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and André M. Strydom
1,4

1 Highly Correlated Matter Research Group, Department of Physics, University of Johannesburg
P. O. Box 524, Auckland Park 2006, South Africa
2 Department of Condensed Matter Physics and Material Sciences, Tata Institute of Fundamental Research
Colaba, Mumbai-400 005, India
3 Department of Physics, University of Texas at El Paso - 500 W University Ave, El Paso, TX 79968, USA
4 Max Planck Institute for Chemical Physics of Solids (MPICPfS) - Nöthnitzer Straße 40, 01187 Dresden, Germany
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PACS 75.30.Cr – Saturation moments and magnetic susceptibilities

Abstract – The ternary intermetallic compound Gd2Cu2In crystallizes in the Mo2Fe2B-type
structure with the space group P4/mbm. The compound undergoes a ferromagnetic-paramagnetic
(FM-PM) phase transition at 94.1 K and large magnetocaloric effect has been observed over a wide
range of temperature. The isothermal magnetic entropy change (ΔSm) and adiabatic temperature
change (ΔTad) were observed to be 13.8 J/kg · K and 6.5 K for 7 T applied field. We have em-
ployed a modified Arrott plot (MAP) and Kouvel-Fisher (KF) procedures to estimate the critical
exponents near the FM-PM phase transition. Critical exponents β = 0.312(2) and γ = 1.080(5)
are estimated through a non-linear fitting. The β value is close to the three-dimensional (3D)
Ising value, whereas γ and δ values lie closer to the mean-field values. Scaled magnetic isotherms
collapse into two branches below and above TC in accordance with a single scaling equation.
Specific-heat measurements show a λ-type peak near 94K indicating long-range magnetic or-
dering. The specific-heat exponent α was estimated by a non-linear fitting using the function
CP = B + Cε + A±|ε|−α(1 + E±|ε|0.5). The fitting in the temperature range −0.025 < ε < 0.025
yields α = 0.11(3).

Copyright c© EPLA, 2018

Introduction. – Magnetic materials with large mag-
netocaloric effect have attracted considerable attention
due to their potential applications in magneto-refrigerant
and eco-friendly cooling industries [1–3]. Among many
possible compounds, RTX (R = rare earth; T = tran-
sition metal; X = p block element), RCo2 (R = Er,
Dy and Ho) based alloys [4], Gd5Si2Ge2 and related
compounds [5], Ni-Mn-X based Heusler alloys, RMnO3

(R = lanthanide) manganites [6], MnAs compounds [2],
and LaFe13−xSix based intermetallic compounds [7] have
drawn much attention due to giant magnetocaloric ef-
fect and large relative cooling power (RCP). The com-
pounds R2Cu2In crystallize in a tetragonal structure with

(a)These authors contributed equally to this paper.

the space group P4/mbm and the structure can be de-
rived from the U3Si2-type structure. The R and indium
atoms occupy the U sites, whereas transition metal atoms
occupy the Si site [8,9]. Fisher et al. have synthe-
sized the single crystalline Gd2Cu2In and observed fer-
romagnetic ordering below 85K with tetragonal “c” as
easy axis [8]. Recently, several researchers studied the
structural, magnetic and magneto-thermal properties of
R2Cu2X (R = Er, Tm, Ho and Dy; X = Cd, In)
due to the presence of large magnetocaloric effect [10–15].
For instance, the compound Dy2Cu2In crystallizes in the
Mo2Fe2B tetragonal structure and exhibits two successive
magnetic transitions at 49.5K and 19.5K. The compound
showed large magnetocaloric effect (16.5 J/kg · K) with a
RCP value 617 J/kg [13] at 7T. Similarly, the systems
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Ho2(Cu,Au)2In showed antiferromagnetic ordering below
30K and possess magnetic entropy change 21.9 J/kg · K
(Cu) and 15.8 J/kg K (Au) for 7T applied field [14]. Crit-
ical exponent analysis is an effective tool for understanding
the magnetic phase transitions and to study the intrinsic
nature of the ferromagnetism in alloys, amorphous materi-
als and rare-earth manganites [16–19]. In this manuscript
we report on the magneto-thermal analysis and magne-
tocaloric effect in Gd2Cu2In. Critical behaviour and scal-
ing analysis are carried out by employing the modified
Arrott plot, Kouvel-Fisher technique and critical scaling
methods.

