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Abstract – Network models of large-scale electricity systems feature only a limited spatial reso-
lution, either due to lack of data or in order to reduce the complexity of the problem with respect
to numerical calculations. In such cases, both the network topology, the load and the generation
patterns below a given spatial scale are aggregated into representative nodes. This coarse-graining
affects power flows and thus the resulting transmission needs of the system. We derive analytical
scaling laws for measures of network transmission capacity and cost in coarse-grained renewable
electricity networks. For the cost measure only a very weak scaling with the spatial resolution
of the system is found. The analytical results are shown to describe the scaling of the transmis-
sion infrastructure measures for a simplified, but data-driven and spatially detailed model of the
European electricity system with a high share of fluctuating renewable generation.

editor’s  choice Copyright c© EPLA, 2017

Introduction. – Data-driven numerical models pro-
vide important guidelines for the design of a future sus-
tainable energy system, which presumably will depend
on renewable power generation from wind and solar [1].
Given the spatial heterogeneity of weather patterns, the
efficient exploitation of locations with favorable renew-
able resource quality calls for a high spatial resolution in
the respective models. The same holds for the placement
of transmission infrastructure, which should be adapted
to the given spatial distribution of generation and load
and resolve potential bottlenecks. Unfortunately, such a
detailed spatial model resolution comes with challenging
demands in data quality and computational complexity.
Consequently, depending on the focus and the complexity
of the model one has to apply a spatial coarse-graining,
which aggregates network infrastructure, load and gen-
eration patterns over spatial scales ranging from a few
kilometers to entire countries [2]. By changing the network
topology as well as the spatio-temporal pattern of nodal
power injections, this coarse-graining procedure has in
particular an impact on the power flows and the resulting
transmission infrastructure needs proposed by the model.

In this contribution we study for the first time the
scaling of transmission properties of electricity system
models under spatial clustering from a complex networks

perspective. We choose a model of the European system,
which combines a data-driven approach under a high spa-
tial resolution with simplified dispatch schemes. Applying
a straightforward spatial clustering algorithm (see fig. 1),
the total transmission capacity and cost of the network are
evaluated dependent on the power flow statistics for dif-
ferent spatial resolutions. We show that in particular the
total transmission capacity cost only scales weakly with
the spatial resolution. To provide analytical insights, we
perform various approximations for the infrastructure ob-
jectives and derive general scaling laws, which describe the
numerical results remarkably accurately.

The article is structured as follows. We first introduce
the data-driven network model of a highly renewable Euro-
pean electricity system. Subsequently we define the spatial
coarse-graining algorithm and present numerically results
for the scaling of the total transmission capacity and cost.
In the subsequent section we apply a series of approxima-
tions for these measures, yielding a simplified form which
allows to derive an analytical description of the scaling
behaviour. A conclusion and an outlook are given in the
last section.

A data-driven network model of a highly renew-
able European electricity system. – We study the
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Fig. 1: (Colour online) Two exemplary clustering representa-
tions of the European transmission grid based on 32 × 32 grid
cells (left) and 8 × 8 (right) grid cells, respectively.

scaling of transmission infrastructure measures using a
simplified, but spatially detailed large-scale model of a
highly renewable European electricity system [3]. The net-
work topology representing the main European transmis-
sion grid is adapted from [4], comprising N = 1494 nodes
(buses) and L = 2156 links (transmission lines). Based
on data from [3], we construct two time series GR

n (t) =
GW

n (t)+GS
n(t) and Ln(t), constituting the renewable gen-

eration from wind and solar power generation, and the
load in the geographical region represented by node n for
the three years 2012–2014 with hourly resolution. Using
a renewable energy atlas [5], the renewable generation in
this data set is obtained by converting weather data into
raw generation data for solar PV and wind power genera-
tion G̃S

n(t) and G̃W
n (t), respectively [3]. The demand side

in the data set is represented by the load time series Ln(t),
which is based on regionalised historical load data taken
from ENTSO-E [3]. We scale the raw generation data as
follows:

GW
n (t) = G̃W

n (t)γjαj

∑
m∈Sj

〈Lm〉∑
m∈Sj

〈G̃W
m 〉

, (1)

GS
n(t) = G̃S

n(t)γj(1 − αj)

∑
m∈Sj

〈Lm〉∑
m∈Sj

〈G̃S
m〉

. (2)

Here n denotes the respective node, and Sj represents the
set of nodes in country j. We choose a renewable pen-
etration γj = 1 and wind share αj = 0.8 for all coun-
tries. This highly renewable layout assures that for each
country on average 100% of the load is covered by renew-
able generation, with a mix of 80% wind power and 20%
solar power [6]. Inside the countries, the heterogeneous
distribution of renewable generation capacity according
to eqs. (1) and (2) makes use of favorable locations.

