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Abstract – Topological insulator lasers are a newly introduced kind of lasers in which light snakes
around a cavity without scattering. Like for an electron current in a topological insulator mate-
rial, a topologically protected lasing mode travels along the cavity edge, steering neatly around
corners and imperfections without scattering or leaking out. In a recent experiment, topological
insulator lasers have been demonstrated using a square lattice of coupled semiconductor microring
resonators with a synthetic magnetic field. However, laser arrays with slow population dynamics
are likely to show dynamical instabilities in a wide range of parameter space corresponding to
realistic experimental conditions, thus preventing stable laser operation. While topological insu-
lator lasers provide an interesting mean for combating disorder and help collective oscillation of
lasers at the edge of the lattice, it is not clear whether chiral edge states are immune to dynam-
ical instabilities. In this work we consider a realistic model of semiconductor class-B topological
insulator laser and show that chiral edge states are not immune to dynamical instabilities.

Copyright c© EPLA, 2018

Introduction. – Topological insulators are materials
that do not carry electrical currents in the bulk, but do
conduct through edge states [1]. Inspired by similar phe-
nomena in photonics [2], the idea of topological insula-
tor lasers has been introduced and demonstrated in a
series of recent papers [3–9]. Like for electron currents
in topological insulators, in such a kind of lasers light can
travel unidirectionally along the edge of the optical cav-
ity, steering neatly around corners and imperfections with-
out scattering or leaking out. In a recent experiment [8],
a topological insulator laser has been realized, which is
based on a square lattice of coupled semiconductor mi-
croring resonators with a synthetic magnetic field realized
by antiresonant ring links [10,11]. The experiment nicely
showed that in the topological insulator laser the syn-
thetic magnetic field enables lasing in a chiral edge mode,
outperforming the same laser array without the synthetic
magnetic field (i.e., in a topological trivial phase) in terms

of efficiency, coherence and robustness against disorder.
Such a result seem rather promising toward the realiza-
tion of miniaturized high power and stable laser arrays.
However, it is known that, even in the absence of disor-
der or imperfections, stable laser emission in solid-state or
semiconductor laser arrays, corresponding to phase lock-
ing, is severely restricted by the onset of dynamical in-
stabilities [12–16], and that to force stable laser emission
in a supermode of the array, selection methods, such as
those based on non-local laser coupling in Talbot cavi-
ties [17–19], are required. The theoretical model of the
topological insulator laser, presented in the companion
paper [7], predicts stable laser emission in a chiral edge
supermode when gain saturation is instantaneous (class-A
laser). However, in most cases semiconductor lasers show a
slow carrier dynamics as compared to the photon lifetime,
and thus they belong to class-B lasers [20]. In class-B
laser arrays, dynamical instabilities are very common even
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Fig. 1: (Colour online) (a) Schematic of a N ×M square lattice
of evanescently coupled microring resonators with a synthetic
magnetic flux ϕ realized by antiresonant link rings (not shown
in the figure) [11]. We typically assume M = N . (b) Schematic
of the topological insulator laser [7,8]. Optical gain is provided
in microrings along the perimeter P of the lattice, while inner
microrings are lossy (to facilitate oscillation in an edge chiral
supermode). Light is extracted from the edge microring at
site (1, 1).

when only two lasers are coupled [12,15], with more com-
plex temporal behavior for a larger number of coupled
lasers [14,16]. Insight can be gained from analytical, nu-
merical and experimental work on optically coupled diode
lasers, where we rudimentarily expect that optical cou-
pling may prevent phase locking and the continuous-wave
(cw) operation to be interrupted with stable limit cycles
born out of Hopf bifurcations, as well as period doublings
that end up in regions of strange chaotic attractors, as key
parameters are changed [12,14,21,22]. Therefore, a natu-
ral question arises: are chiral edge states in a topologi-
cal semiconductor laser immune to dynamical instabilities
as well?

In this letter we consider a more realistic model of semi-
conductor class-B topological insulator laser array and
show that, for typical parameter values that apply to ex-
perimental conditions, chiral edge states are likely to un-
dergo dynamical instabilities.