Experimental details. – A polycrystalline sample
was synthesized by arc-melting the stoichiometric mixture
of high-purity (99.9wt% or better) elements under argon
atmosphere. The arc-melted sample was wrapped using a
tantalum foil and placed in an evacuated quartz ampule.
The sample was heat-treated at 800 ◦C for 7 days and then
subsequently quenched in the iced water. Crystal struc-
ture analysis was done using powder x-ray diffraction and
Rietveld refinement [20,21]. Magnetic measurements were
carried out using the commercial superconducting quan-
tum interference device based magnetometer (Quantum
Design Inc., San Diego) in the temperature range between
1.8 and 300K. Magnetization isotherms were collected
with a 5K temperature interval above and below TC and
near the transition we collected M -H data with 2K inter-
val. In order to avoid the field cycling effects, the M -H
isotherms were recorded by heating the sample till 150K
for every cycle of measurement. Specific-heat (CP ) mea-
surements were carried out in the temperature between 2
and 300K using the physical property measurement sys-
tem (Quantum Design Inc., San Diego).

Results and discussion. –

Crystal structure details. Figure 1(a) shows the in-
dexed x-ray diffraction pattern along with the Rietveld
refinement fit. The XRD pattern could be indexed by
Bragg’s reflections which are allowed within the P4/mbm
space group. The analysis confirms the single-phase na-
ture of the sample. The estimated lattice parameter val-
ues are a = b = 7.5231(9) Å and c = 3.8099(5) Å and the
values are in agreement with the previously reported lat-
tice parameter values [22]. Figure 1(b) depicts the crystal
structure of Gd2Cu2In projected along the c-axis. In this
structure, the Gd and Cu respectively occupy 4h and 4g
Wyckoff positions, whereas In occupies the 2a site. The
structure can be viewed as stacking of two alternating lay-
ers with one layer containing Gd atoms exclusively and
the other layer containing Cu and In atoms. There are
two different nearest neighbours among Gd atoms with
dGd-Gd1 = 3.6229(5) Å and dGd-Gd2 = 3.8099(5) Å and in
the basal plane there is an additional nearest neighbour
with dGd-Gd3 = 3.9480(5) Å. The coordination shell of a
Gd atom is surrounded by 6 Cu, 4 In and 3 Gd atoms.
The Gd-Cu interatomic distances range from 2.9048(3) Å

Fig. 1: (Colour online) (a)–(d) (a) Rietveld refinement of a
powder X-ray diffraction pattern using the P4/mbm space
group. (b) The crystal structure of Gd2Cu2In is projected
along the c-axis. The Gd atoms are represented by green cir-
cles, whereas Cu and In atoms are represented by pink and blue
circles, respectively. (c) Temperature variation of the magnetic
susceptibility (FC-ZFC) under the field value of 10 mT. The in-
set shows the temperature variation of the inverse susceptibility
along with Curie-Weiss fitting (red solid line). (d) Isothermal
magnetization data for selected temperatures close to TC .

to 2.9650(3) Å which is significantly larger than the sum
of the metallic radii for CN 12 of 3.08 Å.

Magnetic properties. Figure 1(c) presents the temper-
ature variation of the magnetic susceptibility in the ZFC
and FC protocol for 10mT applied field. The magnetic
susceptibility showed typical temperature behaviour for a
ferromagnetic materials and the Curie temperature is ob-
served to be 94.1K. Below TC the susceptibility showed a
divergent behaviour between FC and ZFC measurements
which may indicate the presence of a uniaxial magnetic
anisotropy and short-range magnetic ordering. The in-
set of fig. 1(c) shows the temperature variation of the in-
verse susceptibility along with Curie-Weiss linear fit. From
the analysis, the effective magnetic moment (μeff) and the
Curie-Weiss temperature (θP ) are estimated to be 8.20(4)
μB and 99.6(7)K, respectively. The estimated effective
moment is larger than the free-ion value expected for a
Gd3+ ion (g

