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Abstract – In this study, we investigate the phonon antibunching effect in a coupled non-
linear micro/nanoelectromechanical system (MEMS/NEMS) resonator at a finite temperature.
In the weak driving limit, the optimal condition for phonon antibunching is given by solving
the stationary Liouville-von Neumann master equation. We show that at low temperature,
the phonon antibunching effect occurs in the regime of weak nonlinearity and mechanical cou-
pling, which is confirmed by analytical and numerical solutions. We also find that thermal
noise can degrade or even destroy the antibunching effect for different mechanical coupling
strengths. Furthermore, a transition from strong antibunching to bunching for phonon corre-
lation has been observed in the temperature domain. Finally, we find that a suitably strong driv-
ing in the finite-temperature case would help to preserve an optimal phonon correlation against
thermal noise.

Copyright c© EPLA, 2017

Introduction. – Quantum state transfer and storage
are crucial in quantum information processing. To date,
the photon has been the information carrier most com-
monly used to transfer and store quantum information,
and it has the advantage of high velocity, robustness to
different environments, and good integrability. However,
phonons, which are vibrational modes of mechanical res-
onators, can be maintained for a very long time before
being eventually damped, and they have the ability to in-
teract with a wide range of quantum systems, such as elec-
tric, magnetic, and optical systems. Therefore, phonons
also have promising potential as quantum information
carriers [1–3].

In quantum phononic networks, the nonclassical states
of phonons or of a single phonon are important elements.
Many methods to prepare nonclassical states of phonons
or a single phonon have been proposed. For example,
a single-phonon Fock state is prepared by two-phonon
damping [4], a non-Gaussian state of a mechanical res-
onator is generated by performing measurements [5], and

(a)E-mail: duanzhenglu@jxnu.edu.cn

a single phonon is produced by the heralded measurement
of the Stokes photon in cavity optomechanics [6,7].

It is well known that a sufficiently high Kerr non-
linearity in an optical cavity will prevent further pho-
tons from entering once one photon is present, and this
is called the photon blockade effect [8]. The transmit-
ted light passing through the optical cavity then shows
strong antibunching, which can be used to convert a co-
herent field into a train of single photons [9]. Similar
to its optical counterpart, the phonon can also exhibit
an antibunching effect in a strong nonlinear mechanical
resonator [10–15]. However, the typical intrinsic nonlin-
earity of most micro/nanomechanical resonators is usually
very weak [16–21]. Thus, we aim to determine whether
strong phonon antibunching can be realized in a coupled
micro/nanomechanical resonator system with weak intrin-
sic mechanical nonlinearity.

In fact, a similar problem of weak nonlinearity also
exists in the optical case. To address this problem,
Liew and Savona found that photons exhibit strong an-
tibunching in a system consisting of two coupled optical
cavities with weak optical nonlinearity, which is called
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the unconventional photon blockade (UPB). Ciuti et al.
found that the underlying physics of UPB is that the ex-
citation from the vacuum state to the two-photon state
was suppressed by the destructive quantum interference
between distinct pathways with a small and finite nonlin-
earity in the auxiliary cavity [22–26].

Owing to the high resonant frequency of an optical cav-
ity, the thermal photon number is negligible at room tem-
perature. Therefore, the effect of thermal photons on
the photon statistics and correlations is usually neglected
safely. However, for mechanical resonators, the thermal
phonon number is not negligible, and significantly influ-
ences the phonon blockade even at temperatures of the or-
der of several millikelvins [11,12,27]. Hence, an analytical
study of phonon antibunching may help to give a deeper
insight into the quantum correlation at finite temperature.

Motivated by these above-mentioned studies, we pro-
pose a scheme to realize a strong phonon antibunching
effect by coupling a linear micro/nanoelectromechanical
system (MEMS/NEMS) resonator to a weakly nonlinear
MEMS/NEMS resonator. The optimal conditions re-
quired to observe strong phonon antibunching in this sys-
tem are analytically found at finite temperature based on
the stationary Liouville-von Neumann master equation. In
particular, we systematically study the effect of the ther-
mal noise on the quantum statistic and correlation prop-
erties. We expect our system to be useful for generating
a nonclassical phonon state at finite temperature.