In general there will be an instantaneous local mismatch
or residual load Δn(t) = GR

n (t) − Ln(t), which has to
be balanced by imports/exports Pn(t) through the trans-
mission grid, or by local generic backup power generation
or curtailment Bn(t). Here we apply the following sim-
plified synchronised balancing scheme, which dispatches
backup energy or curtails excess energy proportional to

the average load of the respective node [7]:

Bn(t) =
〈Ln〉∑
m〈Lm〉

∑
k

Δk(t). (3)

The nodal power injection Pn(t) is fixed by nodal energy
conservation,

GR
n (t) − Ln(t) = Δn(t) = Bn(t) + Pn(t). (4)

A positive power injection Pn(t) > 0 corresponds to an
exporting node, whereas a negative injection Pn(t) < 0
represents a net importing node. We apply the DC ap-
proximation to the full AC power flow equations, which
yields a linear relationship between the injection pattern
Pn(t) and the power flow Fl(t) on a link l [8]:

Fl(t) =
∑

n

HlnPn(t). (5)

Here Hln is the matrix of power transfer distribution fac-
tors (PTDF), which incorporates information about the
network topology and the line susceptances [9]. Assuming
for simplicity unit line susceptances, the PTDF matrix can
be calculated as H = KT L†, where L† denotes the Moore-
Penrose pseudo-inverse of the network Laplacian L, and
KT is the transposed incidence matrix with

KT
ln =

⎧⎨
⎩

1, if link l starts at node n,
−1, if link l ends at node n,
0, otherwise.

(6)

For a balanced injection pattern Pn with
∑

n Pn = 0, the
power flows calculated from eq. (5) are invariant under a
constant gauge Hlm → Hlm+cl for the PTDF matrix. We
can use the degree of freedom expressed by the constants
cl for the incorporation of the balancing scheme in eq. (3)
into the power flow calculation,

Fl =
∑

n

Hln

(
Δn − 〈Ln〉∑

m〈Lm〉
∑

k

Δk

)
(7)

=
∑

n

(Hln + ĉl)Δn, (8)

with

ĉl = −
∑

k

Hlk
〈Lk〉∑
m〈Lm〉 . (9)

In the following we always assume that this gauge Hln →
Hln + ĉl has been performed, which allows to apply the
power flow calculations directly to the (unbalanced) mis-
match pattern Δn(t).

We define the transmission capacity Kl of a link l as
the q = 0.99 quantile of the corresponding flow distribu-
tion p(Fl) [10]:

q = 0.99 =

Kl∫
−Kl

p(Fl)dFl. (10)
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Fig. 2: Network clustering algorithm: the original nodes inside
a clustering cell are aggregated into one representative node.

This approach assumes that the power flows in the model
are unconstrained, with the necessary transmission ca-
pacities determined in retrospect from the flow statistics.
The extreme events excluded by this definition are as-
sumed to be covered by emergency measures like storage or
demand side management not considered in our simplified
model. We define the transmission capacity to be iden-
tical for power flows in both directions of the respective
link, with the total transmission capacity of the network
given as the sum over all system links K =

∑
l Kl. The

cost of transmission infrastructure between two nodes is
expected to be proportional to both the length of the con-
necting link and the respective transmission capacity. As
a measure for the total transmission cost T of the network
we thus use the estimate

T =
∑

l

dlKl , (11)

with dl the geodesic length of link l. For simplicity here
we do not discriminate between links representing AC and
DC transmission lines.

Scaling of transmission capacity measures under
coarse-graining. – We are interested in the scaling prop-
erties of both the total transmission capacity K and cost T
under network coarse-graining, that is for representations
of the original system with different spatial resolutions.
The coarse-graining is realised by applying a simple spa-
tial clustering procedure to the model of the European
transmission grid. We overlay a two-dimensional lattice
containing M non-empty aggregation cells of equal area
on top of the original network with N nodes. The nodes
contained in each cell are replaced by one representative
node, located at the average position of the aggregated
nodes in the cell. Two coarse-grained nodes are connected
by a link in the newly created network, if there is at least
one link between the respective sets of underlying nodes in
the original network (see fig. 2). By successively increasing
the size of the clustering cells, we obtain aggregated net-
works with sizes from the original N = 1494 nodes down to

Fig. 3: (Colour online) Relation between the network size M
of the coarse-grained representation of the EU electricity grid
resulting from the clustering algorithm with increasing cell ar-
eas, and the respective average link length 〈dM 〉. The net-
work size decreases from 1494 nodes (the original network) to
4 nodes, with the average link length increasing from ≈ 54 km
to ≈ 615 km. The blue link shows a fit to 〈dM 〉 ∝ Mγ in the
range 〈dM 〉 ∈ [75, 500] km, yielding γ ≈ −2.11.