√
J(J + 1) = 7.94μB). This excess effective

moment could be attributed to the formation of a polar-
ization cloud of the conduction electron. By assuming
a local Gd moment and μeff

2 = μCu
2+μGd

2, the excess
magnetic moment can be estimated as 1.9μB which is close
to the spin-only moment of a Cu2+ ion. Figure 1(d) shows
a set of magnetic isotherms collected in the temperature
range between 60 and 120K with 5K intervals. The field
dependence of magnetization showed a typical sigmoid be-
haviour expected for ferromagnetic materials. The satu-
ration magnetization at 2K was observed to be 7.13μB
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and the value is slightly larger than the expected value for
trivalent Gd (gJ = 7μB).

Magnetocaloric properties. In the literature, the
magnetocaloric effect is characterized by the isothermal
magnetic entropy change ΔSm and the adiabatic temper-
ature change ΔSm in the presence of an external magnetic
field. ΔSm can be estimated by the following Maxwell
relation [1,2]:

ΔSm(T,H) =

Hf∫
Hi

(
δM

δT

)
H

dH ′. (1)

The temperature variation of the magnetic entropy
change (−ΔSm) shows positive values with single-peak
behaviour (fig. 2(a)). The maximum entropy change for
the 7T field was 13.8 J/kg · K and even for 5T the sys-
tem exhibits a large ΔSm value of 11.4 J/kg · K. Among
R2Cu2X (R = Tm, Er, Dy, Ho and Gd; X = In and Cd)
compounds, Dy, Ho and Er based systems showed larger
MCE compared to Gd based sample due to multiple tran-
sitions (see table 1). The field dependence of the magnetic
entropy change follows a power law relation

(ΔSpk
m )T=Tc = Hn, (2)

where n is the local exponent [23]. With mean-field ap-
proximation, the “n” value is estimated to be 0.66 and for
other models the local exponent shows a significant devi-
ation from 2/3. The local exponent (n) can be estimated
by fitting the ln(ΔSpk

m )T=Tc vs. lnH data and from the
fitting we observed the “n” value to be 0.60(2). The devi-
ation from 2/3 may indicate that the system belongs to a
different universality class (fig. 2(c)).

The adiabatic temperature change (ΔTad) is estimated
using the following relation [2];

ΔTad(T,H) = − TΔSM

CP (T,H)
. (3)

The temperature variation of ΔTad resembles the tempera-
ture variation of ΔSm till 3 T field. However, we observed
the ΔTad deviates from a smooth peak function for the
higher field (fig. 2(b)). Our estimate gives a lower bound
value of ΔTad which is an important parameter and not
estimated in the iso-structural compounds [10,12,14].

Recently, Franco et al. have proposed a universal scal-
ing for the magnetocaloric effect to distinguish the first-
and the second-order phase transitions [24]. According to
this model, the normalized entropy change ΔSM/ΔSmax

M

(where ΔSmax
M is the maximum entropy change) against

scaled temperature (θ) merges into a single curve for any
second-order phase transition and disperses into branches
in the case of a first-order transition [24,25]. Universal
scaling is done by rescaling the temperature axis with two
reference temperatures viz. Tr1 and Tr2,

θ =

{
−(T − TC)/(Tr1 − TC), T < TC ,

(T − TC)/(Tr2 − TC), T > TC .
(4)

Fig. 2: (Colour online) Temperature variation of the magnetic
entropy change −ΔSm (a) and adiabatic temperature ΔTad

(b) estimated using Maxwell’s relations. (c) ln(ΔSpk
m )T=Tc vs.

ln H plot along with the linear fit (solid red line). (d) Normal-
ized entropy change (ΔSM/ΔSmax

M ) as a function of the scaled
temperature (θ) for a selected applied field.

The reference temperatures are chosen for each field in
such a way that

ΔSm(Tr1)/ΔSmax
m =

ΔSM (Tr2)/ΔSmax
m = h (0 < h < 1). (5)

Figure 2(d) shows the normalized entropy change with re-
spect to the scaled temperature constructed by assuming
h = 0.5. The normalized entropy collapsed into a single
curve for the entire temperature range as expected for a
second-order phase transition (see fig. 2(d)).

