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Abstract – A fluid analog of the information flux in the phase-space associated to purity and
von Neumann entropy is identified in the Weyl-Wigner formalism of quantum mechanics. Once
constrained by symmetry and positiveness, the encountered continuity equations provide novel
quantifiers for non-classicality (non-Liouvillian fluidity) given in terms of quantum decoherence,
purity and von Neumann entropy fluxes. Through definitions in the Weyl-Wigner formalism,
one can identify the quantum fluctuations that distort the classical-quantum coincidence regime,
and the corresponding quantum information profile, whenever some bounded x − p volume of the
phase-space is specified. The dynamics of anharmonic systems is investigated in order to illustrate
such a novel paradigm for describing quantumness and classicality through the flux of quantum
information in the phase-space.
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Decoherence and entropy play a crucial role in the un-
derstanding of the frontiers between classical and quantum
descriptions of Nature in quantum mechanics (QM) [1].
These concepts are also at the heart of quantum statis-
tical properties that must be considered in a theory of
quantum measurement [1–3]. In this context, the Weyl-
Wigner (WW) formalism [4] is particularly relevant. In-
deed, the WW phase-space representation of QM is akin
to the formalism of statistical mechanics. Pragmatically,
it establishes a complementary phase-space formulation of
QM that provides a straightforward access to quantum in-
formation issues without modifying its predictive power in
terms of quantum observables and expectation values.

In the context of the WW formalism, the Weyl trans-
form of a quantum operator, Ô, is defined as

OW (x, p) =
∫

dy exp [2ipy/�]〈x− y|Ô|x+ y〉 =
∫

dy exp [−2ixy/�]〈p− y|Ô|p+ y〉, (1)
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and the Wigner function, W (x, p), is identified as the Weyl
transform of a density matrix ρ̂ = |ψ〉〈ψ|, given by

h−1ρ̂ → W (x, p) =

(π�)−1
∫

dy exp [2ipy/�]ψ(x− y)ψ∗(x+ y). (2)

The averaged values associated to Ô can be computed
in terms of the trace of the product of the two operators, ρ̂
and Ô, identified by the phase-space integral of the prod-
uct of their Weyl tranforms [4,5]1

Tr{x,p}[ρ̂Ô] → 〈O〉 =
∫∫

dxdpW (x, p)OW (x, p), (4)

which sets the generalization of such quasi-probability dis-
tributions, where Tr[ρ̂] = 1. The above operational prop-
erties provide, for instance, an expression for the quantum
purity, P , defined as

Tr{x,p}[ρ̂2] → P = 2π
∫∫

dxdpW 2(x, p), (5)

1That is generically expressed by

Tr{x,p}[Ô1Ô2] =
∫∫

dx dpOW1 (x, p)OW2 (x, p), (3)

for any product of two operators, Ô1 and Ô2.
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where the factor 2π appears in order to satisfy the den-
sity matrix condition, Tr[ρ̂2] = 1, for pure states, and
Tr[ρ̂2] < 1, for statistical mixtures. In fact, the theoreti-
cal framework of the QM in the phase-space is more com-
pletely addressed if one also accounts for Moyal’s picture of
QM [6], which exhibits the operational non-commutativity
between coordinate and momentum through the Moyal
star -product so to recover the WW formalism.

Of course, a phase-space formulation of QM is not nec-
essarily and exclusively described by Wigner functions [7].
Indeed, given that the Wigner function description admits
negative amplitude values, it cannot be strictly interpreted
as probability distributions, and thus alternative phase-
space distribution functions have been considered [8–12] so
to ensure a corresponding non-negative probability inter-
pretation. For instance, in the optical tomographic proba-
bility representation of QM [13], the Radon transform [14]
of the Weyl-Wigner-Moyal equation is always positive,
even for Wigner functions assuming negative values. In
particular, the associated symplectic tomographyc proba-
bility form of the Weyl-Wigner-Moyal equation works as
a classical approach to quantum systems [15], which is
highly representative in the context of entropy and infor-
mation dynamics.