Topological insulator laser: model. –

Chiral edge states in coupled-microring lattices with syn-
thetic gauge field: Hermitian model. The topological
insulator laser introduced in [7] and experimentally re-
alized in [8] comprises a square lattice of N × M coupled
microrings with a synthetic gauge field ϕ realized by an-
tiresonant link rings; see fig. 1(a). We assume a single
longitudinal mode oscillation in each microring in a given
traveling wave mode; unidirectional oscillation in each mi-
croring can be obtained by the method used in [8]. Indi-
cating by cn,m(t) the normalized electric-field amplitude of
the mode oscillating in the (n, m) microring of the lattice
and κ the effective coupling rate, coupled mode equations
in the Hermitian limit, i.e., neglecting gain and loss in the
system, read [11]

i
dcn,m

dt
= κ{cn+1,m + cn−1,m}

+ κ{cn,m+1 exp(inϕ) + cn,m−1 exp(−inϕ)} (1)

Fig. 2: (Colour online) (a) Energy band diagram of a square
lattice in a stripe N × M = 100 × ∞ with magnetic flux
ϕ = π/2. Bloch wave number q and energy E are defined
by cn,m = An exp[iqm − iE(q)t], where E = E(q) and An are
the eigenvalues and corresponding eigenvectors of the Harper
equation κ(An+1 + An−1) + 2κ cos(q + nϕ)An = EAn. Edge
states, with dispersion curves in the two topological gaps, are
localized either at the left or right edges n = 0 and n = N of
the stripe. The slope of dispersion curves determines the circu-
lation direction (chirality) of edge states. (b) Energy spectrum
(left panel) and PR of corresponding eigenvectors (right panel)
in a square lattice N × N = 50 × 50 with a flux ϕ = π/2.

(n = 1, 2, . . . , N , m = 1, 2, . . . , M), with open boundary
conditions c0,m = cN+1,m = cn,0 = cn,M+1 = 0 (fig. 1(a)).
We can write eq. (1) in the compact form

i
dc
dt

= H(Herm)c, (2)

where c = (cn,m) and H(Herm) is the Hermitian Hamilto-
nian defined in eq. (1). For an infinitely extended lattice,
the energy spectrum of H(Herm) depends on the synthetic
gauge phase ϕ, i.e., magnetic flux in each plaquette, and
realizes the famous Hofstadter butterfly spectrum [23].
In a finite lattice, chiral edge states, traveling unidirec-
tionally along the perimeter of the lattice, arise in the
gapped region of the spectrum. We set the topological
phase ϕ equal to ϕ = π/2, so that there are four bands
with two topological gaps. Figures 2(a) and (b) show
the computed band diagrams for an infinite stripe (N =
100×M = ∞) and for a square lattice (N × N = 50 × 50),
respectively. Clearly, edge modes are found in both cases.
In the stripe geometry (M = ∞), they can be derived
from the analysis of the Harper equation (see caption
of fig. 2). For the finite square lattice (M = N) they
can be detected by calculating the participation ratio
PR = (

∑
n,m |cn,m|2)2/ ∑

n,m |cn,m|4 (a larger value of
PR corresponds to a more delocalized mode). In the stripe
geometry (fig. 2(a)), each topological gap supports circu-
lation of edge modes in both directions, localized at either
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edges n = 1 and n = N of the stripe; the circulation direc-
tion is reversed in the two topological gaps. In the finite
square lattice the edge states are delocalized all along the
perimeter of the square and their energies fall inside the
gaps (fig. 2(b)).

Topological insulator laser: rate-equation model. The
topological insulator laser, considered in [7,8], is obtained
by inserting optical gain in the microrings at the perimeter
P of the square lattice and optical loss in the inner mi-
crorings to facilitate oscillation in the edge supermodes.
Outcoupling is assumed at the edge microring at site
(1, 1), which is coupled for example to a bus waveguide;
see fig. 2(b). The laser system is described by the non-
Hermitian model (compare with eq. (2)),

i
dc
dt

= (H(Herm) + H(dis))c + iLc. (3)

In eq. (3), H(dis) is an additional Hermitian contribution
to the Hamiltonian H(Herm) that describes disorder Δn,m

of the resonance frequencies of the microrings

(H(dis)c)n,m = Δn,mcn,m, (4)

whereas iL is the non-Hermitian term that describes
gain and loss in the system. Optical gain is here mod-
eled using a standard rate equation model for class-B
semiconductor lasers, which accounts for the slow carrier
population dynamics and linewidth enhancement factor
α [12,14,16,20,24]. The non-Hermitian term is given by

(Lc)n,m = −γcn,m (5)

for (n, m) /∈ P and

(Lc)n,m =
1
2

(
− 1

τp
+ σ(Nn,m − 1)

