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PACS 11.55.Bq – Analytic properties of S matrix

Abstract – In this note, we study the connections between infrared (IR) and ultraviolet (UV)
behaviors of scattering amplitudes of massless channels by exploiting dispersion relations and
positivity bounds. Given forward scattering amplitudes, which scale as A(s) ∼ sM in the IR
(s → 0) and could be embedded into UV completions satisfying unitarity, analyticity, crossing
symmetry and polynomial boundedness |A(s)| < c |s|N (|s| → ∞), with M and N integers, we
show that the inequality 2�N

2 � ≥ M ≥ �N
2 � must hold, where �x� is the smallest integer greater

than or equal to x. One immediate consequence of the above inequality is the bound on the UV
growth of scattering amplitudes in terms of their IR behaviors. Our results could be useful in
studies of massless higher-spin particles, as well as the program of UV improvement and weakly
coupled UV completion.
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It has been known for a long time that dispersion rela-
tions provide novel ultraviolet (UV)-infrared (IR) connec-
tions between low-energy effective field theories (EFTs)
and their UV completions respecting various S-matrix ax-
ioms like unitarity, analyticity, crossing symmetry and
polynomial boundedness [1]. These relations express
low-energy forward scattering amplitudes (with identi-
cal in-states and out-states)1 in the deep IR as disper-
sive integrals of total cross sections along the positive
s-axis extending into the deep UV. Celebrating implica-
tions of dispersion relations include positivity bounds on
coefficients of certain higher derivative operators in EFTs,
which have various applications in recent years [1–24]. In
this note, we want to emphasize another connection be-
tween IR and UV behaviors of scattering amplitudes of
massless channels2, namely given forward scattering am-
plitudes, which scale as A(s) ∼ sM in the IR (s → 0)
and could be embedded into UV completions satisfying

(a)Present address: School of Physics, Nanjing University -
Nanjing, 210093, China; e-mail: dbai@itp.ac.cn

1In this letter, we presume the mathematical existence of forward
scattering amplitudes. In particular, we presume that the t → 0 limit
of scattering amplitudes is mathematically well-defined. In other
words, we are dealing with theories without massless exchanges for
tree-level 2-to-2 scattering, as opposed to, e.g., general relativity.

2By “massless channels” we mean that in-states and out-states
under consideration are all massless. In other words, it is gapless the-
ories that are studied in this note. Certainly there could be massive
particles in the deep UV.

unitarity, analyticity and crossing symmetry and polyno-
mial boundedness |A(s)| < c |s|N (|s| → ∞), with M and
N as integers, the inequality 2�N

2 � ≥ M ≥ �N
2 � must

hold, where �x� is the smallest integer greater than or
equal to x. This work is inspired by discussions in ref. [18]
and many parts of this note could be viewed as variants
or generalizations of that article. Although results in this
note could have already been obtained in the 1960s, it is
for the first time that they are displayed explicitly in the
literature as far as we know.

Dispersion relations, positivity bound, softness and
polynomial boundedness of scattering amplitudes play im-
portant roles in our discussions, and we shall review them
briefly as follows. Behind dispersion relations are various
S-matrix axiomatic properties including unitarity, analyt-
icity, crossing symmetry and polynomial boundedness of
scattering amplitudes. For massless channels, they could
be formulated as below:

1) Unitarity: S-matrix is unitary, i.e., S†S = SS† = 1,
corresponding to the physical requirement of conservation
of probability. As a result, for the forward scattering pro-
cess 1h1

a1
2h2

a2
→ 1h1

a1
2h2

a2
, we have the optical theorem

ImAh1h2
a1a2

(s+ iε) = s×σ(1h1
a1

2h2
a2

→ Anything; s), s ∈ R
+.

(1)
Here and in the following, A denotes forward scatter-
ing amplitudes. 1h1

a1
(2h2

a2
) denotes massless particle 1 (2)
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with four-momentum k1 (k2), helicity h1 (h2) and inter-
nal index a1 (a2). s is the standard Mandelstam variable
s ≡ (k1 + k2)2. The “+iε” here is nothing but the usual
Feynman prescription. Also, we have made use of the ab-
breviation Ah1h2

a1a2
(s) ≡ A(1h1

a1
2h2

a2
→ 1h1

a1
2h2

a2
; s).

