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Abstract – It is an old idea to realize Einstein’s equations as a thermodynamical equation of
state. Hence, to understand the actual role of the holographic screen is a very relevant issue. In
this letter we have analyzed the entropy as a function of the holographic screen in some different
scenarios and calculated a modified Newton’s gravitational law for each one of them. We have
also disclosed the modified Newtonian dynamics (MOND) from Verlinde’s ideas. Besides, we have
calculated some cosmological elements using the same concepts.
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One of the main challenges of modern theoretical
physics is to unify the concepts of quantum mechanics
and gravitation. Although it is an old issue in the liter-
ature, it was questioned if this difficulty is caused by the
fact that we are really trying to quantize an effective the-
ory. Another question would be whether gravity is not an
underlying force. In its defense we can say that general
relativity is an exact theory that describes the dynamics of
the objects that comprise our Universe. Recently, the de-
tection of gravitational waves by LIGO Collaboration [1]
corroborates the predictions of general relativity. But, in
spite of its success, the question about its fundamentality
is still on.

There are some theoretical evidences that show the ther-
modynamical feature of gravity. For instance, the works
of Bekenstein and Hawking (BH) [2–4] in which the au-
thors connect the laws of black holes to the ones about
thermodynamics concerning the creation of particles by a
gravitational field. Or the obtention of Einstein’s equa-
tions from the entropy proposed by Jacobson [5–7], where
he proposed that gravitation must be an effective theory.
Besides, we can mention the works of van Raamsdonk
et al. [8–10] where Einstein’s equations can be derived
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from the entanglement laws. Jacobson established the
connection to entropy in [5–7], where he derived Einstein’s
equations. He used both the Clausius relation δE = TδS
and the concept that the matter present can be considered
as part of the energy.

At the quantum level, we can understand spacetime ge-
ometry as the entanglement structure of the microscopic
quantum state, from which gravity emerges depicting
the change in entanglement that originates from matter.
Namely, gravity emerges from the viewpoint of quantum
information. The best way to understand these new ideas
is to consider an anti-de Sitter space, where the descrip-
tion of a dual conformal field theory allows one to ob-
tain the microscopic entanglement in a well-constructed
setting [11].

Recently, Verlinde [12] has derived Newton’s law of
gravity by using holographic arguments. He has used the
BH entropy-area relation for black holes. Verlinde also
suggested that gravity is an entropy manifestation. The
gravitational force results from information entropy mod-
ifications, which would be stored in a holographic sphere.
Verlinde considered entropy as the information relative to
the positions of material bodies around a point mass M
at a distance R. Besides, all points at this distance are
useful to define a sphere S embedded into a D = 3 space.
To sum up, when we change the bits of information that
are localized on the screen, a force appears as a reaction to
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that modification [13–17]. This will be shown in eq. (13)
below.

The formalism known as Modified Newtonian Dynam-
ics (MOND) was constructed by Milgrom [18–20], to ex-
plain the observed general properties of galaxies such as
the stars velocities inside the galaxies. The observed val-
ues are larger than the expected ones calculated by using
Newtonian mechanics. In MOND, for extremely small ac-
celerations, we would have a violation of Newton’s laws.
However, a cosmological model based on MOND’s con-
cepts has not been constructed yet. In this work we
have used Verlinde’s ideas in a Tsallis nonextensive statis-
tics background to derive MOND’s concepts among other
results.

Tsallis’ statistics [21–23], which is an extension of
Boltzman-Gibbs’s (BG) statistical theory, defines a non-
additive entropy given by

Sq = kB
1 −

∑W
i=1 pq

i

q − 1

(
W∑
i=1

pi = 1

)
, (1)

where pi is the probability of a system to exist within a
microstate, W is the total number of configurations and q,
known in the current literature as being the Tsallis param-
eter or NE parameter, is a real parameter which measures
the degree of nonextensivity. It has different values for
each system.