Model. – As shown in fig. 1, the system under
consideration consists of two linearly coupled doubly
clamped mechanical beams. One mechanical beam (re-
ferred to as resonator 1) is a linear resonator coherently
driven by a force signal, and the other (referred to as
resonator 2) contains a weak Duffing nonlinearity with-
out driving. The mechanical nonlinearity can be intrinsic,
such as geometric and material nonlinearity [16,17], or it
can be induced by coupling the mechanical oscillator to a
low-dimensional auxiliary system, such as a plate capaci-
tance [18], Cooper-pair boxes [28], polar molecules [29],
and quantum dots [30]. As an example, the coupling
between mechanical resonators could be achieved by ap-
plying a voltage between two electrodes patterned on
the beams, which gives rise to a static intermodal cou-
pling [31,32], or by using a non-rigid anchor strain to me-
diate between the two beams [33]. As opposed to the latter
case, dielectric intermode coupling can be tuned freely.

We assume that the resonator 1 is harmonically driven
by an external force with amplitude F and frequency ωd.
The Hamiltonian for the described system is given by
(h̄ = 1)

H = ω1b̂
†
1b̂1 + ω2b̂

†
2b̂2 + J(b̂†1 + b̂1)(b̂2 + b̂†2)

+ F (b̂†1e
iωdt + b̂1e

−iωdt) + U(b̂†2 + b̂2)4, (1)

where b̂j (b̂†j) is the annihilation (creation) operator for
the phonon mode of the j-th mechanical resonator with

Beam 1

Beam 2
J

Driving field

Fig. 1: (Color online) Schematic of the phonon blockade effect.
A linear mechanical beam that is driven by an external force
is linearly coupled to another nonlinear mechanical beam.

resonance frequency ωj and damp rate γj (j = 1, 2). J is
the coupling strength between two mechanical resonators,
and U is the nonlinearity of the mechanical resonator 2.
For simplicity without loss of physics, in the following,
we assume that the mechanical resonators share the same
frequency and decay rate, i.e., ω1 = ω2 = ω0 and γ1 =
γ2 = γ. Further, we assume that the coupling strength J
and the mechanical nonlinearity U are much smaller than
the resonance frequency ω0. Under these assumptions, we
can neglect the anti-rotating wave terms and rewrite the
Hamiltonian as

H = Δb̂†1b̂1 + Δb̂†2b̂2 + J(b̂†1b̂2 + b̂†2b̂1)

+F (b̂†1 + b̂1) + Ub̂2†
2 b̂2

2, (2)

where Δ = ω0 − ωd is the detuning of the mechani-
cal resonance frequency from the driving frequency. The
Hamiltonian (2) describes a model of driven-dissipative
coupled nonlinear mechanical resonators, which is math-
ematically similar to the optical counterpart in ref. [26].
This Hamiltonian is the starting point of our calculation.

Unlike the situation of photon blockades, the environ-
mental temperature usually has a significant influence on
typical phonon statistics and correlation owing to the low
energy of individual phonons. With the inclusion of the
temperature factor, here, we use the Liouville-von Neu-
mann master equation for the density matrix

dρ̂

dt
= L̂ρ̂

= −i[H, ρ̂] +
∑

n=1,2

γ

2

[
(nth + 1)D[b̂n]ρ̂

+nthD[b̂†n]ρ̂
]

(3)

with the Lindblad operator D[Â]ρ̂ = 2Âρ̂Â† − Â†Âρ̂ −
ρ̂Â†Â. Here, nth = (exp(T0/T ) − 1)−1 is the average
phonon number of the mechanical resonators at the tem-
perature T (we assume that the temperatures of two
nanomechanical beams are the same), and T0 = h̄ω/KB

is the characteristic temperature of the system with the
Boltzmann constant KB . Here, we have neglected the pure
dephasing of the resonators because the dephasing rates
are usually much smaller than other decay rates [34].