2) Analyticity: The physical scattering amplitude is the
real boundary value of an analytic function of complexi-
fied Mandelstam variables s, t and u, with various simple
poles and branch-cuts dictated by unitarity. For massless
channels Ah1h2

a1a2
(s) is at most as singular as simple pole at

s = 0. Furthermore, to derive dispersion relations we need
to assume the Schwarz reflection principle

Ah1h2
a1a2

(s∗) = [Ah1h2
a1a2

(s)]∗, s ∈ C. (2)

3) Crossing Symmetry: Crossing symmetry of the for-
ward scattering process 1h1

a1
2h2

a2
→ 1h1

a1
2h2

a2
requires that

A−h1h2
ā1a2

(s) = Ah1h2
a1a2

(−s), s ∈ C. (3)

Internal indices with a bar overhead label the states in-
side the complex conjugate representations carried by
antiparticles.

4) Polynomial Boundedness : Polynomial boundedness
puts a stringent constraint on the UV behavior of com-
plexified scattering amplitudes:

|Ah1h2
a1a2

(s)| < c|s|N or lim
|s|→∞

|s|−N |Ah1h2
a1a2

(s)| = 0,

as |s| → ∞, and s ∈ C. (4)

Here N is some integer. Polynomial boundedness of this
kind can be understood from the viewpoint of causal-
ity [25]. For gapped theories, we have N ≤ 2 thanks to the
famous Froissart bound |Ah1h2

a1a2
(s)| ≤ π(s/m2)[log(s/s0)]2

as s → ∞ [26,27]. For gapless theories, the situation
is a bit complicated, and there is no general result on
what value N should take (see, e.g., ref. [28] for a recent
discussion).

With the above properties dispersion relations could be
derived easily. We start with the Laurent expansion of
Ah1h2

a1a2
(s) around s = 0 (see footnote 3)

Ah1h2
a1a2

(s) = Ah1h2
a1a2

(0) + s × Ah1h2(1)
a1a2

(0) + s2

×Ah1h2(2)
a1a2

(0) + · · · . (5)
3Rigorously speaking, Laurent expansion cannot be done with

respect to s = 0 due to the presence of the branch-cuts (−∞, 0) ∪
(0, ∞). One has to first regularize the complex function Ah1h2

a1a2 (s)
to open the gap between the s-channel and u-channel branch-cuts,
and recover the gapless scattering amplitude at the end of deriva-
tions. A suitable regularization scheme has to satisfy various re-
quirements: 1◦ it should indeed open the gap between the s-channel
and u-channel branch-cuts; 2◦ it should not change the imaginary
part of Ah1h2

a1a2 (s + iε) so that the optical theorem eq. (1) holds for
the regularized amplitudes on the gapped branch-cuts as well; 3◦
it would be best if the regularization scheme introduces no extra
unphysical simple poles; 4◦ it should respect the Schwarz reflection
principle eq. (2), crossing symmetry eq. (3) and polynomial bound
eq. (4). Take s2 log(−s2) as an example. A suitable regularization
could then be s2 log(−s2 + m2), and one has the Laurent expansion
s2 log(−s2 + m2) = log(m2)s2 − s4

m2 − s6

2m4 + · · · around s = 0.
Although technical, these regularization schemes are, in fact, very
important to surpass various obstructions associated with massless

Noticeably, there is no 1/s term in eq. (5). As mentioned
in footnote 1, we are considering theories without t channel
singularities (i.e., 1/t term). Then by crossing symmetry,
these theories should also have no 1/s terms. There are
also no higher negative powers of s in eq. (5), such as the
1/s2 term, as terms of this kind would contradict with the
axiom of analyticity.

Introduce L ≡ 2�N
2 � which is an even integer. Then by

Cauchy integral formula in complex analysis,

Ah1h2(L)
a1a2

(0) =
1

2πi

∮
C

ds

sL+1 Ah1h2
a1a2

(s). (6)

The contour C is chosen to be the boundary of the cut
complex plane C/[(−∞, 0) ∪ (0, ∞)]. Equation (6) could
be further simplified as

Ah1h2(L)
a1a2

(0)=
1

2πi

(∫ 0

−∞
+

∫ ∞

0

)
ds

sL+1 Disc Ah1h2
a1a2

(s)+C∞.

(7)

The integral C∞ is done along the boundary contour at
infinity. Disc Ah1h2

a1a2
(s) is defined as

Disc Ah1h2
a1a2

(s) ≡ Ah1h2
a1a2

(s + iε) − Ah1h2
a1a2

(s − iε)

= 2iImAh1h2
a1a2

(s + iε). (8)

In the last step, we have used the Schwarz reflection prin-
ciple eq. (2). By crossing symmetry eq. (3),

Im Ah1h2
a1a2

(−s + iε) = −ImA−h1h2
ā1a2

(s + iε), s ∈ R. (9)

The boundary integral, on the other hand, satisfies,

C∞ → 0, (10)

thanks to the polynomial bound eq. (4) and the fact
that N ≤ L.