The relative cooling power (RCP ) is defined as the
amount of heat transfer between the hot and the cold
reservoirs in an ideal refrigeration cycle. The RCP is
mathematically expressed as follows:

RCP = ΔSmax
m × δTFWHM , (6)

where δTFWHM is the full width at half-maximum of ΔSM

vs. T curve. In the present investigation, the RCP values
for the 0–5T and 0–7T applied field were 225 J/kg and
360 J/kg, respectively (see table 1).

Critical behaviour and scaling analysis. Figure 3(a)
shows the conventional Arrott plot for the compound
Gd2Cu2In constructed by plotting μ0H/M against M2.
The Arrott plot assumes mean-field behaviour with β =
0.5 and γ = 1. For the right choice of the critical ex-
ponents, it is expected that the high-field magnetization
should show a set of parallel lines near TC . Further, the
critical isotherm at T = TC should pass through the ori-
gin. From fig. 3(a) it is clear that the magnetic isotherms
show a quasi-linear behaviour and the critical isotherm
does not pass through the origin. Hence, mean-field ex-
ponents might not be suitable to describe the phase tran-
sition in Gd2Cu2In. We employed a modified Arrott plot
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Table 1: Ordering temperature, magnetic entropy change,
adiabatic temperature change, relative cooling power for
Gd2Cu2In are compared with some selected R2Cu2X
compounds.

Compound Transition ΔSmax
M RCP

K (J/kg·K) (J/kg)
Dy2Cu2In [15] 49.5 13.3 409
Ho2Cu2In [14] 30 23.6 416
Ho2Au2In [14] 21 15.1 229
Dy2Cu2Cd [10] 48 13.8 381
Er2Cu2Cd [12] 36 15.4 336
Gd2Cu2Cd [12] 120 7.8 314
Gd2Cu2In∗ 94 11.4 225

∗Present study.

technique to estimate the correct set of critical exponents.
According to the Arrott-Noakes theorem, the magnetiza-
tion (order parameter) can be written as

(μ0H/M)1/γ = a

(
T − TC

T

)
+ bM1/β , (7)

where a and b are constants; β and γ are critical expo-
nents. The spontaneous magnetization (MS(T )), initial
susceptibility (χ−1

0 (T )) and critical isotherms are char-
acterized by a set of three critical exponents viz. β, γ
and δ, respectively. These exponents are strongly inter-
related and depend only upon the lattice dimension (d)
and spin dimensionality (ns). The spontaneous magneti-
zation and initial susceptibility can be expressed as power
law equations [26],

Ms(T ) = M0(−ε)β , ε < 0, T < TC , (8)
χ−1

0 (T ) = (h0/M0)εγ , ε > 0, T > TC , (9)

M = DH1/δ, ε = 0, T = TC , (10)

where ε = (T − TC/TC) is the reduced temperature; M0,
h0, m0 and D are known as critical amplitudes. Further,
in the critical region, the magnetic equation of state can
be written as follows:

M(H, ε) = εβf±(H/εβ+γ), (11)

where f− and f+ are regular analytic functions corre-
sponding to below and above TC .

The magnetization (M) and the field (H) can be renor-
malized in such a way that the m ≡ ε−βM(H, ε) vs.
h ≡ ε−β+γH plot collapses into two branches below and
above TC . Branching of renormalized magnetic isotherms
validates the estimation of critical exponents and of the
universality class. Initially, a modified Arrott plot is con-
structed using eq. (7) and a set of β and γ values. The
spontaneous magnetization and initial susceptibility are
estimated by linear extrapolation of high field data to
M1/β and (H/M)1/γ , respectively. The MS(T ) vs. T and

Fig. 3: (Colour online) (a) Conventional Arrott plot isotherms
(μ0H/M vs. M2) for selected temperatures. (b) and (c): modi-
fied Arrott plots ((μ0H/M)1/γ vs. M1/β) using the theoretical
exponents corresponding to 3D Ising (b) and Heisenberg (c)
models. (d) Critical isotherms are shown in logarithmic scale.
The green line represents a linear fit.