In this case, the statistic properties of phonons for
mechanical beam 1 are described by the equal-time
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second-order correlation function:

g(2)(0) =
Tr(b̂†1b̂

†
1b̂1b̂1ρ̂ss)

Tr(b̂†1b̂1ρ̂ss)2
, (4)

where ρ̂ss is the steady-state density matrix by set-
ting dρ̂/dt = 0 in eq. (3). In the calculation, we write
ρ̂ as the density matrix ρ̂ =

∑N
m,n=0 ρmn,m′n′ |mn〉〈m′n′|

on the basis of phonon number states |mn〉, where m de-
notes the phonon number in mechanical mode 1 and n de-
notes the phonon number in mechanical mode 2. To find
the steady-state density matrix, we need to find the eigen
matrix ρ̂ss of superoperator L̂ when it has an eigenvalue
equal to 0, i.e., L̂ρ̂ = λρ̂ (λ = 0). Such an eigenvalue
problem can be numerically solved using the method in
ref. [35]. In the numerical calculation, we set the phonon
number n = 10,m = 10, which is sufficiently large to en-
sure the convergence of the results in this work.

Results for phonon antibunching. –

Zero-temperature case. Figure 2 shows the numeri-
cal result of the equal-time second-order correlation func-
tion as a function of the nonlinearity U and mechanical
coupling J at zero temperature. We observe that the
phonon antibunching effect occurs in the parameter regime
where the product JU is relatively small. Importantly,
as opposed to the conventional phonon blockade effect,
in this coupled-mechanical oscillator system, phonons ex-
hibit antibunching even when the nonlinearity is negligi-
ble (U � γ), although this is at the cost of a large J .
In addition, in the regime of large U and J , g(2)(0) be-
comes extremely large, which means that phonons are
superbunched.

To find the optimal condition for phonon antibunching,
we analytically solve the steady-state master equation for
the density matrix. Under the weak driving condition
F � γ, the average mechanical excitations would be much
lower than 1, and the Hilbert space of the total system
can be truncated to m + n = 2. In this case, we de-
note |0, 0〉 → |1〉, |0, 1〉 → |2〉, |0, 2〉 → |3〉, |1, 0〉 → |4〉,
|1, 1〉 → |5〉, and |2, 0〉 → |6〉. Hence, the density ma-
trix operator ρ̂ can be written as ρ̂ =

∑6
m,n=1 ρmn|m〉〈n|.

In addition, weak mechanical excitations would result in
ρ00 � 1 � ρ01, ρ10 � ρ02, ρ20, ρ11. Then, the equal-time
second-order correlation function can be approximately
expressed as

g(2)(0) � 2ρ66

ρ2
44

. (5)

Obviously, if ρ66 = 0, then g(2)(0) = 0, which implies
a low probability of having two phonons in the first me-
chanical mode. After performing tedious calculations us-
ing the perturbation theory, we obtained the expression
for the matrix element ρ66 in the zero-temperature case
(nth = 0),

ρ66 =
F 4|U(J2 + 2Δ̃2) + 2Δ̃3|2

2J8|U + 2Δ̃|2
, (6)

U/γ

J/
γ
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Fig. 2: (Color online) Equal-time second-order correlation
function log10(g

(2)(0)) as a function of the mechanical cou-
pling J and the nonlinear coefficient U at zero temperature.
The white dashed curve is calculated from the analytical op-
timal conditions eqs. (7) and (8). The parameters are γ = 1,
Δ = 0.29γ, and F = 0.001γ.

where Δ̃ = Δ−iγ/2. In the calculation, we further assume
a large mechanical coupling J ; otherwise, the expression
for matrix elements would be more complicated. Then, we
can find the following condition for perfect antibunching:

2UJ2 + 4(Δ + U)Δ2 − (3Δ + U)γ2 = 0, (7)
8UΔ + 12Δ2 − γ2 = 0 (8)

which is mathematically the same as the results in the
photon blockade case [26]. We plot the optimal condition
in fig. 2 (white dashed curve), which is in good agreement
with the numerical result.