The definition of entropy in Tsallis statistics has the
standard properties of positivity, equiprobability, concav-
ity and irreversibility. This approach has been successfully
used in many different physical systems. For instance, we
can mention the Levy-type anomalous diffusion [24], tur-
bulence in a pure-electron plasma [25], gravitational sys-
tems [26,27] and in the scenario of entropic gravity [28–32].
It is noteworthy to mention that Tsallis thermostatistics
formalism has the BG statistics as a particular case in
the limit q → 1, where the entropy standard additivity
property can be recovered.

In the microcanonical ensemble, where all the states
have the same probability, Tsallis entropy reduces to [33]

Sq = kB
W 1−q − 1

1 − q
, (2)

where, at the limit q → 1, we can recover the usual
Boltzmann entropy formula, S = kB ln W .

Let us consider a number of microstates W , in a gen-
eral scaling of Tsallis’ entropy scenario, so that W can be
written like the one in [34] such that

W = b

(
A

4l2p

)α

, (3)

where b is a dimensionless constant, A is the area of Σ, lp is
the Planck’s length in nonextensive entropy, eq. (2), and
α is an undetermined parameter that shows the general
scaling purpose here. For example if α = 3/2 in (3), we
would have a volume scaling. Our objective here is to

analyze what happens if the exponent in (3) is chosen to
be a general one.

The term in eq. (3) was calculated through loop quan-
tum gravity (LQG) considerations in [35] as a correction
term for the entropy. In [35], eq. (3) is the volume correc-
tion relative to the area law, which is also motivated by a
model for the microscopic degrees encompassing the black
hole entropy in LQG. With reference to our work specif-
ically, the important feature is that this term results in
the 1/R correction term in Newton’s laws in MOND as an
explanation for the registered anomalous galactic rotation
curves. This idea is the path that allows us to use Tsallis
nonextensive statistics. It will be clearer soon.

The objectives here are to use eq. (3) in the definition
of entropy in eq. (2) and to analyze the q-parameter effect
together with the α parameter to see their cosmological
effects. Notice that for q = 0 we recover the volume cor-
rection term to Newton’s laws.

To begin with, let us review that Verlinde [12] has stated
that the entropy ΔS of Σ connected to a test particle of
mass m moving by a distance Δx orthogonal to the screen
can be written as

ΔS = 2πkB
mc

�
Δx, (4)

which shows that the entropy obtained is proportional to
the information loss of the test particle, where λm = �/mc
is the Compton wavelength and we can write ΔS =
2πkBΔx/λm. The general expression of the force which is
governed by the usual thermodynamic equation is

F = T
ΔS

Δx
= T

dS

dA

ΔA

Δx
, (5)

where A = 4πR2 is the area of the holographic screen.
Suppose we have two masses, one is the test mass m and
the other, M , is considered as the source. The holographic
screen will be centered around the source mass M . The
energy of the holographic screen is given by

E = Mc2. (6)

We will use that the bits of information are proportional
to the area of the holographic screen as [34]

A = QN, (7)

where N is the number of bits and the constant Q the
fundamental charge [34] or area gap (ΔA|N=1 = Q) de-
termined by the microscopic theory. It is important to
explain here that we have a relation between entropy and
the distance from the horizon, i.e., ΔS ∝ Δx. However,
we also have a relation between entropy and the area of
Σ, i.e., ΔS ∝ ΔA. So, we can write that ΔA ∝ Δx and
consequently that Q ∝ Δx, which shows clearly that we
can expect a relation between Q and η, this issue will be
clear in a moment. The total bits energy on the screen is
given by the energy equipartition law

E =
1
2
NkBT. (8)
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When the test mass m is at a distance

Δx = ηλm, (9)

away from Σ, the entropy of the screen modifies when the
test mass moves through a certain distance where λm =
�/mc is the Compton wavelength and η is a scale factor.
The entropy gradient points radially from the outside of
the screen to the inside, as can be seen from

ΔS =
∂S

∂A
ΔA. (10)

