of the ensemble
and then estimate the expectation values 〈L〉, 〈bcmax〉,
〈CL〉, 〈CG〉, 〈r〉 and 〈R〉 as the corresponding ensemble
means.
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(a)

(b)

Fig. 3: Relationship of expected synchronizability 〈R〉 (solid
line) with the fraction f of rewired edges of the 3-generation
(a) DSF and (b) PSF networks. The shaded areas are repre-
sentative of the standard deviations (1σ) of the R values for
the ensemble of rewired networks generated for computing 〈R〉
for any particular value of f . The dashed line represents the
minimum R value over the ensemble of rewired networks for a
given value of f . The inset magnifies the 〈R〉 values, where the
vertical line marks the value of f∗ = 0.046 (0.16) for the DSF
(PSF) network. Note that we do not rewire e edges (for a given
value of f) of the same realization, but generate ensembles of
networks with e rewired edges (for the respective value of f).
Therefore, one may obtain different values of f∗ for different
realizations, if they were rewired consecutively instead of the
procedure as followed here.

We present the variation in the expected synchronizabil-
ity 〈R〉 (solid line) with the fraction f of rewired edges of
the DSF network in fig. 3(a). We clearly observe that
rewired versions of the otherwise completely DSF net-
work exhibit significantly enhanced as well as deterio-
rated values of synchronizability (fig. 3(a)). The dashed
line represents the minimum R value over the ensemble
of rewired networks for a given value of f . The corre-
sponding topologies thus represent approximately “opti-
mally” synchronizable networks for the respective value
of f . The fluctuations in the minimum R values may be
attributed to the relatively small considered ensemble sizes
(104), as compared with the much greater variety of pos-
sible rewired networks for a given value of f . Also, in the
inset of fig. 3(a), we observe a minimal value of 〈R〉 (high-
est average synchronizability) for f equal to f∗ = 0.046
(6 rewired edges) of the 81-node network. As f is further
increased beyond f∗, the value of 〈R〉 increases again, fi-
nally saturating at 〈R〉 ∼ 185 for f � 0.6.

Figure 3(b) demonstrates that a similar (and even
more pronounced) behaviour of average synchronizability

is found in the PSF networks, for which we observe a
minimal value of 〈R〉 for f∗ = 0.16 (39 rewired edges).
Moreover, we find similar results (see SM) with regard to
synchronizability of 4-generation DSF and PSF networks
as well.

Next, we investigate the relationships between f and
the topological properties 〈L〉, 〈bcmax〉, 〈CL〉 and 〈CG〉 of
the associated ensemble of stochastically rewired DSF net-
works in fig. 4. For f < f∗, the decrease in 〈L〉 and
the increase in 〈bcmax〉 conform to the decreasing trend
of 〈R〉 (cf. the discussion in the SM on network proper-
ties and their expected relationship with synchronizabil-
ity). The value of 〈CL〉 (as well as 〈CG〉) starts from zero
and increases as more edges are rewired. This implies
the formation of triangles in the network, which promotes
communication between the oscillators, thereby enhancing
synchronizability. However, for f > f∗, further decrease
in 〈L〉 and increase in 〈bcmax〉 should still improve the
average synchronizability, which, however, only declines
from thereon.

Thus, rewiring a few edges (f < f∗) alters the topolog-
ical features of the ensemble of networks for better syn-
chronizability. However, when more edges (f > f∗) are
further rewired, it no longer affects on average the topo-
logical properties relevant for improving synchronizability,
in fact, only undermines it. Hong et al. [52] have pre-
viously proposed maximum betweenness centrality as a
suitable indicator for predicting synchronizability of net-
works. They have shown that among various topological
factors, such as short characteristic path length or large
heterogeneity of the degree distribution, it is a small value
of the maximum betweenness centrality of a network that
promotes synchronization [52]. However, this is not cor-
roborated by our results in fig. 4 where we do not observe a
strong linear relationship between 〈R〉 and 〈bcmax〉, as also
indicated by a correlation coefficient of 0.776. Similarly,
a correlation coefficient of −0.681 rules out a systematic
linear dependence between 〈R〉 and 〈L〉. However, a cor-
relation coefficient of 0.847 (0.889) between 〈R〉 and 〈CL〉
(〈CG〉) indicates an appreciable underlying linear relation-
ship. Further, for f > f∗, the correlation coefficient of
0.939 (0.970) between 〈R〉 and 〈CL〉 (〈CG〉) underlines the
above observation.

