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Abstract – Quantum entanglement is the most famous type of quantum correlation between
elements of a quantum system that has a basic role in quantum communication protocols like
quantum cryptography, teleportation and Bell inequality detection. However, it has already been
shown that various applications in quantum information theory do not require entanglement.
Quantum discord as a new kind of quantum correlations beyond entanglement, is the most popular
candidate for general quantum correlations. In this paper, first we find the entanglement witness in
a particular multipartite quantum system which consists of a N -partite system in 2n-dimensional
space. Then we give an exact analytical formula for the quantum discord of this system. At the
end of the paper, we investigate the additivity relation of the quantum correlation and show that
this relation is satisfied for a N -partite system with 2n-dimensional space.

Copyright c© EPLA, 2018

Introduction. – Quantum entanglement is one of
the most important features of quantum mechanics [1,2].
Many quantum information applications require the shar-
ing of entangled particles. The answer to the question as
to whether particles are entangled or not, is an important
subject for the researchers. The Peres-Horodecki criterion
is a necessary and sufficient condition, for the joint density
matrix ρ of two quantum mechanical systems A and B, to
be separable [3,4]. It is also called the PPT criterion, for
positive partial transpose, whereas for higher dimensions
there exist in general only necessary conditions for separa-
bility. The PPT condition is also a necessary and sufficient
condition for Hilbert spaces H2 ⊗ H3.

For characterizing entanglement, entanglement witness
(EW) [4,5] is important for detecting the presence of en-
tanglement. The EWs are nonpositive Hermitian oper-
ators which allow us to distinguish a specific entangled
state from the separable ones. In other words, for a
given entangled state ρ, the entanglement witness is an
observable W whose expectation value is non-negative on
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(c)E-mail: na karimi@yahoo.com & n.karimi@cfu.ac.ir
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any separable state and strictly negative on the quantum
state ρ. Convex optimization is a useful tool for quantum
optimization problems such as a test for distinguishing an
entangled from a separable quantum state [6–11]. In ad-
dition to distinguishing the entangled states from the sep-
arable ones, another matter is to determine the amount of
the correlation between the components of the quantum
system. To this end, entanglement is the key resource of
quantum information processing. It plays an important
role in many quantum processing such as quantum tele-
portation, quantum key distribution, and quantum algo-
rithm [12]. One can define several types of entanglement
measures, for instance, entanglement of formation [13] and
the concurrence [14,15]. However, it is shown that quan-
tum entanglement is not the only kind of quantum cor-
relations. Quantum systems without any entanglement
can still have another kind of quantum correlation called
quantum discord. Quantum discord was first introduced
in [16,17]. Zhang and Chen in [18] briefly reviewed the
concepts and properties of quantum discord. In general,
there are several measures of discord including the origi-
nal measure of discord, Gaussian discord, relative entropy-
based discord, geometric discord, global discord. In [19]
the dynamics of quantum discord under noisy channels,
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namely, the Pauli channels σx, σy, σz and the depolarizing
channel is studied. In this paper, we choose the quantum
discord based on relative entropy as the quantum corre-
lation measure that is distance-based discord and defined
as the minimal distance of a quantum state and all states
with zero discord [20,21].

In [22] the entanglement witness and quantum discord
based on relative entropy are obtained for three-qubit and
tripartite systems in the four-dimensional space. In this
paper, inspired by the work [22] we find the entanglement
witness of a N -partite system with 2n dimension space.
Then using the concept of relative entropy as a distance
measure of correlations we give an exact explicit formula
for quantum discord of these states. Finally, we inves-
tigate the additivity relation of the quantum correlation
for the N -partite system with 2n-dimensional space. The
organization of this paper is as follows:

In the next section we review the definition of quantum
discord based on relative entropy. In the following two
section we obtain the entanglement witness and quantum
discord based on relative entropy for a N -partite system
in 2n-dimension space. Then we investigate the additiv-
ity relation of quantum correlations in this system. We
conclude in the last section.