In the situation where the mechanical coupling J is
much greater than the mechanical damping γ, the opti-
mal parameters required to achieve ρ66 = 0 can be ap-
proximated as

Δoptimal � γ

2
√

3
, (9)

Uoptimal � 2γ3

3
√

3J2
. (10)

Obviously, in this case, the nonlinearity that is required to
observe that an optimal blockade can be made extremely
small (Uoptimal/γ = 2γ2/(3

√
3J2)· � 1), contrary to the

condition of conventional phonon blockade (U/γ � 1).
We then study the phonon number probability distribu-

tion Pm =
∑∞

n=0 ρmn,mn of mechanical mode 1 when the
phonon blockade occurs. For comparison, we also show the
probability distribution of a coherent state with the same
mean phonon number |α|2 =

∑∞
m=0 P (m), which obeys

the Poisson distribution P (n) = |α|2ne−|α|2/n!. As shown
in fig. 3, the largest probability is occupied by the vac-
uum state. The one-phonon state is the next most prob-
able. The two-phonon state is significantly less probable
than the single-phonon state. Compared to the coherent
state (the same mean phonon number with the blockade
case), the probability for the two-phonon state is small,
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Fig. 3: (Color online) Population distribution of the number
state of phonon mode 1. The other parameters are γ = 1,
U = 0.00387γ, J = 10γ, Δ = 0.2874γ, and F = 0.00005γ.
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Fig. 4: (Color online) Equal-time second-order correlation
function log10(g

(2)(0)) as a function of mechanical coupling J
and nonlinearity U at temperature T = 0.04T0. The solid
white line indicates the contour line with g(2)(0) = 1. The
other parameters are γ = 1, Δ = 0.29γ and F = 0.001γ.

which indicates that the state of mechanical mode 1 has
a nonclassical distribution. Recently, similar results have
also been observed in optical counterparts [22].

Finite-temperature case. In the previous subsection,
we studied the phonon blockade effect without including
the effect of environmental temperature. However, cooling
a mechanical resonator down to zero temperature is not
easily achieved experimentally. Therefore, it is important
to study the phonon blockade at finite temperature. First,
in fig. 4, we numerically plot g(2)(0) as a function of J
and U at T = 0.04T0. It can be seen that the phonon
antibunching effect still exists in the weak nonlinearity U ,
but small mechanical coupling J regime (enclosed by the
white solid line in fig. 4). It is also observed that there is
strong phonon antibunching in a specific regime, which is
similar to that in the zero-temperature case. However, in
the regime of weak nonlinearity U and large J , g(2)(0) is
greater than 1, which is contrary to the zero-temperature
case (see fig. 2). This behavior indicates that thermal noise
destroys the phonon antibunching effect in the regime of
weak nonlinearity U and large J .

T1 T2

I II III

Fig. 5: (Color online) Equal-time second-order correlation
function g(2)(0) as a function of environmental temperature T .
I, II, and III represent the quantum regime, crossover regime,
and thermal regime, respectively. The numerical result is ob-
tained based on the steady-state master equation (3), and
the analytical result is calculated based on eqs. (5), (11),
(12). The parameters that are used in this figure are γ = 1,
U = 0.00096γ, J = 20γ, Δ = 0.2885γ, and F = 0.01γ.

To study the effect of the environmental temperature on
the phonon blockade, we present the analytical expressions
of the density matrix elements ρ66 and ρ44 in the strong
coupling regime (using the same procedure as in the zero-
temperature case):

ρ44 =
F 2|Δ̃|2

|J2 − Δ̃2|2
+ nth, (11)

ρ66 =
F 4|U(J2 + 2Δ̃2) + 2Δ̃3|2

2J8|U + 2Δ̃|2

+
2F 2|Δ̃|2

J4
nth + n2

th. (12)