Turning back to the fluid-analog framework, our analy-
sis is particularly concerned to the quantum aspects of
physical systems [16,17] that can be described by the
time evolution of the Wigner function, W (x, p; τ), when
cast in the form of a vector flux J(x, p; τ) [18–20], that
drives the flow of W (x, p; τ) in the phase-space. For the
flow field identified by the phase-space component direc-
tions, J = Jxx̂ + Jpp̂, where p̂ = p̂x, the equivalent of
the Schrödinger equation in phase-space can be written in
terms of a continuity equation [5,7,16]:

∂W

∂τ
+
∂Jx

∂x
+
∂Jp

∂p
≡ ∂W

∂τ
+ ∇ · J = 0, (6)

the so-called quantum Liouville equation, where

Jx(x, p; τ) =
p

m
W (x, p; τ) and

Jp(x, p; τ) = −∂U(x)
∂x

W (x, p; τ) + ΔJp(x, p; τ),
(7)

so that U(x) is the potential and

ΔJp(x, p; τ) = −
∞∑

k=1

(
i�

2

)2k 1
(2k + 1)!

×
(
∂

∂x

)2k+1

U(x)
(
∂

∂p

)2k

W (x, p; τ) (8)

depicts the distortion due to the quantum features.
From the evaluation of coordinate and momentum in-
tegrations, the marginals of the Wigner function yield,
respectively, the probability density, |ψ(x; τ)|2, and the
momentum distribution, |ϕ(p; τ)|2, where

ϕ(p; τ) =
∫ +∞

−∞
dxψ(x; τ) exp(ipx). (9)

Considering that the evolution of the probability density
and the momentum distribution leads to the marginal con-
tinuity equations,

d
dτ

|ψ(x; τ)|2 =
∫ +∞

−∞
dp∂xJx(x, p; τ) = ∂xjx(x; τ), (10)

d
dτ

|ϕ(p; τ)|2 =
∫ +∞

−∞
dx∂pJp(x, p; τ) = ∂pjp(p; τ), (11)

fluid dynamics analogs related to non-classicality, entropy
and purity fluxes, can be constructed2.

a) Non-classicality. The analogies with fluid dynamics
are indeed much more intuitive in the classical regime.
From the phase-space coordinate vector ξ = (x, p), one
can identify the classical phase-space velocity, dξ/dτ =
vξ = (vx, vp), so to have the flow field J = vξ W , with
vx = dx/dτ = p/m and vp = dp/dτ = −∂U/∂x.

An overall distinction between locally (Liouvillian) and
globally conservative systems can be evinced through the
theorem for the rate of change of the volume integral
bounded by a comoving closed surface (with arbitrary ve-
locity vξ) around the quantity ρ (cf. eq. (10.811) in
ref. [21]), which sets the relation

D

Dτ

∫
V

dV ρ ≡
∫

V

dV
[
Dρ

Dτ
+ ρ∇ξ · vξ

]
, (14)

with dV ≡ dxdp, and where the material derivative [16]
operator is given by

D

Dτ
≡ ∂

∂τ
+ vξ · ∇ξ. (15)

By identifying vξ with the classical phase-space vector
velocity, vξ(C) = (p/m,−∂U/∂x), along a two-dimensional
classical path, C, one has for the Wigner function:

DW

Dτ
= −W∇ξ · vξ(C), (16)

and since vξ(C) for Hamiltonian systems is divergence free,
i.e., ∇ξ · vξ(C) = 0, the above result implies a conser-
vation law, DW/Dτ = 0, i.e., the classical fluid-analog
of the flow of the Wigner function is Liouvillian and
incompressible.

In order to overview the quantum distortions and com-
pute the time evolution of the probabilities associated

2Notice that the lower-order moments of the Wigner function
can also be helpful in a subliminal fluid dynamics analogy. The
fluid particle density ρψ ≡ |ψ(x; τ)|2 and the fluid averaged velocity
(normalized current density) vψx (x; τ) ≡ jx(x; τ)/ρψ(x; τ) can be,
respectively, identified by∫ +∞

−∞
dpW (x, p; τ) and

1
ρψ(x; τ)

∫ +∞

−∞
dpJx(x, p; τ), (12)

and even the pressure-like density can be identified by the averaged
square deviation of the momentum as( ∫ +∞