)
(1 + iα)cn,m

− γoutc1,1δn,1δm,1 (6)

for (n, m) ∈ P , where P indicates the perimeter of the
lattice, γ is the linear loss rate in the inner rings, τp is the
photon lifetime in the outer rings when the semiconductor
has reached transparency, Nn,m is the carrier density in
the (n, m) ring, normalized to the transparency value, α
is the linewidth enhancement factor, σ is proportional to
the differential gain of the semiconductor, and γout is the
outcoupling loss of the (1, 1) microring. The equation for
the carrier density Nn,m reads

dNn,m

dt
= R − Nn,m

τs
− 2

τs
(Nn,m − 1)|cn,m|2, (7)

where R is the normalized injection rate of carriers (R =
Rtr = 1/τs at transparency), and τs is the carrier life-
time. The injection current is assumed to be uniform in
all the rings of the perimeter P . Note that in the lin-
earized regime (laser below or close to threshold) the lin-
earized gain provided by the pumping in the rings is given
by g = (σ/2)(Rτs − 1). We note that the limiting case of
instantaneous gain saturation (class-A laser), used in [7],
can be retrieved by assuming τs � τp, which justifies adi-
abatic elimination of carrier density.
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Fig. 3: (Colour online) Numerically computed eigenenergies
(real and imaginary parts) and participation ratio of super-
modes for the topological insulator laser (N × N = 12 × 12)
with linear gain and loss for increasing values of the normal-
ized pump parameter p. Parameter values are: ϕ = π/2, α = 3,
τp = 40 ps, σ = 6× 1011 s−1, κτp = 0.2, γ = κ/2, and γout = κ.
In (a) p = 0.01, in (b) p = 0.02 and in (c) p = 0.03. Su-
permodes with positive imaginary part of energy are unstable
modes. The estimated threshold value is pth � 0.014. The
pump parameters in (a), (b) and (c) correspond to normalized
pump rates Rτs = 1.0425, Rτs = 1.0433 and Rτs = 1.0442, re-
spectively. Note that such values are close to the transparency
value Rτs = 1 of the semiconductor, and very close to the
threshold value of the single microring (accounting for its fi-
nite photon lifetime) Rτs = 1.0417.

Laser threshold of chiral edge supermodes. The
threshold condition of various edge supermodes of the
lattice can be obtained by linear stability analysis of
the non-lasing solution cn,m = 0 and Nn,m = Rτs to
eqs. (3) and (7), which requires numerical computation
of the eigenvalues of the N × N matrix, obtained from
the Hermitian Hamiltonian H(Herm) by including loss and
linear gain. Typical examples of eigenvalues curves for in-
creasing values of pumping are shown in fig. 3 in a lattice
without disorder. Pumping is measured in terms of nor-
malized excess pump parameter

p = (στp/2)(Rτs − 1) − 1/2 (8)

so that p = 0 is the threshold value for a single pumped mi-
croring, decoupled from the others. Unstable supermodes
at the onset of lasing are those with a positive imaginary
part of the eigenenergy. Note that some (albeit small)
discrimination in the threshold value of chiral edge super-
modes is observed, with supermodes fallen in gap 2 having
lower threshold. Bulk modes, corresponding to larger PR,
have higher threshold value and thus are not lasing. Note
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that the threshold condition does not depend on class-A
or class-B dynamics. However, as discussed in the follow-
ing, the above-threshold dynamics is strongly influenced
by the ratio τs/τp, with a clear tendency to show dynam-
ical instabilities in a realistic class-B laser model.

Topological insulator laser: dynamical instabil-
ities. – Analytical form of stationary solutions to the
laser equations, describing oscillation on a single edge chi-
ral mode, is unfortunately unavailable, and hence it is
not possible to determine boundaries of stability of var-
ious laser supermodes like for simpler laser array mod-
els [12–14]. Clearly, nonlinear chiral modes can become
unstable. Even though they were locally stable, their basin
of attraction could be restricted to some special initial con-
ditions and the laser emission might more likely occur on
a different and non-trivial attractor. If one chiral edge
supermode were a stable and dominant attractor of the
dynamics (as claimed in [7]), one would expect that, af-
ter initial relaxation oscillation (transient laser switch-on)
stable emission should be observed, without self-pulsing
or irregular temporal behaviors.