From eqs. (11), (12), both ρ44 and ρ66 contain two parts:
one part determined by the temperature or the thermal
phonon number, and the other part from the system it-
self (quantum interference). These two parts incoherently
contribute to the phonon correlation. From eq. (12), it
can be noted that ρ66 > 0, which implies that the perfect
antibunching condition no longer exists at finite temper-
ature. However, from eq. (12) we can see that for a fixed
temperature T , when the first term vanishes, the equal-
time second-order correlation will take the minimal value.
Therefore, the optimal condition for the strong phonon
antibunching at finite temperature is the same as that
at zero temperature. When the environmental tempera-
ture is small, the region for 0 < g(2)(0) < 1 still exists
because the quantum interference partially contributing
to phonon correlation leads to an imperfect antibunching
effect. When the mechanical coupling J is small, the con-
tribution from quantum interference is enhanced, leading
to a stronger phonon antibunching, and vice versa. These
conclusions are well confirmed by the numerical results in
fig. 4.

Figure 5 shows g(2)(0) as a function of the environ-
mental temperature. Based on different behaviors of the
second-order correlation function, the whole regime can
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Fig. 6: (Color online) (a)–(c) The second-order correlation
function g(2)(τ) is plotted as a function of the time delay τ at
different temperatures. The parameters used in this figure are
γ = 1, U = 0.00096γ, J = 20γ, Δ = 0.288γ, and F = 0.01γ.

be divided into three parts by two boundary temperatures
0.028T0 and 0.046T0. In the first region (region I), g2(0)
is a constant and is much smaller than 1, which means
that the phononic mode has a strong antibunching effect.
Therefore, we called it the quantum regime. Interestingly,
the quantum correlation is hardly affected by the thermal
noise in the quantum regime, which is very helpful to ex-
perimentally observe the strong phonon antibunching at
low finite temperature. In the second region (region II),
g(2)(0) experiences a sharp increase from 3 × 10−6 to 2
with increasing temperature. Obviously, in this regime,
the quantum correlation of the phononic mode undergoes
a transition from strong antibunching to bunching. We
call it the crossover regime. In the third region (region III),
g(2)(0) approaches another constant 2, which means that
the phononic mode has the statistic property of a thermal
field. This regime is called the thermal regime.

These phenomena described in last paragraph can be
explained from eqs. (5) and (12) as follows. In the quan-
tum regime, the first term is much larger than other terms
in eq. (12), i.e., quantum interference dominates, and,
therefore, g2(0) mainly shows the pure quantum corre-
lation. In the thermal regime, the third term is much
larger than other terms in eq. (12), i.e., pure thermal noise
dominates, which results in g(2)(0) ≈ 2. In the crossover
regime, the gradually enhanced thermal noise gradually
suppresses and eventually destroys the quantum correla-
tion; hence, g2(0) monotonously increases from an almost
vanishing value to 2. Two critical temperatures can be
determined as follows: when the first term is equal to
the second term and much greater than the third term
in eq. (12), the corresponding temperature is the first
boundary value. Then, we find T1 = T0/ ln(1 + 4J4|UΔ̃ +
2Δ̃2|2/F 2|U(J2 + 2Δ̃2) + 2Δ̃3|2); when the third term is
equal to the second term and much greater than the first
term in eq. (12), we find another boundary temperature
T2 = T0/ ln(1 + J4/2|F Δ̃|2).

We also studied the second-order correlation function
vs. the time delay g(2)(τ) at three different environment

0 2 4 6 8 10
10

−6

10
−4

10
−2

10
0

10
2

F/γ

g(2
) (0

)

0 0.5 1

10
−5

10
0

T = 0.05T
0

T = 0.04T
0

T = 0.0

T = 0.06T
0

Fig. 7: (Color online) Equal-time second-order correlation
function g(2)(0) vs. the driving strength F at different tem-
peratures. The dotted line represents the analytical results,
and the solid line represents the numerical results. The inset
is the zero-temperature case. The other parameters are γ = 1,
U = 0.00096γ, J = 20γ, Δ = 0.288γ.