−∞
dppJx(x, p; τ)

)
− ρψ(x; τ)(vψx (x; τ))2. (13)
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to the Wigner flow, one can consider two continuity
equations:

∂W

∂τ
+ ∇ξ · (vξ(C) W ) = 0 (classical), (17)

∂W

∂τ
+ ∇ξ · J = 0 (quantum), (18)

where the quantum current, J = wW , corresponds to
a non-Liouvillian flow, ∇ξ · w �= 0. The Wigner phase-
velocity, w, is the quantum analog of vξ(C), and exhibits
a subtle unbounded divergent behavior,

∇ξ · w =
W∇ξ · J − J · ∇ξW

W 2 , (19)

given that ∇ξ · J = W∇ξ · w + w · ∇ξW [22]. Con-
ditions that circumstantially imply that ∇ξ · w = 0 are
very helpful in identifying approximately Liouvillian-like
trajectories in the phase-space [16].

More relevantly, aiming to quantify the departure from
the classical behavior of Wigner flows, for periodic mo-
tions, one can attribute a parameterization to the two-
dimensional volume boundary in terms of the classical
path, C. In this instance, the integration of the time
change of W , ∂W/∂τ , over a volume VC enclosed by such
an oriented path, C, yields∫

VC
dV

∂W

∂τ
=

∫
VC

dV
(
DW

Dτ
− vξ(C) · ∇ξW

)
=

D

Dτ

∫
VC

dVW −
∫

VC
dV∇ξ · (vξ(C)W ), (20)

which can be substituted by the integral version of eq. (6)
as given by the variation of the integrated probability flux,
σ(C), enclosed by C,

D

Dτ
σ(C) =

D

Dτ

∫
VC

dVW =
∫

VC
dV

[∇ξ · (vξ(C)W ) − ∇ξ · J]
, (21)

which vanishes when J is identified to vξ(C)W , i.e., in
the classical limit. Of course, the conservation of prob-
abilities sets vanishing values for Dσ(C)/Dτ in the limit
of VC → ∞. Otherwise, by identifying the quantum cor-
rections in terms of ΔJ = J − vξ(C)W , one can compute
the volume variation of σ(C) in terms of a path integral
given by

D

Dτ
σ(C) = −

∫
VC

dV∇ξ · ΔJ = −
∮

C
d	ΔJ · n, (22)

where the unitary vector n is defined by n = (−dpC/dτ,
dxC/dτ)|vξ(C)|−1, in order to set n · vξ(C) = 0. By param-
eterizing the line element, d	, as d	 ≡ |vξ(C)|dτ , one has

D

Dτ
σ(C)

∣∣∣∣
τ=T

= −
∮

C
d	ΔJ · n =

−
∫ T

0
dτΔJp(xC(τ), pC(τ); τ)

d
dτ
xC(τ), (23)

where xC(τ) and pC(τ) are typical classical solutions,
dxC/dτ = pC(τ)/m, T is the period of the classical mo-
tion, and ΔJp(x, p; τ) is given by eq. (8). For stationary
states, one has ∂W/∂τ = 0, and eq. (23) describes the way
that classical paths are deformed by quantum effects that
are introduced by local fluid perturbations associated to
flow stagnation points [16].

b) Entropy flux. The operator ∇ξ · w has also a closed
relationship with the averaged value of the rate of change
of the von Neumann entropy [23],

SvN = −
∫

V

dVW ln(W ), (24)

which admits a straightforward interpretation for positive
definite Wigner functions. From eq. (14), one obtains

DSvN

Dτ
= −D

Dτ

(∫
V

dVW ln(W )
)

= −
∫

V

dV
[
D

Dτ
(W ln(W )) +W ln(W )∇ξ · w

]

= −
∫

V

dV
[
∂

∂τ
(W ln(W ))+∇ξ ·(wW ln(W ))

]
, (25)

which, after rewriting ∂W/∂τ in terms of J = wW
(cf. eq. (18)), results into

DSvN

Dτ
=

∫
V

dV [∇ξ · J + ln(W )∇ξ · J − ∇ξ · (J ln(W ))]