Then, from eq. (7) we have that

ΔA = Q, (11)

where it was assumed that ΔN = 1. Combining eqs. (5)–
(9), (11) and using the fundamental relation l2P = �G/c3,
we have that

F =
GMm

R2

Q2

2πηl2pkB

dS

dA
. (12)

Defining conveniently that Q2 = 8πηl4p, which provides
Newton’s laws to first order such as in [34] we can write
that

F =
GMm

R2
4

l2p
kB

dS

dA
. (13)

Notice that this expression is sufficiently general in order
to permit the consideration of any kind of entropy, which
is our purpose at this point. We will use the well-known
particular relation from black hole entropy S = kBA/4l2p,
the BH formula, where in this case A is the area of the
event horizon as a constraint, i.e., a screen that sets the
point of no return. Quantically speaking, a black hole
creates and emits particles as if it was a black body with
temperature T [36].

It can be shown that we can obtain the usual Newton’s
law of gravitation, F = GMm/R2 from eq. (13). Newton’s
gravitational theory just states how the law works but,
however, it does not tell us why they work.

Using eqs. (2) and (3) into eq. (13) we obtain a modified
Newton’s law of gravitation written as

F =
GMm

R2
αb1−q

(
A

4l2p

)α(1−q)−1

. (14)

We can observe that when we make α = 1/(1 − q) in this
last equation we can recover the usual Newton’s law of
gravitation if b = (1 − q)

1
1−q . In fig. 1, we have plotted

eq. (14) as a function of the parameter q. Substituting
eq. (3) into (2) it is straightforward to see that

S = kB

(
A

4l2p

)
, (15)

where we have neglected a constant term, −kB/(1− q), in
comparison with the A term.

Fig. 1: The generalized gravitational force, normalized by the
usual Newton gravitational law, as a function of the parameter
q, eq. (14). We consider the product αb(1−q) = 1 and A

4l2p
=

100000. The solid line represents α = 1, the dotted line, α =
1.5 and the dashed line, α = 2.

This last equation is the BH formula. Namely, in New-
ton’s gravitational scenario we can have the black hole
entropy. One can think that this result connects the ther-
modynamical BH formula for black holes to the classi-
cal Newton’s expression for gravity, which could suggest
a thermodynamical emergent gravitation. On the other
hand, Botta Cantcheff and Nogales [37] have shown that
we can derive the usual entropy of black holes by using a
volume microstates scaling law (3) and Tsallis’ nonexten-
sive entropy (2).

For q = 1 (BG) scenario and any b we have that

Fq=1 =
GMm

R2
α

4 l2p
A

, (16)

which of course is not Newton’s second law.
From eq. (14) if we have that α = 1.5/(1 − q) we can

write

F =
GMm

R2

3
2(1 − q)

b1−q

(
A

4l2P

)1/2

=
GMm

R

3
√

π

1 − q

b1−q

2lp
, (17)

where we have used that A = 4πR2 and which is just the
Newtonian force established by MOND’s approach [18].

MOND’s success is due mainly to its capacity to ex-
plain the majority of the galaxies rotations. It reproduces
the well-known Tully-Fisher relation [38]. In this way, it
can be an alternative to the dark matter model. However,
it has problems to explain both the temperature profile
of galaxy clusters and the confrontation with cosmology
as well. In few words it is basically a modification of
Newton’s second law where the force can be written as

F = mμ

(
a

a0

)
a, (18)

where a0 is a constant that will be defined below and
μ(x) ≈ 1 for x � 1 and μ(x) ≈ x for x � 1. For sim-
plicity, it is usual to suppose that the variation of μ(x)

20003-p3



Everton M. C. Abreu et al.

between the asymptotic limits happens abruptly at x = 1
or a = a0.