temperatures, as shown in fig. 6. Owing to the probability
oscillation between the phonon state |0, 1〉 and |1, 0〉, the
second-order correlation functions oscillate with period
2π/J . In the zero-temperature case (fig. 6(a)), the value
of g(2)(0) becomes negligible. For T = 0.043T0 (fig. 6(b)),
the amplitude of the oscillation of g(2)(τ) decreases; mean-
while, the value of g(2)(0) increases to unitary. When the
temperature is further increased to T = 0.1T0 (fig. 6(c)),
the value of g(2)(0) is � 2, indicating that the phonon field
in the mechanical resonator 1 is a thermal field. Again,
the time evolution of the second-order correlation func-
tion shows that a large thermal noise will suppress and
even destroy the phonon antibunching. From fig. 6, one
can see that strong phonon antibunching is demonstrated
in a range about π/J around the zero delay, which gives
a limited requirement for the temporal resolution of a
detector.

We then investigate the influence of the driving force
on the phonon statistics. In fig. 7, we plot g(2)(0) of the
phononic mode in mechanical resonator 1 as a function of
the driving force at zero and finite temperatures. First, we
focus on the zero-temperature case. From eqs. (5), (11),
and (12) we can obtain the equal-time second-order cor-
relation function at zero temperature:

g(2)(0) =

∣∣∣∣∣
(U(J2 + 2Δ̃2) + 2Δ̃3)|J2 − Δ̃2|2

(U + 2Δ̃)|Δ̃|2J4

∣∣∣∣∣
2

. (13)

It should be noted that in the weak driving regime, g(2)(0)
is independent of F , and is consistent with the numeri-
cal result shown in fig. 7. However, the analytical result
clearly deviates from the numerical result in the strong
driving regime. It is shown that the analytical result
is valid only in the weak driving regime. The reason is
that a strong driving enhances the population in the high-
phonon-number states, and, therefore, decreases the anti-
bunching effect.
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Next, we discuss the influence of the driving amplitude
F on g(2)(0) in the finite-temperature case. As opposed to
the zero-temperature case, it can be seen that all second-
order correlation curves at finite temperature first decrease
and then increase as the driving force is enhanced. In-
deed, a similar phonon correlation behavior was numeri-
cally observed without physical interpretation in ref. [13].
In the weak driving limit, the analytical model well re-
produces the numerical calculation. However, because the
analytical model is based on the assumption that the total
phonon number is small (m + n = 2), it fails to repro-
duce the increasing g(2)(0) at higher driving. These ob-
servations can be understood from eqs. (5), (11), and (12).
When F is very small, the thermal noise term dominates
the matrix elements ρ44 and ρ66, and hence, the phonon
state is approximately a thermal state (g(2)(0) ≈ 2). With
the increase in driving strength, the contributions from the
quantum-interference terms in eqs. (11) and (12) become
important, leading to a decrease in g(2)(0). When the
driving is sufficiently strong, the three- and higher-phonon
states in resonator 1 are populated with increased prob-
ability owing to the strong coupling between resonator
1 and resonator 2. Hence, the second-order correlation
function will increase again, resulting in a degradation
of phonon antibunching. From the above discussions, it
is clear that a very weak force is required to achieve a
stronger antibunching effect for the zero-temperature case,
while a suitably strong driving strength is helpful to pre-
serve the stronger phonon antibunching effect when ther-
mal noise exists.

Now, we discuss the experimental feasibility to observe
the phonon blockade effect in the presence of unavoid-
able thermal noise. We assume that the two resonators
in our model are silicon-based MEMS/NEMS resonators,
which are doubly clamped rectangular cross-section beams
with width d = 5nm and length L = 100 nm. According
to refs. [17,32], we find that the fundamental frequency
is ω0/2π = d/L2