=
∫

V

dV
[∇ξ · J −W−1J · ∇ξW

]
=

∫
V

dV [W∇ξ · w] ≡ 〈∇ξ · w〉, (26)

where 〈∇ξ ·w〉 = Tr{x,p}[ρ̂∇ξ · w] (cf. eq. (4)). This rela-
tionship can be cast into the form of a continuity equation,

DSvN

Dτ
− 〈∇ξ · w〉 = 0, (27)

which sets the global entropy dynamics in the limit of
V → ∞. Again, one should notice that ∂(W ln(W ))/
∂τ = 0 for stationary states, and then, from eq. (25),
once V is identified with VC , one has

D

Dτ
SvN(C)

∣∣∣∣
τ=T

=
∮

C
d	 ln(W ) (J · n)

=
∫ T

0
dτ ln(W (xC(τ), pC(τ); τ))

× ΔJp(xC(τ), pC(τ); τ)
d
dτ
xC(τ), (28)

for a volume VC enclosed by C, and for the dynamics driven
by conservative systems (i.e., Hamiltonians with a poten-
tial U ≡ U(x)).

c) Purity flux. A first approach for computing the quan-
tum entropy content of the Wigner function can be inter-
estingly achieved introducing an additional contribution
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given by − ln(2π), that is

− ln(2π) −
∫

V

dVW ln(W ) = −
∫

V

dVW ln(2πW ) =
∫

V

dV W − 2π
∫

V

dV W 2 + · · ·
= 1 − P + · · · , (29)

from which it is possible to identify a rate of change of
purity, P , as given by

1
2π

DP
Dτ

=
D

Dτ

(∫
V

dVW 2
)

=
∫

V

dV
[
D

Dτ
W 2 +W 2∇ξ · w

]

=
∫

V

dV
[
∂

∂τ
W 2 + ∇ξ · (wW 2)

]
=

∫
V

dV [∇ξ · (WJ) − 2W∇ξ · J]

= −
∫

V

dV [W∇ξ · J − J · ∇ξW ] =

−
∫

V

dV
[
W 2∇ξ · w]

≡ −〈W ∇ξ · w〉, (30)

which can also be cast in the form of

1
2π

DP
Dτ

+ 〈W ∇ξ · w〉 = 0. (31)

In this case, ∂(W 2)/∂τ = 0 for stationary states and one
has

D

Dτ
P(C)

∣∣∣∣
τ=T

= −
∮

C
d	WJ · n

= −
∫ T

0
dτW (xC(τ), pC(τ); τ)

× ΔJp(xC(τ), pC(τ); τ)
d
dτ
xC(τ), (32)

for the boundary C encompassing the classical trajectories.
Loss and production rates of SvN and P are driven by

quantum distortions over a Liouvillian background flow.
Furthermore, from eq. (8), it is possible to demonstrate
that

DP
Dτ

∝
∫ +∞

−∞
dpW

(
∂

∂p

)2k+1

W (x, p; τ) = 0, (33)

i.e., the purity is a constant of the motion when the inte-
gration over the entire volume is extended to ∞ or over
a symmetric interval in the momentum direction, for the
cases where W is symmetric in p. Thus, purity can only
be locally affected.

To sum up, all the above tools measure how quantum
and classical systems differ from each other, or more prop-
erly, how far the quantum regime is from the classical one.

They correspond to quantifiers of several types of non-
classicality, each of them related to probability, entropy
and purity fluxes, through the respective continuity equa-
tion. For the quantum harmonic oscillator Liouvillian sys-
tem, all the effects vanish since the corresponding integrals
are reduced to path integrals of dxC(τ)/dτ (multiplied by
an arbitrary constant), which is null for an enclosing path
along the periodic motion.