Distance measure of correlations. – Briefly, the
nonclassical correlations based on relative entropy are
defined as [20]

Entanglement E = minσ∈DS(ρ||σ), (1)
Discord D = minχ∈CS(ρ||χ), (2)

Dissonance Q = minχ∈CS(σ||χ), (3)
Classical correlations C = minπ∈PS(χ||π), (4)

where P is the set of all product states that have the form
π = π1⊗π2⊗. . . πN and πj (j = 1, 2, . . . , N) is the reduced
state of the j-th subsystem. The set of classical states, C,
contains mixtures of locally distinguishable states χ =∑

vn
pv1...vN

|v1 . . . vN 〉〈v1 . . . vN |, where pv1...vN
is a joint

probability distribution and local states |vn〉 are an or-
thonormal basis. The correlations of these states are iden-
tified as classical correlations [20,23,24]. D is the set of all
separable states of the form σ =

∑
k pkπk

1 ⊗πk
2 ⊗ . . .⊗πk

N .
The relative entropy between two quantum states ρ and χ
is given by

S(ρ||χ) ≡ −tr(ρ log χ) − S(ρ), (5)

where S(ρ) is the von Neumann entropy of ρ and S(ρ) ≡
−tr(ρ log ρ).

EW of N-partite systems in 2n-dimensional
space. – If a pure state |ψ〉 ∈ H1⊗H2⊗. . .⊗HN - Hi is the
Hilbert space of the i-th subsystem which can be written
in the form |ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ . . .⊗ |ψN 〉, where |ψi〉 is a
pure state of the i-th subsystem, it is said to be separable,
otherwise it is called entangled. When a system is in an
entangled pure state, it is not possible to assign states to

Fig. 1: Nonlinear EW is the envelope of a family of linear EWs.

its subsystems. This will be true, in the appropriate sense,
for the mixed state case as well. A mixed state of the com-
posite system is described by a density matrix ρ acting on
H1 ⊗ H2 ⊗ . . . ⊗ HN . ρ is separable if there exist pk ≥ 0,
{ρk

1}, {ρk
2}, . . . , {ρk

N} which are mixed states of the respec-
tive subsystems such that ρ =

∑
k pkρk

1 ⊗ ρk
2 ⊗ . . . ⊗ ρk

N ,
where

∑
k pk = 1. Any violation of the condition of sepa-

ration of the state makes it entangled. The most general
approach to study the entanglement of quantum states in
higher-dimensional physical systems is based on the no-
tion of entanglement witnesses. In general, a Hermitian
operator (or an observable) is called EW if it has a pos-
itive expectation value with all separable states while it
possesses at least one negative eigenvalue. Mathemati-
cally, this means that for the Hermitian operator W , we
must check the two properties: firstly, Tr(Wρs) ≥ 0 for all
separable states ρs, secondly Tr(Wρe) < 0 for some entan-
gled state ρe. In fact in quantum information theory, an
entanglement witness is a functional which distinguishes
a specific entangled state from the separable ones [25].
Each linear EW separates the separable region from the
entanglement one. The set of such linear EWs is a family
of curves whose envelope can be considered as a nonlin-
ear entanglement witness. Figure 1 shows this nonlinear
witness.

In this section, we consider the N -partite systems where
each of the local dimensions is 2n and find the separability
condition for these states.

To this end, suppose that the entanglement witness W is
in the following form [26]:

W = A0 I ⊗ I ⊗ . . . ⊗ I︸ ︷︷ ︸
N-fold

+
2n+1∑

i,j,...,l,m=1

Aij...lmm γi ⊗ γj ⊗ . . . ⊗ γl︸ ︷︷ ︸
N−2

⊗γm ⊗ γm,

(6)

where {γi} are Dirac matrices (see appendix) [27] and
I denotes the identity matrix of dimension 2n. Note
that here we choose maximally anticommuting sets of
γi. Throughout the paper, we remove the tensor prod-
ucts. For example, instead of γi ⊗ γj ⊗ . . . ⊗ γl ⊗
γm ⊗ γm, we use the notation γiγj . . . γlγmγm. Note
that A0 is a nonzero positive real parameter, γk are
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operators with −1 ≤ Tr(ρsγiγj . . . γlγmγm) ≤ 1 for ev-
ery separable ρs, and Aij...lmm are real parameters whose
ranges must be determined such that W becomes an EW.
We define the arbitrary N -partite product state as ρs =
|α〉〈α| ⊗ |β〉〈β| ⊗ . . . ⊗ |γ〉〈γ|︸ ︷︷ ︸