We numerically integrated the semiconductor laser rate
equations, starting from random noise of field amplitudes
and carrier density established by the pump rate, for pa-
rameter values τs = 4 ns, σ = 6 × 1011 s−1, α = 3,
τp = 40 ps, κτp = 0.2, and for a square lattice made
of 12 × 12 microrings. Larger values of coupling, up to
κτp = 3, have been also considered. Such values can be
regarded as realistic ones for the setup used in [8] (see
also [24]). We compared the results obtained by a realis-
tic value of τs/τp � 100 with the one corresponding to the
virtual fast carrier relaxation rate τs/τp = 0.2, i.e., to in-
stantaneous gain saturation to mimic class-A dynamics as
in [7]. The main important result is that, while in such a
limiting case after transient switch-on steady-state opera-
tion in an edge supermode is most likely observed (accord-
ing to [7]), by increasing the ratio τs/τp to a more realistic
value, e.g., τs/τp = 100 or in any case above 1 (class-B
laser dynamics), irregular laser dynamics, showing com-
plex spatial-temporal complexity, is much more likely to
be observed even close to threshold. Such an irregular
behavior is clearly ascribed to self-sustained relaxation
oscillations, supermode competition and complex dynam-
ics typical of semiconductor laser arrays with slow-gain
dynamics and large linewidth enhancement factor. This
means that, while topological edge supermodes are robust
against disorder owing to their chirality, preventing oscil-
lation of clusters of microrings, they are not immune to
dynamical instabilities. Typical numerical results corrob-
orating spatial-temporal complexity are shown in figs. 4
and 5 for ordered (fig. 4) and disordered (fig. 5) lattices.
Figure 4 clearly shows that, while in the limit of class-A
laser steady-state oscillation is reached after transient
switch-on (fig. 4(a)), corresponding to laser phase lock-
ing as stable fixed point, oscillatory dynamics is observed
for the realistic class-B model, where a stable limit cycle is
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Fig. 4: (Colour online) Transient switch-on dynamics of the
topological insulator laser made of 12 × 12 microrings without
disorder of resonance frequencies. Time is normalized to the
cavity photon lifetime τp (i.e., τ = t/τp). Parameter values
are: ϕ = π/2, α = 3, τp = 40 ps, σ = 6 × 1011 s−1, p = 0.02,
κτp = 0.2, γ = κ/2, γout = κ and τs = 8ps in (a) (virtual
limit of class-A laser, τs/τp = 0.2), τs = 4ns in (b) (class-
B laser, τs/τp = 100). The normalized pump parameter p =
0.02 corresponds to a pump rate Rτs = 1.0433, very close to
its threshold value (see fig. 3). Left panels show snapshots of
normalized intensity distribution |cn,m|2 in the lattice at final
time [t = 104τp = 0.4 μs in (a) and t = 105τp = 4 μs in (b)].
The supplementary movie in (b) (Fig4bmovie.avi, 168 KB)
shows the spatio-temporal dynamics of the laser intensity in
the time interval from τ = 99775 to τ = 105. The right panels
show the temporal evolution of the field intensity at the vertex
sites A (output coupler) and B.

most likely observed (fig. 4(b)). In the spatial (lattice site)
domain, the temporal oscillatory regime corresponds to
light emission circulating in the counterclockwise direction
of the edge loop, indicating preferential excitation of chi-
ral supermodes of gap 2 (see the movie Fig4bmovie.avi of
fig. 4(b)). Transition from steady-state stable oscillation
to oscillatory or irregular laser operation, when switching
from class-A to class-B model, is observed in most of the
numerical runs assuming small random noise as an initial
condition. For the disordered lattice, different types of at-
tractors are observed from run to run, depending on the
specific realization of disorder of the frequency detuning
Δn,m. This is shown in fig. 5, where some examples of
transient laser switch-on dynamics, leading to a variety
of attractors, are depicted for different realizations of dis-
order. In the numerical simulations Δn,m is taken from
a Gaussian distribution with zero mean and 0.28κ vari-
ance. Rather generally, disorder seems to slightly com-
bat the tendency of the ordered lattice to show oscillatory
or irregular behavior, however a steady-state oscillation
is observed in a minority of cases (<20% probability in
30 runs). The most typical temporal trace corresponds to
a stable periodic limit cycle (fig. 5(a)), however different
behaviors can be observed, such as unstable fixed points
(fig. 5(b)), chaotic states (fig. 5(c)), and quasi-periodic
limit cycles (fig. 5(d)). The spectral signatures of these os-
cillations are usually sidebands of the relaxation oscillation
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Fig. 5: (Colour online) Same as fig. 4(b), but with disorder
of resonance frequencies Δn,m. The panels, from (a) to (f),
show different runs corresponding to different realizations
of disorder, displaying distinct dynamical behavior. The
supplementary movies in the left panel (Fig5amovie.avi,
199 KB; Fig5bmovie.avi, 199 KB; Fig5cmovie.avi, 182 KB;
Fig5dmovie.avi, 178 KB; Fig5emovie.avi, 183 KB;
Fig5fmovie.avi, 319 KB) show the spatio-temporal laser
dynamics in the time interval from τ = 99775 to τ = 105.
The insets in the left panels show the power spectrum of the
temporal laser intensity at site A. In (e) and (f), the spectral
peaks at higher frequencies (at around ∼3GHz) are ascribed
to the beating of counterpropagating chiral edge modes. In 30
runs, steady-state oscillation after initial transient is observed
in 4 runs (i.e., less than 20% times). The most probable
outcome is the one in panel (a) (stable periodic limit cycle).