In order to quantify the quantum distortions onto a clas-
sical background, a typical quantum system for which the
above quantifiers can be computed is, for instance, the
one described by the hyperbolic Pöschl-Teller (PT) anhar-
monic solutions [24–26], where the Hamiltonian is given by

H =
p2

2m
− ελ(λ+ 1)sech2(x/L), (34)

with ε = �
2/2mL. The canonical variables can be rewrit-

ten in terms of dimensionless quantities s ≡ x/L and
q ≡ pL/�, as to have [s, q] = i and a simpler dimensionless
version of H given by

Hε = H/ε = q2 − λ(λ+ 1) sech2(s), (35)

such that periodic classical solutions, for H < 0, with
s(0) = 0 and q(0) =

√
l, with arbitrary l, are given, in

terms of a dimensionless time, τ = 2εt/�, by

s(τ) = ±arcsinh[(1/
√
l) sin(lτ)], (36)

q(τ) = ± l cos(lτ)√
l + sin2(lτ)

, (37)

and, for instance, the ground-state (positive definite)
Wigner function is given by [25]

Wλ(s, q) =
2√
π

Γ(λ+ 1
2 )

Γ2(λ)
Dλ−1

(s) f(s, q), (38)

with

D(s) ≡ (−1)
sinh(2s)

d
ds
, and

f(s, q) =
sin(2qs)

sinh(2s) sinh(πq)
.

(39)

Applying the definition eq. (8) onto the above quan-
tum system in the ground-state configuration and using
eqs. (23), (28) and (32), one gets the integrated results
for probability, entropy and purity fluxes according to the
Wigner flow framework as depicted in fig. 1. Notice that
the results are quantitatively consistent with each other.
These integrated quantifiers of non-classicality all depict
that the classical to quantum discrepancies increase with
the associated energy parameter, l = E/ε + λ(λ + 1),
reaching a maximal value and decreasing. Interestingly,
the classical vs. quantum discrepancy effects are sup-
pressed for quantized values of E = (n/2−λ(λ+1))ε < 0,
with n and λ assuming integer values. For instance, in
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Fig. 1: (Color online) Quantifiers of decoherence (black), en-
tropy flux (blue) and purity flux (red) for the periodic anhar-
monic system driven by a hyperbolic PT potential (cf. eq. (34))
as a function of the total energy parameter l = E/ε + λ(λ + 1)
for quantum numbers λ = 1 (top) and λ = 2 (bottom).
The results correspond to the rates of local transference
(throughout the boundary surface encompassing the classical
path, C) of information, respectively expressed by D

Dτ
σ(C)|τ=T ,

D
Dτ

SvN(C)|τ=T , and D
Dτ

P(C)|τ=T , in a time interval correspond-
ing to the classical period of motion, T = 2π/l.

the case where l = λ, one has E = −λ2ε, which is the
energy for the ground state of the quantum problem as-
sociated to λ, and the classical trajectories are identified
by an energy equal to −λ2ε. Classical trajectories in the
phase-space only accommodate —without yielding quan-
tum discrepancies— the quantized energy version of the
quantum system. Once enclosed by classical trajectories
with energies matching the quantized ones, the measure
of non-classicality of the quantum system is expressed by
the nodes in the plots from fig. 1. This means that the fi-
nite volume of the phase-space, VC , which is enclosed by C,
comprises quantum stagnation points which sum a vanish-
ing gross effect. The nodes are indicative of quantization
and not of non-classicality.

Of course, this is only an example of such a tool
which can be applied to the emergence of quantum states
and to qualitatively express quantum to classical transi-
tions. Although specialized for the example of the PT

Hamiltonian [24,25], our results are universal and useful
as quantifiers of quantum decoherence for any quantum
state described by a continuous Wigner function. It is
much more general than quantifiers involving Gaussian co-
variance approaches.

To conclude, our results show that the quantum infor-
mation profile of quantum systems, once driven by de-
coherence, von Neumann entropy and purity quantifiers,
can be cast into the form of continuity equations in the
context of the WW formalism of QM in the phase-space.
Furthermore, local aspects of the Wigner flow have been
computed as to quantitatively express the phase-space fea-
tures and the non-Liouvillian nature of quantum systems.
Our results are applicable to any quantum system which
admits a description in terms of the WW formalism. For
instance, they have been extended to the evaluation of
modified Laguerre-Wigner functions in a procedure which
describes the classical to quantum transition in the context
of quantum cosmology [27], and they shall also be consid-
ered in the forthcoming investigation of Wigner functions
for an electron in the Coulomb potential.

∗ ∗ ∗
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