N-fold

. For the Hermitian opera-

tors Q ij . . . l︸ ︷︷ ︸
(N−2)-fold

mm = γi⊗γj⊗. . .⊗γl⊗γm⊗γm, we consider

the maps Pij...lmm = Tr(ρsQij...lmm) for any product state
such that these maps map the convex set of product states
into a bounded convex region which will be named feasible
region. In other words, in order for W to be an entangle-
ment witness, it must satisfy the condition Tr(Wρs) ≥ 0.
This condition takes the following form:√

Π11 +
√

Π22 + . . . +
√

Π(2n+1)(2n+1) ≤ 1, (7)

where

Πll =
2n+1∑

i,j,...,l,m=1

P 2
ij...lmm. (8)

Note that in the above equation, the number of ij . . . l is
N − 2. To proof of the inequality eq. (7) assume

Tr(γ(1)
i |α〉〈α|) = ai,

Tr(γ(2)
i |β〉〈β|) = bi,

...

Tr(γ(N−1)
i |δ〉〈δ|) = di,

Tr(γ(N)
i |γ〉〈γ|) = fi

(where the superscripts 1, 2, . . . , N in γi , denote the first,
second, . . . , N -th party, respectively) and

Pij...lmm = Tr(ρsQij...lmm) = aibj . . . cldmfm.

Hence we get√
Π11 +

√
Π22 + . . . +

√
Π(2n+1)(2n+1) =

√
μ11 +

√
μ22 + . . . + √

μ(2n+1)(2n+1), (9)

where

μmm =
2n+1∑

i,j,...,l,m=1

a2
i b

2
j . . . c2

l d
2
mf2

m.

Since
∑2n+1

i=1 a2
i = 1 and also the similar relations hold for

bi,. . . , ci, di and fi, then we have√
Π11 +

√
Π22 + . . . +

√
Π(2n+1)(2n+1) =

d1f1 + d2f2 + . . . + d2n+1f2n+1 = |−→d .
−→
f | ≤ 1. (10)

Hence, the convex optimization problem is in the following
form:

minimize Tr(Wρs) = A0 +
2n+1∑

i,j,...,l,m=1

Aij...lmmPij...lmm

subject to
√

Π11 +
√

Π22 + . . . +
√

Π(2n+1)(2n+1) ≤ 1.

By solving this problem, we arrive at the following condi-
tion:

2n+1∑
i,j,...,l=1

A2
ij...l11 =

2n+1∑
i,j,...,l=1

A2
ij...l22 = . . . =

2n+1∑
i,j,...,l=1

A2
ij...l(2n+1)(2n+1). (11)

So, with the following condition:

A0 −

√√√√ 2n+1∑
i,j,...,l,m=1

A2
ij...lm ≥ 0 (12)

W is an entanglement witness.
In the rest of this section, we are going to obtain the

detection condition for generic density matrix. To do this,
consider the following density matrix:

ρ =
1

2nN

(
II . . . I︸ ︷︷ ︸
N-fold

+
2n+1∑

i,j,...,k=1

rij...k γiγj . . . γk︸ ︷︷ ︸
N-fold

)
, (13)

then we have

Tr(Wρ) = A0 +
2n+1∑

i,j,...,l,m=1

Aij...lmmrij...lmm,

and by using eq. (11) and eq. (12), the convex optimization
problem takes the form

minimize A0 +
2n+1∑

i,j,...,l,m=1

Aij...lmmrij...lmm

subject to A0 −

√√√√ 2n+1∑
i,j,...,l,m=1

A2
ij...lm ≥ 0,

F11 = F22 = F(2n+1)(2n+1),

where

Fmm =
2n+1∑

i,j,...,l=1

A2
ij...lmm.