frequency1 (see the insets in fig. 5), which could be de-
tected in optical power spectra measurements [15,25,26].
In some cases, higher-frequency irregular oscillations can

1For a single microring laser with photon lifetime τp, the relax-
ation oscillation frequency is given by νrel � (1/2π)

√
2p/(τsτp).

be observed as well (figs. 5(e) and (f)), which arise from
competition of counterpropagating chiral edge modes in
the two gaps of fig. 3. This is likely due to a disorder-
induced change of the threshold conditions of chiral super-
modes in the two gaps as compared to the ordered lattice,
so that chiral edge modes in gap 1 can compete with the
ones in the other gap (compare movies Fig5amovie.avi–
Fig5dmovie.avi of figs. 5(a)–(d) and Fig5emovie.avi,
Fig5fmovie.avi of fig. 5(e), (f)). Increasing the cou-
pling constant κ and losses γ in the inner microrings
scarcely help preventing dynamical instabilities, and ir-
regular behavior of time traces is often observed. Other
sets of simulations have been performed, for example, by
increasing κτp from 0.2 up to 3, and the pump parame-
ter p up to p = 0.4 (to reach the laser threshold): even
for such a stronger coupling, phase locking regime is often
prevented by dynamical instabilities. The fact that the in-
stabilities were not observed in the experiment of ref. [8] is
probably ascribed to the pulsed optical pumping regime:
the pump pulses in [8] have a duration of ∼10 ns, which
is comparable or even smaller than the characteristic time
of the relaxation oscillation period (see inset of fig. 4(b)).

It is worth comparing the topological insulator laser
based on the Hamiltonian (1), admitting chiral edge
modes, with other methods of phase locking of laser ar-
rays. Let us consider, for example, a linear chain of Nd =
4(N −1) pumped microrings placed along the perimeter P
of a square lattice, see fig. 6(a). The geometry is similar to
the topological insulator laser of fig. 1(b) but without the
inner (lossy) rings. Following a recent proposal [27], we
assume nearest-neighbor coupling of microrings with cou-
pling rates κ1 and κ2 for clockwise and counterclockwise
directions, with κ1 ≥ κ2. κ1 = κ2 corresponds to ordi-
nary Hermitian coupling and is somehow analogous to the
topological insulator laser in the trivial topological phase
ϕ = 0. On the other hand, asymmetric mode coupling
κ1 > κ2 realizes a kind of non-Hermitian chiral transport
along the perimeter P of the chain, which is robust against
disorder owing to non-Hermitian Anderson delocalization
transition [28–31]. The limit κ2 = 0 corresponds to uni-
directional coupling of lasers in the array. Asymmetric
coupling can be thought of as arising from a synthetic
imaginary gauge field h, i.e., κ1,2 = κ exp(±h)) [28,32],
rather than a real gauge field as in the topological in-
sulator laser. An imaginary gauge field can be realized
using antiresonance link rings that introduce unbalanced
losses in their half-perimeter [29,33,34], rather than un-
balanced phases. It is worth comparing the tendency to
show dynamical instabilities in the topological insulator
laser model of refs. [7,8] and in the laser array with non-
Hermitian chiral modes based on asymmetric mode cou-
pling. The rate equations for the latter laser array read

dcβ

dt
=

1
2

(
− 1

τp
+ σ(Nβ − 1)