Equations (7)–(10) along with unitarity and the optical
theorem eq. (1) then give that

Ah1h2(L)
a1a2

(0) =
1

2πi

(∫ 0

−∞
+

∫ ∞

0

)
ds

sL+1 Disc Ah1h2
a1a2

(s)

=
1
π

∫ ∞

0

ds

sL
[σ(1h1

a1
2h2

a2
→ Anything; s)

+(−1)Lσ(1−h1
ā1

2h2
a2

→ Anything; s)]. (11)

channels. It is useful to draw an analogy between the regularization
schemes discussed here and dimensional regularization scheme which
plays a fundamental role in proving the renormalizability of Yang-
Mills theory. Comprehensive studies of possible realizations of such
regularization schemes lie beyond the scope of this short note and are
left for future studies. In this note, we shall simply assume the very
existence of suitable regularizations for Ah1h2

a1a2 (s). The following dis-
cussions are all worked out for regularized scattering amplitudes in
the gapless limit, e.g., m → 0, although no special symbol is used
to emphasize this point. Also, it is important to note that the reg-
ularization schemes introduced here are different from the common
practice to add mass terms into gapless Lagrangians to turn the
target theory into a gapped one. Although the latter practice also
opens the gap between s-channel and u-channel branch-cuts, it often
breaks crossing symmetry eq. (3) explicitly, introduces extra simple
poles and leads to potential complications in higher-spin theories.
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Taking into consideration that L is an even integer, the
above equation can be further simplified

Ah1h2(L)
a1a2

(0) =
1
π

∫ ∞

0

ds

sL

[
σ
(
1h1

a1
2h2

a2
→ Anything; s

)

+σ
(
1−h1

ā1
2h2

a2
→ Anything; s

)]
, (12)

which is the L-th subtracted dispersion relation. The L-th
subtracted positivity bound

Ah1h2(L)
a1a2

(0) > 0 (13)

is then simply followed from the fact that crossing sections
σ(1h1

a1
2h2

a2
→ Anything; s) are positive definite for interact-

ing theories.
From eq. (12) it is straightforward to see how dispersion

relations relate IR behaviors of scattering amplitudes to
their UV behaviors. On the one hand, the right-hand
side (RHS) of eq. (12) involves a dispersive integral of
total cross sections extending into arbitrary high energies,
and the boundary integral C∞ vanishes only because of
the UV polynomial boundedness of scattering amplitudes.
Generally, the RHS of eq. (12) is less tractable unless the
full theory could be solved exactly from IR to UV. On the
other hand, the left-hand side (LHS) of eq. (12) concerns
purely IR properties of scattering amplitudes, and could
be calculated accurately by low-energy EFTs. It is the
intractability of RHS and tractability of LHS of dispersion
relations that motivate one to consider positivity bounds
like eq. (13).

To characterize the IR behaviors of forward scattering
amplitudes, it is also useful to introduce the notion of soft-
ness which depicts how fast forward scattering amplitudes
diminish as external momenta go to zero. For Ah1h2

a1a2
(s),

we have the Laurent expansion eq. (5). The key point here
is that not all the terms of eq. (5) are nonzero. For ex-
ample, the forward scattering amplitude A(s) of the P (X)
theory4 only starts with the term ∼ s2, while terms before
that are all zero. Generally,

Ah1h2
a1a2

(s) = sM × Ah1h2(M)
a1a2

(0) + sM+1 × Ah1h2(M+1)
a1a2

(0)

+sM+2 × Ah1h2(M+2)
a1a2

(0) + · · · , (14)

where the coefficient Ah1h2(M)
a1a2 (0) is nonzero. The leading-

order power M is called softness of Ah1h2
a1a2

(s), which could
be symbolically denoted by Ah1h2

a1a2
(s) ∼ sM as s → 0.

Therefore, for P (X) theory we have A(s) ∼ s2 in the IR
and the softness M = 2. Also, it is noted by refs. [29,30]
that the softer the amplitude is, the more symmetry there
should be.