From the rotational movement of the galaxies we have
that the Tully-Fisher relation is given by v2 =

√
GMa0,

where a0, the MOND’s constant (an acceleration scale)
value is a0 ≈ 1.2 · 10−8 cm/s2 and, substituting this veloc-
ity into eq. (17) we have that

v2

R
=

GM

R

3
2

√
π

1 − q

b1−q

lp
, (19)

hence

b =

[
2
3
(1 − q)lp

√
a0

πGM

] 1
1−q

, (20)

which is a viable result for b. Let us analyze other conse-
quences of this b-value, which reproduces MOND, as we
saw above.

Substituting this last value for b into eq. (3), we have
that

W =
[
2
3
(1 − q)lP

] 1
1−q ( a0

πGM

) 1
2(1−q)

(
A

4l2P

)α

, (21)

which clearly shows no divergence in the M → 0 case
when q > 1, which constrains q to be a very nonextensive
system feature.

From eq. (13) we have the thermodynamical expression
for the Newtonian force. So,

mR̈ = mär =
GMm

a2r2

4l2p
kB

dS

dA
. (22)

where R, the radius of the holographic screen, is the ap-
parent horizon, i.e., R(t, r) = a(t)r, and r is the radial
comoving coordinate,

=⇒ ä =
GM

a2r3

4l2p
kB

dS

dA
. (23)

Based on [39], the acceleration in eq. (23) results from
the active gravitational mass, which is the well-known
Tolman-Komar (TK) mass [40,41] given by

M = (ρ + 3p)
4π

3
a3r3, (24)

which is proportional to the scale function. Substituting
eq. (24) into eq. (23) we have that

ä

a
=

16π

3
G(ρ + 3p)

l2p
kB

dS

dA
, (25)

and by multiplying both sides of this last equation by ȧa,
we have that

ȧä =
16π

3
d
dt

G(ρa)
l2p
kB

dS

dA
. (26)

Hence, the integration of both sides is

H2 +
k

a2
=

32πG

3kB

l2p
a2

∫
d(ρa2)

dS

dA
, (27)

which is an entropic version of the Friedmann equation
and where we have used the continuity equation

ρ̇ + 3H(ρ + p) = 0. (28)

So, to calculate the active mass, the TK mass, we have
to solve the differential equation in (23), which can be
written as

ä =
GM

a2r3

4l2p
kB

dS

dA

=
GM

a2r3
αb1−q

(
A

4l2p

)α(1−q)−1

, (29)

where we have used eq. (21). Hence, for A = 4πR2 =
4πa2r2, we have that

ä =

GMαb1−q

(
π

l2p

)α(1−q)−1

a2[α(1−q)−2]r2α(1−q)−5,

(30)

and for q = 1 (the BG limit) we have that

ä =
GMαl2p
πa4r5

, (31)

which is also a nonlinear differential equation that has a
numerical solution for the scale factor. Numerical compu-
tation is out of the scope of this letter.

In this letter we have explored the role of the holo-
graphic screen under the point of view of Tsallis thermo-
statistics. We have seen through a generalized correction
term of the entropy [34], which is connected to MOND’s
ideas, that the q-parameter can be fixed since viable cos-
mological issues were considered. We have found that the
b-parameter used in [34] can be also fixed according to the
physical scenario.

With these points in mind, we have shown that we
can obtain the BH formula for black holes from entropic
considerations of Newton’s gravitational law. Besides,
through a convenient choice for the α-parameter we have
derived MOND’s equation for the Newtonian force.

From eq. (13) we have derived a generalized Newton’s
law of gravitation in the context of the nonextensive sta-
tistical mechanics. From eq. (14) we can see that the BH’s
expression for the black hole entropy can be found also in
Newton’s gravitation law.

We have computed the galaxies rotation velocity. The
result has showed us a possible value for the b-parameter
and consequently the number of microstates, constrain-
ing q to be greater than 1, the very nonextensive case.
Finally, we have demonstrated the entropic version of the
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Friedmann equation. We have shown that the scale factor
obeys a differential nonlinear equation for the scale factor
with numerical solution, which can be a target for future
investigations.
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