Analogously to fig. 4, fig. 5 again shows the relationships
between f and the topological properties 〈L〉, 〈bcmax〉,
〈CL〉 and 〈CG〉 of the associated ensemble of rewired PSF
networks. In this case, we observe a clear relationship
between 〈R〉 and 〈L〉, further corroborated by a correlation
coefficient of 0.987. On the other hand, a possible linear
relationship between 〈R〉 and 〈bcmax〉, 〈CL〉 and 〈CG〉 is
ruled out by correlation coefficients of −0.25, −0.175 and
−0.373, respectively.

Taken together, we notice that the topological features
of the ensembles of rewired DSF (fig. 4) and PSF (fig. 5)
networks exhibit certain contrasting variations, as f is
tuned from 0 to 1. Prior to saturation, the bcmax of the
rewired DSF networks (fig. 4(b)) initially increases with f ,
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Fig. 4: Relationship between f and the topological properties
(a) 〈L〉, (b) 〈bcmax〉, (c) 〈CL〉, and (d) 〈CG〉 of the associated
ensemble of randomly rewired DSF networks. The shaded ar-
eas are representative of the standard deviations (1σ) of the
respective topological features of the ensemble of rewired net-
works (generated for a given value of f). The vertical lines
indicate the location of f∗.

Fig. 5: Same as in fig. 4 for randomly rewired PSF networks.

as opposed to a corresponding decrease in bcmax observed
for the rewired PSF networks (fig. 5(b)). On the contrary,
both clustering coefficients 〈CL〉 and 〈CG〉 increase with f
until saturation for rewired DSF networks (fig. 4(c), (d)),
which, however, display a decreasing trend in the case of
rewired PSF networks (fig. 5(c), (d)).

Jalan et al. [53] have recently studied the role of degree-
degree correlations (assortativity) in the cluster synchro-
nizability of networks during the evolution of coupled
chaotic dynamics on them. They have shown that an in-
creased disassortativity relates to an increase or decrease
in the cluster synchronizability of networks depending on
their degree distribution and average connectivity, such
that networks with heterogeneous degree distributions ex-
hibit significant changes in cluster synchronizability in
comparison to those with homogeneous degree distribu-
tions. For gathering similar insights, we now investigate
the relationships between the assortativity (〈r〉) and the
synchronizability of the rewired DSF and PSF networks
considered here (fig. 6). Note that the degree distribution
of the deterministic DSF and PSF networks is preserved
during the process of rewiring, as also mentioned earlier.
Clearly, the decrease in the degree of disassortativity of

(a)

(b)

Fig. 6: Relationship between f and 〈r〉 of rewired (a) DSF
and (b) PSF networks. The vertical lines indicate the location
of f∗.

the rewired DSF as well as PSF networks is accompanied
by an improvement (decline) in their synchronizability for
f < f∗ (f > f∗). However, we again do not observe any
strict correlations between 〈r〉 and 〈R〉.

We finally compare the synchronizability of rewired
DSF and PSF networks with that of random scale-free net-
works generated using the classical BA model of growth
and preferential attachment [24]. In this regard, we con-
sider an ensemble of 100 such random scale-free networks
of 81 nodes (123 nodes) each for comparison with rewired
DSF (PSF) networks, respectively. While generating the
BA networks, we incorporate the growing character of the
network by starting with a small number of vertices and
at every time step introducing a new vertex and linking it
to 2 vertices already present in the system, until the net-
work comprises 81 (123) nodes. Preferential attachment
is incorporated by assuming that the probability Πi that
a new node will be connected to node i depends on the
degree ki of node i, such that Πi = ki∑

j

kj
. The 81-node

(123-node) BA networks have a total of 158 (242) edges
in each realization. The 〈R〉 values of the considered en-
semble of 81-node (123-node) BA networks turn out to be
36.74 (49.75), which is much smaller than the minimum
R values among the ensembles of rewired DSF (PSF) net-
works for different f , presented in fig. 3. Thus, random
scale-free networks generated using the classical BA model
appear to promote synchronizability better than randomly
rewired DSF as well as PSF networks. We outline further
investigations to unveil the reasons for this behaviour as
a subject of future research.

In a similar spirit, we also investigate the synchroniz-
ability of an ensemble of 100 networks of 81 (123) nodes
generated using the random configuration model [1]. We
find that their 〈R〉 values of 175.71 (112.54) are larger
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than those of the rewired DSF (PSF) networks of 141.24
(70.71), even when their respective f∗ fractions of edges
are rewired. Also, the networks with the minimum R val-
ues within this ensemble of 81- (123-) node networks gen-
erated using the random configuration model are 81.57
(65.93), which are again larger than the minimum values
of 70.47 (48.41) among the R values of the entire ensem-
ble of rewired DSF (PSF) networks, for all values of f .
Thus, we conclude that the rewired versions of DSF and
PSF networks generally exhibit better synchronizability
than networks generated using the random configuration
model.