Using the convex optimization method, one can show that

min Tr(Wρ) =
1

2nN

[
1 −

(√
F11 +

√
F22

+ . . . +
√

F(2n+1)(2n+1)

)]
≤ 0, (14)

where

Fll =
2n+1∑

i,j,...,l.m

r2
ij...lmm.

In order to find the PPT conditions of the density matrix,
eq. (13), we consider the following assumptions: In the
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general form of a N -particles density matrix, the coeffi-
cients of γi ⊗ γj ⊗ . . . ⊗ γk ⊗ γl ⊗ γm ⊗ γn are rij...klmn,
but we choose these coefficients such that if m �= n, then
rij...klmn = 0 and also for any i, j, . . . , k, l, we consider
rij...klmm = rlm. So the subscript m appears twice in
γi ⊗ γj ⊗ . . . ⊗ γk ⊗ γl ⊗ γm ⊗ γm. The reason for this
choice is that we are able to obtain the eigenvalues of the
density matrix, otherwise, it is very difficult to gain the
eigenvalues of it. So, by these conditions, the density ma-
trix, eq. (13), has the following form:

ρ =
1

2nN

(
II . . . I︸ ︷︷ ︸
N-fold

+
2n+1∑

i,j,...,k,l,m=1

rlm γiγj . . . γk︸ ︷︷ ︸
N−3

γlγmγm

)
.

(15)
Now we are going to find the PPT condition of the density
matrix, eq. (15). To this end, we rewrite it as the following
form:

ρ =
1

2nN
(II . . . I︸ ︷︷ ︸

N-fold

+Bi,j,...,kClm),

where

Clm =
2n+1∑
l=1

γl

2n+1∑
m=1

rlmγmγm,

and

Bi,j,...,k =
2n+1∑

i,j,...,k=1

γiγj . . . γk︸ ︷︷ ︸
N−3

.

The eigenvalues of Bi,j,...,k are ±anN , where anN =√
(2n + 1)N−3., and the eigenvalues of Clm are[

2n+1∑
l=1

{(−1)i1rl1 + (−1)i2rl2 + · · · + (−1)i2nrl2n

+(−1)n(−1)i1+i2+...+i2nrl2n+1}2

] 1
2

, (16)

where i1, i2, . . . , i2n ∈ {0, 1}. Finally, the PPT condition
of the density matrix is as follows:

1 ± anN

[
2n+1∑
l=1

{(−1)i1rl1 + (−1)i2rl2 + · · · + (−1)i2nrl2n

+(−1)n(−1)i1+i2+...+i2nrl2n+1}2

] 1
2

. (17)

Furthermore, for the density matrix of the form of eq. (15),
the detection condition, eq. (14), is as the following form:

Tr(Wρ) = 1 − anN

⎛
⎝

√√√√2n+1∑
j=1

r2
1j

+

√√√√2n+1∑
j=1

r2
2j + . . . +

√√√√2n+1∑
j=1

r2
(2n+1)j

⎞
⎠ ≤ 0.

If Tr(Wρ) = 0, i.e.,

anN

⎛
⎝
√√√√2n+1∑

j=1

r2
1j +

√√√√2n+1∑
j=1

r2
2j + . . . +

√√√√2n+1∑
j=1

r2
(2n+1)j

⎞
⎠ = 1,

then ρ is separable, because we can write it as

ρ =
anN

2nN

⎛
⎝

√√√√2n+1∑
j=1

r2
1j

(
II . . . I︸ ︷︷ ︸

N

+β⊗(N−3)−→n 1 · −→γ γ1γ1

)

+

√√√√2n+1∑
j=1

r2
2j

(
II . . . I︸ ︷︷ ︸

N

+β⊗(N−3)−→n2 · −→γ γ2γ2

)

+ . . . +

√√√√2n+1∑
j=1

r2
(2n+1)j

(
II . . . I︸ ︷︷ ︸

N

+ β⊗(N−3)−→n 2n+1 · −→γ γ2n+1γ2n+1

)⎞
⎠ ,

with

−→ni · −→γ =

∑2n+1
j=1 rijγj√∑2n+1

j=1 r2
ij

and

β =
γ1 + γ2 + . . . + γ2n+1√

2n + 1
.