√
E/ρ = 4.3GHz and the nonlinear

strength U = h̄(1.6ρd4L)−1 = 430Hz. The decay rate
of the resonator is dependent on many factors, such as
the geometrical configuration, anchor loss, environmental
pressure and temperature, input-output loss, and ther-
moelastic damping. With a suitable design and fabrica-
tion, the total decay can be controlled. For simplicity, we
take a typical value of γ = 10MHz, which corresponds to
a quality factor Q ∼ 4300. If we assume that the coupling
between two mechanical resonators comes from an electro-
static force, the coupling strength J can be freely adjusted
by changing the externally applied voltage. With these
feasible parameters, we can then estimate the character-
istic temperature T0 = h̄ω0/KB ∼ 196mK. According to
the previous discussion, for an environmental temperature
below 5.3mK, the phonon blockade is almost unaffected
by the thermal noise. Such a temperature is attainable us-
ing current laboratory technology. To measure the time-
delayed second-order correlation function g(2)(τ), we can
adapt the same method as in ref. [36]. In this reference [36],

the phonon correlation can be transferred to the photon
correlation, which can be measured by a typical photonic
Hanbury Brown and Twiss (HBT) set-up. Here, we take
coupling strength J = 20γ ∼ 200MHz, corresponding to a
window width of phonon antibunching π/J ∼ 10 ns. Ap-
parently, this time scale is much greater than a typical
temporal resolution of the detector (usually < 100 ps) [37].

Conclusion. – We studied the phonon antibunching ef-
fect in a coupled mechanical resonator system with weak
mechanical nonlinearity both at zero and finite tempera-
tures. In the weak driving limit, analytical results were
derived for the phonon antibunching in the strong cou-
pling regime, and the temperature effect on the phonon
blockade was investigated based on the stationary mas-
ter equation. The results show that there exists a perfect
phonon antibunching when the system parameters take
the optimal conditional value at zero temperature. When
thermal noise exists, the perfect antibunching condition is
destroyed, leading to a suppressed phonon antibunching
effect in the regime of small mechanical coupling, or lead-
ing to a destroyed phonon antibunching in the regime of
large mechanical coupling. Furthermore, we find that the
thermal noise has a different effect on the phonon cor-
relation in the quantum regime, crossover regime, and
thermal regime. Temperature variations have a negligi-
ble influence on the quantum correlation of the phonon
mode when the environmental temperature is present in
the quantum regime. Finally, the effect of the driving force
on the phonon blockade is also discussed. It is found that a
suitably strong driving, rather than a very weak driving,
would help to preserve an optimal phonon antibunching
effect at finite temperature.

∗ ∗ ∗
This work is supported by the National Natural Sci-

ence Foundation of China under Grants No. 11364021
and No. 11664014, Natural Science Foundation of Jiangxi
Province under Grant 20161BAB201023. WPB acknowl-
edges support from the Australian Research Council
through grants CE110001013 and FT140100650.

REFERENCES

[1] Habraken S. J., Stannigel K., Lukin M. D., Zoller

P. and Rabl P., New J. Phys., 14 (2012) 115004.
[2] Gustafsson M. V., Aref T., Kockum A. F., Ekstrom

M. K., Johansson G. and Delsing P., Science, 346
(2014) 207.

[3] Rips S. and Hartmann M. J., Phys. Rev. Lett., 110
(2013) 120503.

[4] Borkje K., Phys. Rev. A, 90 (2014) 023806.
[5] Vanner M. R., Pikovski I., Cole G. D., Kim M.

S., Brukner C., Hammerer K., Milburn G. J. and
Aspelmeyer M., Proc. Natl. Acad. Sci. U.S.A., 108
(2011) 16182.

[6] Riedinger R., Hong S., Norte R. A., Slater J. A.,

Shang J. Y., Krause A. G., Anant V., Aspelmeyer

M. and Groblacher S., Nature, 530 (2016) 313.

58001-p6



Phonon antibunching effect in coupled nonlinear micro/nanomechanical resonator at finite temperature

[7] Galland C., Sangouard N., Piro N., Gisin N.

and Kippenberg T. J., Phys. Rev. Lett., 112 (2014)
143602.