Conclusion. – Many real-world complex networks si-
multaneously exhibit the generic feature of scale-free
topology along with hierarchical organization. In this re-
gard, two notable models which simultaneously capture
the two different topological properties are the determin-
istic and pseudofractal scale-free networks. These models
comprise completely deterministic processes underlying
the formation of the respective networks. However,
real-world networks are presumably neither completely
deterministic nor perfectly hierarchical. Thus, a prac-
tical model of such networks should feature an aspect
of randomness, while exhibiting scale-free and hierar-
chical design. For this purpose, we suggested preserv-
ing the scale-free degree distribution of the deterministic
networks we start with, while tweaking the hierarchical
structure by rewiring them. Specifically, we hypothesized
that perfectly hierarchical scale-free networks (generated
by the deterministic rules of the aforementioned models)
with randomly rewired links may provide more realistic
representatives of associated real-world topologies than
perfectly hierarchical ones.

The desired operational state in many complex systems
often concurs with the synchronized motion of dynamical
units coupled on a networked architecture. Consequently,
we utilized the analytical framework of master stabil-
ity function (MSF) in investigating the synchronizability
of dynamical systems coupled on the proposed network
structures. Interestingly, this revealed that the process of
rewiring is capable of significantly enhancing as well as de-
teriorating the synchronizability of the resulting networks.
Importantly, when a certain critical fraction of edges of the
otherwise completely deterministic networks was rewired,
it optimized the average synchronizability of the result-
ing topologies. This observation is, however, different
from Braess’s paradox where the addition of edges under-
mines synchrony in complex oscillator networks [54]. We
also investigated the influence of rewiring links on some
key topological properties (average path length, maxi-
mum betweenness centrality, average local clustering co-
efficient and global clustering coefficient) of the resulting
networks and, in turn, their relation to the synchroniz-
ability of the associated topologies demonstrating distinct
behaviours in these different models of hierarchical scale-
free networks. We speculate that an interplay between the

various topological properties of the networks, in particu-
lar their average path lengths and clustering coefficients in
a trade-off leads to an “optimal” value of synchronizability
when rewiring the respective networks.

In a related context, we recall that networks exhibiting
the small-world property have been considered conducive
for synchronization [46,47]. However, MSF-based mea-
surements of the synchronizability of Watts-Strogatz net-
works did not reveal exclusive features in the small-world
regime [21]. Importantly, the critical fraction of rewired
edges (for maximal synchronizability) in the hierarchical
scale-free networks considered here, roughly corresponds
to a similar value for typical Watt-Strogatz networks to
exhibit small-world behaviour. Specifically, we also found
that rewiring a few edges of the deterministic scale-free
as well as pseudofractal scale-free networks generated a
topology with significantly enhanced or “optimal” syn-
chronizability, which did not exhibit major improvements
thereafter, as the fraction of rewired edges was further
increased.

The aforementioned results may have potential
implications in the design of complex networks (simul-
taneously exhibiting hierarchical structure and scale-free
behaviour) for better synchronizability. A more challeng-
ing problem is that of comparing real-world topologies
with rewired versions of deterministic scale-free hierarchi-
cal networks explored here, in ascertaining a possible de-
terministic backbone of certain practical networks and the
proportion of randomness in the same. Any efforts in this
direction could certainly provide deeper insights into the
developmental processes and synchronizability of many
practical networked dynamical systems simultaneously
displaying hierarchical structure and scale-free behaviour.
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H. E. and Åberg Y., Nature, 411 (2001) 907.
[32] Shen H., Cheng X., Cai K. and Hu M.-B., Physica A,

388 (2009) 1706.
[33] Yu H. and Gerstein M., Proc. Natl. Acad. Science

U.S.A., 103 (2006) 14724.
[34] Jost J. and Joy M. P., Phys. Rev. E, 65 (2001) 016201.
[35] Wang X. F. and Chen G., IEEE Trans. Circuits Syst.

I: Fundam. Theory Appl., 49 (2002) 54.
[36] Lind P. G., Gallas J. A. and Herrmann H. J., Phys.

Rev. E, 70 (2004) 056207.
[37] Arenas A., Dı́az-Guilera A. and Pérez-Vicente
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