The terms in parentheses are projection operators and
ρ is a convex combination of separable terms, hence ρ is
separable.

Quantum discord of a N-partite system. – We
first recall a result regarding the closest classical states
(CCS) and the closest separable states (CSS) of a generic
state ρ in [28].

Theorem: Given a generic state ρ ∈ H \ I and X ∈ I,
min S(ρ || X) is achieved when ρ and X have common
eigenbasis. Here, I is a special subset of the Hilbert
space H.

We should mention that obtaining the CCS and CSS of
a generic state is still a very difficult problem. In fact,
using the above result one can obtain the CCS and CSS
of a generic state ρ when the eigenvectors of ρ and X are
parallel.

Now, we focus on the density matrix in the form of
eq. (15) and find an exact analytical formula for the
quantum discord of this density matrix using the concept
of relative entropy as a distance measure of correlations
(eq. (2)). Now from eq. (2), to determine D, we have

D = minχ∈CS(ρ||χ) = min[tr(ρ log ρ) − tr(ρ log χ)] =∑
i

λi log λi − max(tr(ρ log χ)).

(18)
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The classical states contain mixtures of locally distinguish-
able states, hence we take the CCS of ρ as

χ ∈
{

1
2nN

(II . . . I + r′lmγiγj . . . γlγmγm)
}

(i, j, . . . , m = 1, . . . , 2n + 1). (19)

Let us choose χ as χ = 1
2nN (II . . . I︸ ︷︷ ︸

N-fold

+r′11 γ1γ1 . . . γ1︸ ︷︷ ︸
N-fold

), then

we obtain

tr(ρ log χ) =
1
2
[(1 + r11) log(1 + r′11)

− (−1 + r11) log(1 − r′11) − 2 log 2nN ]. (20)

To maximize the above equation, by calculating the gra-
dient of the above equation with respect to r′11 and make
it zero, one can show that r′11 = r11.

Hence quantum discord of N -partite systems in 2n di-
mensions is given by

D =
∑

i

λi log λi −
1
2
[(1 + r11) log(1 + r11)

− (−1 + r11) log(1 − r11) − 2 log 2nN ] (21)

Subadditivity relation. – One of the basic question
related to the measure of correlations is the additivity
of the proposed measures. In this section, we discuss
the subadditivity relation for the states given by eq. (15)
and show that the subadditivity relation is satisfied
for this density matrix. To this end, we use the rela-
tive entropy-based definitions of quantum correlations,
which is completely applicable for multipartite systems
of arbitrary dimensions. Defining the total mutual
information as Tρ = S(ρ||πρ) and classical correlation
as Cσ = S(χσ||πσ), the subadditivity relation that is
Tρ ≥ E + Q + Cσ, can be checked. To simplify the inves-
tigation of the subadditivity relation between quantum
correlations, we consider the special case that is

rlm = 0, l �= m,

rll, l = m.