M = 4 nodes (see fig. 1). The spatial scale of each system
is expressed by the average link length 〈dM 〉. Figure 3
shows that the relation between the coarse-grained net-
work size M and corresponding average link length〈dM 〉
for the the range 75 km to 500 km can be expressed as
M ∝ 〈dM 〉γ with γ ≈ −2.11, compared to γ = −2 which
would hold for a two-dimensional lattice. For each coarse-
grained network, the nodal mismatch time series are deter-
mined by summation of the time series of all original nodes
in the corresponding aggregation cells. Applying the same
power flow equations as for the original network, we obtain
the flow statistics and the resulting infrastructure mea-
sures KM and TM for the coarse-grained network with size
M and spatial scale 〈dM 〉. Figure 4 shows KM/KN and
TM/TN as a function of 〈dM 〉/〈dN 〉. We observe that the
results for both measures decrease under coarse-graining.
Applying a simple fit to a power law

KM

KN
∝
(

〈dM 〉
〈dN 〉

)η1

,
TM

TN
∝
(

〈dM 〉
〈dN 〉

)η2

, (12)

for the range 〈dM 〉 ∈ [75, 500] km we observe scaling ex-
ponents η1 ≈ −1.30 and η2 ≈ −0.25. This shows in
particular that the transmission costs of the system only
scale weakly with the spatial resolution of the network
representation.

Analytical approximations for transmission
capacity measures. – According to eq. (8), the power
flows depend on the mismatch statistics Δn(t) at the in-
dividual nodes n and on the network topology expressed
in the PTDF matrix Hln. An exact analytical descrip-
tion of the scaling of K and T under coarse-graining as
observed in the last section in general is prevented by
the correlated structure of the mismatch pattern Δn(t),
the changes of the grid topology under clustering, and
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Fig. 4: (Colour online) Relative total transmission capacity
KM/KN and cost TM/TN for coarse-grained representations of
the simplified EU electricity system model with network size
M and relative spatial scale 〈dM 〉/〈dN 〉. The blue lines show
simple fits to power laws for both expressions in the range
〈dM 〉 ∈ [75, 500] km, yielding approximate scaling exponents of
η1 ≈ −1.30 for the total transmission capacity, and η2 ≈ −0.25
for the total transmission cost.

the difficulties arising from the consideration of tails of
the flow distribution in the definition in eq. (10). In the
following we will introduce a series of subsequent approx-
imations for K and T leading to simplified expressions for
these transmission infrastructure measures, which allow
to analytically estimate the respective scaling properties
under coarse graining.

As a first step we approximate the original mis-
match distribution using a multivariate normal distri-
bution with mean Δ̄ and covariance matrix CΔ with
CΔ

mn = Cov(Δm, Δn). Here Δ̄ denotes the average mis-
match vector with entries 〈Δn〉. From the linearity of
the power flow equations it follows that the resulting flow
distribution on the links itself is a multivariate normal
distribution with mean flow vector F̄ = HΔ̄ and flow co-
variance matrix CF = HCΔHT . In particular, in this
case the quantile in eq. (10) can be expressed using the
error function erf(·):

q =
1
2

⎧⎨
⎩erf

⎛
⎝Kl − 〈Fl〉√

2CF
ll

⎞
⎠+ erf

⎛
⎝Kl + 〈Fl〉√

2CF
ll

⎞
⎠
⎫⎬
⎭ . (13)

Despite the heterogeneous solar and wind generation lay-
outs inside the countries of the given EU electricity system
model, the transmission capacities are dominated by the
distribution of power flows resulting from the fluctuations
in the underlying mismatch pattern, rather than by the
average flows resulting from heterogeneities in the distri-
bution of the average mismatches. Consequently, we can

assume Kl � 〈Fl〉 and approximate q = erf
(
Kl/
√

2CF
ll

)
.