[8] Imamoglu A., Schmidt H., Woods G. and Deutsch

M., Phys. Rev. Lett., 79 (1997) 1467.
[9] Carusotto I. and Ciuti C., Rev. Mod. Phys., 85 (2013)

299.
[10] Didier N., Pugnetti S., Blanter Y. M. and Fazio R.,

Phys. Rev. B, 84 (2011) 054503.
[11] Liu Y. X., Miranowicz A., Gao Y. B., Bajer J., Sun

C. P. and Nori F., Phys. Rev. A, 82 (2010) 032101.
[12] Miranowicz A., Bajer J., Lambert N., Liu Y. X. and

Nori F., Phys. Rev. A, 93 (2016) 013808.
[13] Xu X. W., Chen A. X. and Liu Y. X., Phys. Rev. A,

94 (2016) 063853.
[14] Seok H. and Wright E. M., Phys. Rev. A, 95 (2017)

053844.
[15] Wang X., Miranowicz A., Li H. R. and Nori F., Phys.

Rev. A, 93 (2016) 063861.
[16] Deng G. W., Zhu D., Wang X. H., Zou C. L., Wang

J. T., Li H. O., Cao G., Liu D., Li Y., Xiao M., Guo

G. C., Jiang K. L., Dai X. C. and Guo G. P., Nano
Lett., 16 (2016) 5456.

[17] Cleland A. N. and Roukes M. L., J. Appl. Phys., 92
(2002) 2758.

[18] Veijola T. and Mattila T., Int. J. RF Microwave
Comput.-Aided Eng., 11 (2001) 310.

[19] Peano V. and Thorwart M., New J. Phys., 8 (2006)
21.

[20] Babourina-Brooks E., Doherty A. and Milburn

G. J., New J. Phys., 10 (2008) 105020.
[21] Katz I., Retzker A., Straub R. and Lifshitz R.,

Phys. Rev. Lett., 99 (2007) 040404.
[22] Flayac H. and Savona V., Phys. Rev. A, 96 (2017)

053810.
[23] Liew T. C. H. and Savona V., Phys. Rev. Lett., 104

(2010) 183601.

[24] Xu X. W. and Li Y. J., J. Phys. B: At. Mol. Opt. Phys.,
46 (2013) 035502.

[25] Gerace D. and Savona V., Phys. Rev. A, 89 (2014)
031803(R).

[26] Bamba M., Imamoglu A., Carusotto I. and Ciuti C.,
Phys. Rev. A, 83 (2011) 021802(R).

[27] Komar P., Bennett S. D., Stannigel K., Habraken

S. J. M., Rabl P., Zoller P. and Lukin M. D., Phys.
Rev. A, 87 (2013) 013839.

[28] Etaki S., Poot M., Mahboob I., Onomitsu K.,

Yamaguchi H. and van der Zant H. S., Nat. Phys.,
4 (2008) 785.

[29] Andre A., Demille D., Doyle J. M., Lukin M. D.,

Maxwell S. E., Rabl P., Schoelkopf R. J. and
Zoller P., Nat. Phys., 2 (2006) 636.

[30] Srinivasan K. and Painter O., Nature (London), 450
(2007) 862.

[31] Faust T., Rieger J., Seitner M. J., Kotthaus J. P.

and Weig E. M., Nat. Phys., 9 (2013) 485.
[32] Barzanjeh S. and Vitali D., Phys. Rev. A, 93 (2016)

033846.
[33] Okamoto H., Gourgout A., Chang C. Y., Onomitsu

K., Mahboob I., Chang E. Y. and Yamaguchi H., Nat.
Phys., 9 (2013) 480.

[34] O’Connell A. D., Hofheinz M., Ansmann M.,

Bialczak R. C., Lenander M., Erik Lucero, Neeley

M., Sank D., Wang H., Weides M., Wenner J.,

Martinis J. M. and Cleland A. N., Nature, 464 (2010)
697.

[35] Savona V., arXiv:1302.5937 (2013).
[36] Hong S., Riedinger R., Marinkovic I., Wallucks

A., Hofer S. G., Norte R. A., Aspelmeyer M. and
Groblacher S., Science, 358 (2017) 203.

[37] Ding X., He Y., Duan Z. C., Gregersen N., Chen

M. C., Unsleber S., Maier S., Schneider C., Kamp

M., Hofling S., Lu C. Y. and Pan J. W., Phys. Rev.
Lett., 116 (2016) 020401.

58001-p7