We are ready to prove the Main Result :
Given forward scattering amplitudes of massless chan-

nels, which scale as Ah1h2
a1a2

(s) ∼ sM in the IR (s → 0)
and could be embedded into UV completions satisfying uni-
tarity, analyticity and crossing symmetry and polynomial

4Here by P (X) theory, we refer to theories of massless scalars
whose Lagrangian could be parametrized as polynomials of X =
(∂φ)2. One such example could be L = 1

2 (∂φ)2 − λ
4! (∂φ)4.

boundedness |Ah1h2
a1a2

(s)| < c |s|N (|s| → ∞), with M and
N as integers, then the inequality 2�N

2 � ≥ M ≥ �N
2 � must

hold, where �x� is the smallest integer greater than or
equal to x.
Proof. First notice that M ≥ 0, as Ah1h2

a1a2
(s) is at most as

singular as simple pole at s = 0 and crossing symmetry
requires the forward scattering amplitude to be an even
function around s = 0. Also, using the fact σ ∼ |M|2

s for
the 2 → 2 scattering, we have that for massless particles
the IR convergence of the dispersion relation in eq. (12)
requires M > L/2 and since L is greater or equal than
N (for the UV convergence) it follows that M > N/2. In
fact, since M must be integer, there holds M ≥ �N

2 �.
The rest proof goes as follows. The L-th subtracted

positivity bound requires that

Ah1h2(L)
a1a2

(s) ∼ sM−L > 0, as s → 0,

which means that M ≤ L ≡ 2�N
2 �.

One immediate consequence of the main result is the
lower bound for the UV polynomial bound parameter N
in terms of the softness parameter M :

N > Nmin ≡ 2�M

2
� − 2. (15)

As mentioned before, the properties of polynomial bound-
edness of scattering amplitudes in gapless theories are less
known compared to those in gapped theories. A common
strategy to study polynomial bounds in gapless theories is
to deform the original theories with mass terms to open
the mass gap and turn the theories into gapped ones. This
may be fine for theories involving only spin-0 and spin- 1

2
particles, thanks to the fact that massless spin-0 and spin-
1
2 particles have the same numbers of degrees of freedom as
the massive ones, which makes it plausible to believe that
no discontinuity comes into being when smoothly closing
the mass gap to recover the gapless theories. If this is true,
for these theories the UV polynomial bound parameter N
obeys N ≤ 2, the same constraint inherited from gapped
theories. Also, our constraint is less interesting for asymp-
totic free theories like Yang-Mills theory in which the UV
behaviors of scattering amplitudes could be calculated ex-
plicitly. However, the situation is less clear for massless
higher-spin particles (spin ≥ 2), and it is wise to be open-
minded for the possibility of N > 2. Interesting theories
of massless higher-spin particles include the theory of in-
teracting massless spin-2 particles proposed by ref. [31]
which is “normal” gauge invariant but not generally co-
variant (see also refs. [32–36]), as well as various proposals
of massless spin > 2 particles (see, e.g., refs. [37,38]). An
unusual feature of these theories is that they all have “too
many” derivatives in the their interaction vertices. For
instance, the massless spin-2 theory proposed by ref. [31]
could have as many as eight derivatives in the quartic ver-
tices (the cubic vertices could be tuned to be vanished,
so there are no massless exchanges in 2-to-2 amplitudes),
which leads to A(s) ∼ s4 by naive dimensional analysis.
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Then by our bound, one has N > 2 if this theory has any
UV completions respecting various properties mentioned
before.

Also, our bound eq. (15) could be useful in the pro-
gram of UV improvement and weakly coupled UV com-
pletion [39,40], where people try to modify target theories
to make UV growth of scattering amplitudes as soft as
possible. Take the nonlinear sigma model as an example,
where one has A(s) ∼ s2 in the IR and thus M = 2. Then
according to eq. (15), one has N > 0. In other words, our
bound tells that one could not modify nonlinear sigma
model such that |A(s)| ∼ |s|−ε < |s|0 (ε > 0) in the
UV while preserving various S-matrix axioms. When UV
completing the nonlinear sigma model by a linear sigma
model, one could see that the tree-level scattering ampli-
tude A(s) → const ∼ |s|0 < |s|+ε in the UV, which is
consistent with our bound.

In summary, inspired by discussions in ref. [18], we work
out a constraint on the UV behavior of forward scattering
amplitudes of massless channels given the requirements
that they admit meaningful UV completions. This con-
straint acts as a necessary condition for UV completibility
and can be useful in studies of massless higher-spin par-
ticles, as well as the program of UV improvement and
weakly coupled UV completion.
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