We invert this relation and obtain the expression

Kl =
√

2erf −1(q)σ(Fl), (14)

Fig. 5: (Colour online) Full numerical results (red line) and dif-
ferent approximations for the total transmission capacity (top)
and cost (bottom) in a simplified model of a highly renewable
EU electricity system under spatial coarse-graining. The spa-
tial scale of the system is expressed by the average link length
〈dM 〉. The different approximations refer to the following equa-
tions. 1st (black): eqs. (15) and (16); 2nd (green): eq. (19);
3rd (blue): eq. (20); 5th (violet): eq. (24). The fourth ap-
proximation in eq. (21) yields very similar results compared to
the fifth approximation in eq. (24) and is not depicted here.
For the transmission capacity, over a wide range the red line
showing the full numerical results is covered by the green line
representing the results obtained after implementing the second
approximation in eq. (19). Note that the scale for the y-axis is
chosen to be logarithmic for the transmission capacity, whereas
it is linear for the transmission cost.

where we have used σ(Fl)=
√

CF
ll , which denotes the stan-

dard deviation of the flow distribution p(Fl). The total
capacity and transmission cost then read

K =
√

2erf −1(q)

(∑
l

σ(Fl)

)
=

√
2erf −1(q)L〈σ(Fl)〉, (15)

T =
√

2erf −1(q)

(∑
l

dlσ(Fl)

)
=

√
2erf −1(q)L〈dlσ(Fl)〉,

(16)

with the average taken over all L links of the network,
respectively.

The red curve in fig. 5 shows the numerical results for
KM and TM as defined in eqs. (10) and (11). The re-
sults according to the first approximation in eqs. (15)
and (16) are depicted by the black curve. We observe
that for both the transmission capacity and cost this ap-
proximation yields smaller values, thus underestimating
the respective infrastructure needs. This can be explained
by tails in the mismatch distributions Δn(t). Replacing
the original distribution by a multivariate normal distri-
bution reduces these tails, which in turn reduces the tails
and thus higher quantiles of the power flow distributions
Fl(t), which by definition reduces the capacity and cost
measures.

38004-p4
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It turns out that for a further analytical treatment it
is advantageous to work with the average variance of the
flow distribution 〈σ2(Fl)〉 instead of the average standard
deviation 〈σ(Fl)〉. We thus substitute

〈σ(Fl)〉 ≈
√

〈σ2(Fl)〉, (17)

〈dlσ(Fl)〉 ≈ 〈dl〉
√

〈σ2(Fl)〉. (18)

Due to 〈σ(Fl)〉2 ≤ 〈σ2(Fl)〉, for the simplified EU model
this substitution will increase the transmission capacity
measure K. For the transmission cost measure T correla-
tions between dl and σ(Fl) have to be taken into account,
but in general also this measure will increase under the
approximation. Using eqs. (17) and (18), the total trans-
mission capacity K and cost T can be written as follows:

K =
1

〈d〉T =
√

2erf −1(q)L

√∑
l σ

2(Fl)
L

=
√

2erf −1(q)
√

L
√

Tr [CF ]

=
√

2erf −1(q)
√

L
√

Tr [HCΔHT ]. (19)

The green curve in fig. 5 shows the resulting approximated
value for the transmission infrastructure measures KM and
TM according to eq. (19). These results are denoted as the
second approximation. We can see that the curves are as
expected shifted to larger values compared to the ones
obtained for the first approximation in eqs. (15) and (16).
In particular, for the specific system under study the errors
due to both approximations almost cancel each other for
the total capacity KM , leading to a result which is close
to the original numerical value.

Spatio-temporal correlations in both the load and re-
newable generation time series translate into correlations
in the mismatch time series Δn(t). Neglecting these cor-
relations allows to further simplify the expressions for the
infrastructure measures K and T . Approximating in that
case CΔ ≈ diag(σ2(Δn)), we diagonalise the real symmet-
ric matrix HT H with eigenvalues μk and obtain

K =
1

〈d〉T

≈
√

2erf −1(q)
√

L

√√√√∑
k

μk

(∑
n

(
u

(k)
n

)2
σ2(Δn)