So we arrive at the following density matrix:

ρ =
1

2nN

(
II . . . I︸ ︷︷ ︸
N-fold

+
2n+1∑
l=1

rll γiγj . . . γk︸ ︷︷ ︸
(N−3)-fold

γlγlγl

)

(i, j, . . . , k = 1, . . . , 2n + 1). (22)

The PPT condition for this density matrix is as follows:

2n+1∑
l=0

r2
ll ≤

1√
(2n + 1)N−3

(23)

and then the detection condition of entanglement is∑2n+1
l=0 | rll |> 1√

(2n+1)N−3
. In [28], the analytical

technique for finding the closest separable states (CSS) of
2n-dimensional Bell diagonal states is provided. Following
the calculations of it, we can write the closest separable
states (CSS) of the density matrix, eq. (22), as

σ =
1

2nN

(
II . . . I︸ ︷︷ ︸
N-fold

+
2n+1∑
l=1

r′ll γiγj . . . γk︸ ︷︷ ︸
(N−3)-fold

γlγlγl

)

(i, j, . . . , k = 1, . . . , 2n + 1). (24)

The eigenvectors of ρ and σ are parallel [28] and so
r′ll = λrll(l = 0, . . . , 2n + 1); on the other hand, since
σ is a separable state, then

∑
l |r′ll| = 1√

(2n+1)N−3
. Using

these two facts, we get

r′ll =
rll√

(2n + 1)N−3
∑2n+1

l=0 |rll|
, l = 0, . . . , 2n + 1.

(25)
For simplicity, we assume that all of rll (l = 0, . . . , 2n+1)
is positive. Then by some calculations, we obtain the
additivity relation between quantum correlations as the
following form:

E + Q + Cσ − Tρ =

−

(
−1 +

√
(2n + 1)N−3

∑2n+1
l=0 rll

) √∑2n+1
l=0 r2

ll∑2n+1
l=0 rll

× cot−1

⎛
⎝ ∑2n+1

l=0 rll√∑2n+1
l=0 r2

ll

⎞
⎠ , (26)

then using eq. (23) we have E + Q + Cσ − Tρ ≤ 0, that
is the correlations of the state in eq. (15) are subadditive.

Conclusion. – In this paper we have studied the
system which consists of a N -partite system with
2n-dimensional Hilbert space in each subsystem. In the
first step, we have found the entanglement witness for
this system, then we have computed the quantum dis-
cord based on relative entropy. At the end of the paper,
we have found the closest separable state (CSS) for a N -
partite system of 2n-dimensional space and have analyzed
the subadditivity relation between the quantum correla-
tions of this system.
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Appendix: gamma matrices. – The gamma matri-
ces, γμ, μ = 1, . . . , d, are the set of d matrices that satisfy
the following anticommutation relations:

γμγν + γνγμ = 2δμνI2d/2 , (A.1)
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where I2d/2 is the identity matrix with dimension 2
d
2 .

These matrices are also called Dirac matrices and gen-
erate a matrix representation of the Clifford algebra with
2d dimension. One element of this algebra can be obtained
by product all of the γ matrices:

γs = i−
d
2 γ1γ2 . . . γ2n

that commute with all gamma matrices and γ2
s = I2d/2 .

By adding this matrix with other gamma matrices, anti-
commutation relations have the following form:

γiγj + γjγi = 2δijI2d/2 (i, j = 1, . . . , d, d + 1). (A.2)

In the case of d = 2, the Dirac matrices are the Pauli
matrices all of which are Hermitian:

γ
(d=2)
1 ≡ σ1 =

(
0 1
1 0

)
,

γ
(d=2)
2 ≡ σ2 =

(
0 −i

i 0

)
, (A.3)

γs = γ
(d=2)
3 ≡ σ3 =

(
1 0
0 −1

)
.

It is also possible to construct higher-dimensional gamma
matrices that generalize to even dimensions as follows:

γ
(d+2)
i = σ1 ⊗ γ

(d)
i =

(
0 γ

(d)
i

γ
(d)
i 0

)
(i = 1, . . . , d + 1),

γ
(d+2)
d+2 = σ2 ⊗ I(d) =

(
0 −iId

iId 0

)
, (A.4)

γd+2
s = γ

(d+2)
d+3 ≡ σ3 ⊗ Id =

(
Id 0
0 −Id

)
,

where Id is the unitary matrix in 2d/2 dimensions. It can
be shown that if γi satisfy eq. (A.2) in d-dimension, then
the same relation exists for γd+2

i .
As eq. (A.2) shows, we can indicate the γ matrices in

odd dimensions through obtaining the γ matrices of di-
mension d − 1 where γs was added to them. In this case
the γ matrices are not all algebraically independent, in
contrast to the even case.