)
(1 + iα)cβ − iκ1cβ−1

− iκ2cβ+1 − (κ1 − κ2 + γoutδβ,1)cβ , (9)
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Fig. 6: (Colour online) Laser phase locking based on asym-
metric mode-coupling in a closed path P . (a) Schematic of
the laser chain. (b)–(d) Laser dynamics for κ1 = 0.2/τp and
for (b) κ2 = κ1 (Hermitian coupling), (c) κ2 = 0.2κ1, and
(d) κ2 = 0 (unidirectional coupling). Other parameters are as
in fig. 5 (including disorder strength).

dNβ

dt
= R − Nβ

τs
− 2

τs
(Nβ − 1)|cβ|2, (10)

where β = 1, 2, . . . , Nd and periodic (cyclic) boundary
conditions cβ+Nd(t) = cβ(t) apply. Outcoupling is at
the microring β = 1. In [27] analytical and numerical
results showed that asymmetric mode coupling can fight
the tendency of laser arrays to display dynamical insta-
bilities as compared to ordinary symmetric (Hermitian)
mode coupling. Figure 6 shows typical numerical results
obtained for symmetric coupling (κ1 = κ2 = κ) and asym-
metric coupling (κ1 = κ and κ2 < κ) and for the same
parameter values of α, κ, τp, γout, p used in fig. 5 for
the topological insulator laser. For ordinary Hermitian
coupling κ1 = κ2 = κ, irregular oscillations are observed
(fig. 6(b)). This setting is similar to the topological in-
sulator laser with trivial phase ϕ = 0. However, for
asymmetric mode coupling (figs. 6(c), (d)) steady-state
stable oscillation is observed. In 30 runs, corresponding
to different realizations of disorder, we always observed

steady-state oscillation, while for the topological insulator
laser with the same parameter values (fig. 5) steady-state
oscillation is observed in less than 20% cases. This result
is mainly ascribable to the fact that non-Hermitian (asym-
metric) mode coupling, besides realizing chiral transport
along the perimeter P which is robust against disorder,
provides a better discrimination of array supermodes, fa-
voring stable oscillation of the supermode traveling along
the ring with the highest speed [27].

Conclusions and discussion. – Topological insulator
semiconductor lasers, introduced and realized in recent
works [7,8], have been proven to show robust transport
of chiral edge modes, which are immune to disorder and
imperfections in the lattice. A non-trivial topological
phase, obtained by a synthetic magnetic flux based on
antiresonant link rings [10,11], ensures higher laser slope
efficiency and higher temporal coherence, preventing iso-
lated (non-collective) oscillation of clusters observed in the
trivial topological phase. The theoretical model of the
topological insulator laser, presented in [7], assumed fast
gain relaxation, which is valid for class-A lasers. In this
regime the lowest threshold edge supermode stably oscil-
lates above threshold and gain saturation suppresses other
supermodes from lasing. However, a minimal model of
the topological insulator semiconductor laser should prop-
erly account for the slow relaxation rate of carrier density
(class-B lasers) and for a non-negligible linewidth en-
hancement factor. Here we have shown that the complex
field-carrier dynamics gives rise to dynamical instabili-
ties, which are not captured in the simplified class-A laser
model of [7]. Oscillatory instabilities are generally found
for parameter values that are of practical relevance. The
spectral signatures of these intensity oscillations are side
bands of the relaxation frequency, which should be ob-
servable in an experiment with continuous-wave (or quasi-
continuous-wave) pumping. Such a kind of instabilities are
common in semiconductor laser arrays [12–16] and repre-
sent one of the main reasons that prevents stable oscilla-
tion of high-power laser arrays, at least without special
cavity design [17–19]. Our results suggest that, while
chiral edge lasing modes in topological insulator lasers
are robust against disorder, they might not be immune
to dynamical instabilities arising from complex carrier-
field dynamics. Further experimental investigations could
be devoted to characterize the temporal behavior of
topological insulator lasers. For future research, it would
be of also major interest to combine the robustness against
disorder of chiral edge transport with a laser design that
could suppress or mitigate dynamical instabilities. A pos-
sibility could be to exploit non-Hermitian chiral transport,
realized by a synthetic imaginary gauge field [28–31].
Non-Hermitian mode coupling ensures chiral transport,
robust against imperfections and disorder in view of
the phenomenon of non-Hermitian Anderson delocaliza-
tion [28,31], and can mitigate dynamical instabilities, as
shown in a recent study [27].
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