)
, (20)

where u
(k)
n denotes the n-th component of the k-th eigen-

vector of HT H. In fig. 5 the expressions in eq. (20), de-
noted as the third approximation, are shown as a blue
curve for both the total capacity K and cost T . We ob-
serve that compared to the second approximation, for the
original system and spatial scales up to 〈dM 〉 ≈ 90 km this
simplification reduces the results for both transmission
infrastructure measures, wheareas for the more coarse-
grained systems with 〈dM 〉 > 90 km the situation is
reversed. Considering the original system, we expect cor-
relations to increase the infrastructure needs, because ge-
ographically close regions will show similar weather and

thus in particular wind generation patterns, leading to
power transmission over longer distances, resulting in
higher fluctuating power flows. For coarse-grained net-
works, these shorter-range spatial correlations in the re-
newable generation still increase the flow fluctuations by
being incorporated in the mismatch variances σ2(Δn) for
the aggregated nodes. Nevertheless, although decreasing,
spatial correlations are also present over larger distances,
for instances due to similar load patterns, the day and
night cycle in solar generation, or large-scale weather pat-
terns. Neglecting these correlations represented in the off-
diagonal elements of CΔ overestimates the heterogeneity
of the system, which leads to increasing transmission in-
frastructure needs as depicted in fig. 5 for 〈dM 〉 > 90 km.

In order to further simplify the expressions for the trans-
mission infrastructure measures K and T , we substitute
σ2(Δn) ≈ 〈σ2(Δn)〉, which yields the fourth approxima-
tion for the transmission infrastructure measures

K =
1

〈d〉T ≈
√

2erf −1(q)
√

L〈σ2(Δn)〉
√

Tr [HHT ]

=
√

2erf −1(q)
√

L〈σ2(Δn)〉
√∑

k

μk. (21)

Recall that the PTDF matrix has been gauged according
to eqs. (8) and (9) to incorporate the balancing. For a uni-
form balancing, that is in our case 〈Ln〉 = (

∑
k〈Lk〉)/N ,

it can be shown that for H = KT L† the correct balancing
is already incorporated and we obtain ĉl = 0. If we apply
this approximation of uniform balancing, the expression
HT H simplifies to

HT H = L†KKT L† = L†LL† = L†, (22)

where we have used KKT = L. The sum over the eigen-
values of HHT in eq. (21) is thus given by the sum over
the eigenvalues of L†, which correspond to the inverses
of the non-zero eigenvalues of the network Laplacian L.
This sum is proportional to the so-called Kirchhoff index
or quasi-Wiener index Kf of the network [11,12]:

Kf = NTr
[
L†] = N

N−1∑
k=1

1
λk

. (23)

The eigenvalues λk in this relation are ordered in descend-
ing order, such that λN = 0. The Kirchhoff index denotes
the sum of resistance distances between all pairs of vertices
in the network. Here the resistance distance is given by
the resistance between two nodes in a corresponding net-
work, in which all individual links have unit resistance [12].
Incorporating all simplifications presented in this section
we can write for the total transmission capacity and cost
of the system the following final fifth approximation:

K =
1

〈d〉T = erf −1(q)
√

〈k〉Kf
√

〈σ2(Δ)〉. (24)

In this relation we have used 2L = 〈k〉N , with 〈k〉 denot-
ing the average degree of the network. It is appealing that
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in eq. (24) the influence from the nodal mismatch statis-
tics and the role of the network topology are separated.
In fig. 5 we display this final result, denoted as the fifth
approximation, by the violet curve. The previous fourth
approximation in eq. (21) yields very similar results and
is not depicted in these figures. In conclusion we observe
that while in particular due to the non-consideration of
correlations the details of the relations between the trans-
mission infrastructure measures and the spatial scale are
not represented by the expressions in eq. (24), the general
trend is well approximated.

Scaling of transmission capacities and costs
under network aggregation. – How does the simplified
expression for the transmission infrastructure measures K
and T in eq. (24) change under coarse-graining? Due to
the summation of nodal time series inside an aggregation
cell we can assume as a first approximation

〈σ2(Δ)〉M ≈ N

M
〈σ2(Δ)〉N , (25)

with N/M the average number of original nodes aggre-
gated inside one cell, and the index N and M referring to
the observable evaluated for the original network with N
nodes, or the coarse-grained network with M nodes. For
spatial infrastructure networks the degree distribution is
often very homogeneous [13], which suggests to approxi-
mate a constant average degree 〈k〉N ≈ 〈k〉M in eq. (24)
for different spatial resolutions of the network. In order to
obtain an analytical estimate of the scaling properties of
the Kirchhoff index Kf, we approximate the original and
each coarse-grained network by a two-dimensional lattice
with approximately the same number of nodes, respec-
tively. The Laplacian eigenvalues of a 2D lattice graph
with N =

√
N ×

√
N nodes are given as [14]:

λn,m = 4 sin2
(

πn

2
√

N

)
+ 4 sin2

(
πm

2
√

N

)
. (26)

Here 0 ≤ n, m <
√

N , with λ0,0 = 0. The Kirchhoff index
corresponding to the sum over the inverse non-zero eigen-
values for large N then can be approximated as follows:

Kf = N
∑

0≤n,m<
√

N
n=m �=0

1
λn

(27)

≈ N2

π2

∑
0≤n,m<

√
N

n=m �=0

1
n2 + m2 (28)

≈ N2

π2

∫ π
2

0

∫ 1

1√
N

rdφdr

r2 (29)

=
N2 ln

[√
N
]

2π
=

N2 ln N

4π
. (30)

Under the spatial clustering procedure from N original
nodes to M aggregated nodes, the scaling of the Kirchhoff

Fig. 6: (Colour online) Scaling of total transmission capacity
(top) and cost (bottom) for the EU electricity system model.
The numerical results (red dots) are compared to the analyti-
cal estimate (black line) according to eqs. (32) and (33). Note
that the scale for the y-axis is chosen to be logarithmic for
the transmission capacity, whereas it is linear for the transmis-
sion cost.

index thus can be approximated as

KfM ≈ M2 ln M

N2 ln N
KfN . (31)

Approximating the area covered by the original network
as N〈d〉2N , we can write N〈d〉2N ≈ M〈d〉2M , which is a first-
order approximation to M ∝ 〈dM 〉−2.11 found numerically
for the EU electricity system model. Collecting all rela-
tions discussed in this section we finally obtain

KM ≈
√

M ln M

N ln N
KN ≈

(
〈d〉M

〈d〉N

)−1

√√√√
1 −

2 ln
[

〈d〉M

〈d〉N

]
ln N

KN ,

(32)

TM ≈
√

ln M

ln N
TN ≈

√√√√
1 −

2 ln
[

〈d〉M

〈d〉N

]
ln N

TN . (33)

Figure 6 compares the scaling of K and T dependent on
the length scale 〈d〉M for the simplified renewable EU elec-
tricity system model with the analytical result in eqs. (32)
and (33), respectively. The figure shows that for this sys-
tem the analytical scaling provides an accurate description
of the numerical results. In particular, by considering
the relative measures KM/KN and TM/TN , the impact
of systemic errors due to the approximated calculation
of transmission capacities and costs have been reduced.
Despite the non-grid–like topology and the neglecting of
correlations in the mismatch data, the essential scaling
properties of transmission infrastructure measures under
coarse-graining in the model of the European power grid
are thus described by the analytical relations in eqs. (32)
and (33). It should be emphasized that in this context
the transmission capacity cost only scales weakly with the
spatial resolution of the system.
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Conclusion. – Due to the complexity of the power
grid, models of the electricity system often consider a
coarse-grained network representation in which the topol-
ogy, load and generation patterns below a given spatial
scale are aggregated into representatives nodes. Given
that depending on the model the spatial scale might range
from resolving single transmission stations to countries as
network nodes, it is important to understand how the re-
sulting infrastructure objectives depend on this coarse-
graining procedure [2]. In this contribution, we study
scaling properties of transmission infrastructure measures
under coarse-graining in a simplified, but data-driven and
spatially detailed model of a highly renewable European
electricity system. We observe that the transmission ca-
pacity cost only scales weakly with the spatial scale of the
system. By applying a series of approximations we obtain
an analytical description of the scaling properties under
coarse-graining, which for the model system describes the
numerical results remarkably accurately.

The results presented in this article suggest future re-
search in different directions. With respect to models of
the electricity system, it would be interesting to study to
what extent the analytical description still holds for more
heterogeneous layouts, in particular concerning the dis-
tribution of renewable generation capacities [15]. In the
present article we defined transmission capacities in ret-
rospect, determined by the flow statistics at the different
levels of coarse-graining. Alternatively one could also ob-
tain macroscopic power flows by aggregating microscopic
flows [16], or directly aggregate the existing transmission
infrastructure without calculating power flows [2]. Be-
yond the field of electricity system modelling, the role of
coarse-graining for the determination of system objectives
is also relevant for other infrastructure and transport net-
works [13]. From a complex networks perspective, inves-
tigating the scaling of transport properties under network
clustering for generic network models, for instance geomet-
ric, small-world or scale-free networks [17], would allow to
further understand the relation between network topology,
nodal dynamics, and emerging flow patterns on different
spatial scales.
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