REFERENCES

[1] Schrodinger E., Naturwissenschaften, 23 (1935) 807;
823; 844.

[2] Einstein A., Podolsky B. and Rosen N., Phys. Rev.,
47 (1935) 777.

[3] Peres A., Phys. Rev. Lett., 77 (1996) 1413.
[4] Horodecki M., Horodecki P. and Horodecki R.,

Phys. Lett. A, 1 (1996) 223.
[5] Lewenstein M., Kraus B., Cirac J. I. and Horodecki

P., Phys. Rev. A, 62 (2000) 052310; Lewenstein M.,

Kraus B., Horodecki P. and Cirac J. I., Phys. Rev.
A, 63 (2001) 044304.

[6] Jafarizadeh M. A., Mirzaee M. and Rezaee M.,
SIAM Rev., 3 (2005) 511.

[7] Doherty A. C., Parrilo P. A. and Spedalieri F. M.,
Phys. Rev. Lett., 88 (2002) 187904.

[8] Doherty A. C., Parrilo P. A. and Spedalieri F. M.,
Phys. Rev. A, 69 (2004) 022308.

[9] Doherty A. C., Parrilo P. A. and Spedalieri F. M.,
Phys. Rev. A, 71 (2005) 032333.

[10] Eisert J., Hyllus P., Guhne O. and Curty M., Phys.
Rev. A, 70 (2004) 062317.

[11] Vianna R. O. and Doherty A. C., Phys. Rev. A, 74
(2006) 052306.

[12] Bennett C. H. and DiVincenzo D. P., Nature, 404
(2000) 247.

[13] Bennett C. H., DiVincenzo D. P., Smolin J. A.

and Wootters W. K., Phys. Rev. A, 54 (1996)
3824.

[14] Hill S. and Wootters W. K., Phys. Rev. Lett., 78
(1997) 5022.

[15] Wootters W. K., Phys. Rev. Lett., 80 (1998) 2245.
[16] Ollivier H. and Zurek W. H., Phys. Rev. Lett., 88

(2001) 017901.
[17] Henderson L. and Vedrl V., J. Phys. A, 34 (2001)

6899.
[18] Zhang J.-S. and Chen A.-X., Quantum Phys. Lett.,

1 (2012) 69.
[19] Mahdian M., Yousefjani R. and Salimi S., Eur. Phys.

J. D, 66 (2012) 133.
[20] Modi K., Paterek T., Son W., Vedral V.

and Williamson M., Phys. Rev. Lett., 104 (2010)
080501.

[21] Dakic B., Vedral V. and Brukner C., Phys. Rev.
Lett., 105 (2010) 190502.

[22] Jafarizadeh M. A., Karimi N., Heshmati A.

and Amidi D., Int. J. Theor. Phys., 56 (2017)
1121.

[23] Henderson L. and Vedral V., J. Phys. A, 34 (2001)
6899.

[24] Oppenheim J., Horodecki M., Horodecki P. and
Horodecki R., Phys. Rev. Lett., 89 (2002) 180402;
Jafarizadeh M. A., Karimi N., Heshmati A. and
Amidi D., Int. J. Theor. Phys., 56 (2017) 1121.

[25] Hu M. L. and Fan H., Phys. Rev. A, 86 (2012)
032338.

[26] Jafarizadeh M. A., Aghayar K. and Heshmati A.,
Phys. Rev. A, 80 (2009) 052307.

[27] Jafarizadeh M. A. and Sufiani R., Phys. Rev. A, 77
(2008) 012105.

[28] Jafarizadeh M. A., Karimi N., Amidi D. and Olyaei

H. Z., Int. J. Theor. Phys., 55 (2015) 1543.

50003-p6