χ−1
0 (T ) vs. T data are fitted with eqs. (8) and (9) to

obtain a new set of β and γ values. This procedure is
repeated until the critical exponents converge to stable
values. We have followed a similar procedure to estimate
β and γ, however, the initial values and the universality
class are guessed in order to avoid many cycles of con-
structing MAPs. Figure 3(a)–(c) shows both conventional
and modified Arrott plots for mean-field, 3D Ising and
3D Heisenberg models using the theoretical exponent val-
ues (see table 2). It is clear from the plots that the 3D
Ising and 3D Heisenberg models may be suitable for this
system as the high field data exhibiting a set of parallel
lines (fig. 3(b) and (c)). In order to further narrow down
the possible values, we have computed the relative slope
RS ≡ S(T )/S(TC) for the full temperature range (where
(S(T ) and (S(TC)) are slopes of the magnetic isotherms
corresponding to the temperatures T and T = TC)). The
relative slope value is expected to be 1 for the most suit-
able critical behaviour. In the present investigation the
RS change for the 3D Ising exponents showed a 22% devia-
tion, whereas the mean-field and 3D Heisenberg exponents
show more than 30% deviation from the expected values.
Hence, we believe that the system could be renormalized
into the 3D Ising universal class. The local exponent “n”
is related to the critical exponents through the following
relation [27]:

n = 1 +
β − 1
β + γ

, (12)

using Widom’s scaling (δ = 1 + γ/β), expression (12) can
be re-written as

n = 1 +
1
δ

(
1 − 1

β

)
. (13)
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Table 2: The critical exponents (β, γ, δ and α) estimated
from the modified Arrott plot technique (MAP), Kouvel-Fisher
method (KF), critical isotherm (CI) and heat capacity expo-
nent are compared with the theoretical critical exponents.

Technique β γ δ α A+/A−

MAP 0.312(2) 1.080(5)
KF 0.331(8) 1.034(6)
CI 3.711(2)
CP 0.11(1) 0.49(2)

Theory
Mean field 0.5 1.0 3.0 0 –
3D Ising 0.325 1.24 4.8 0.11 0.524

Heisenberg 0.365 1.386 4.82 −0.115 1.521

Figure 3(d) shows the critical isotherms along with a
linear fit for 92K and 94K. The δ values were estimated
to be 3.56(4) and 3.711(2) for 92K and 94K, respectively.
Using the n and δ values we derived the initial values of β
and γ to construct the modified Arrott plots. Figure 4(a)
shows the temperature variation of spontaneous magneti-
zation and initial susceptibility along with the non-linear
fit using the expressions (8) and (9). From the final fitting,
the estimated values are β = 0.312(2); TC = 92.97(4)
T < TC and γ = 1.08(5) TC = 93.3T > TC . The
β value is close to the 3D Ising value, whereas the γ
value signifies a mean-field–type behaviour. According
to the Kouvel-Fisher method, the power law behaviour
of the magnetization (eq. (8)) and initial susceptibility
(eq. (9)) can be deduced to a simple linear function by
dividing the respective first-order derivatives. Hence,
the functions MS(dMS/dT )−1 and χ−1(dχ−1/dT )−1

follow a linear relation against temperature with slope
1/β and 1/γ. Figure 4(c) shows a MS(dMS/dT )−1 and
χ−1(dχ−1/dT )−1 vs. T plot along with the linear fitting.
The estimated exponents are β = 0.331(8); TC = 93.33(5)
T < TC and γ = 1.034(6) TC = 93.54(1) T > TC .
According to the scaling hypothesis, the reliability of the
obtained critical exponents can be verified by the univer-
sal scaling of the magnetization curves. Using the critical
exponents observed from the KF method, we constructed
m ≡ ε−βM(H, ε) vs. h ≡ ε−β+γH plot (see fig. 4(d)).
It can be seen that all the isotherms collapse into two
different branches below and above TC . Branching of the
magnetic isotherms indicates that the computed values
are reliable and obey the universal scaling.

The fourth critical exponent α can be estimated from
the heat capacity measurements. Since α can be esti-
mated from the zero-field heat capacity, the uncertainty
due to the demagnetization field/residual field presence in
the magnetization measurements can be avoided. For an-
tiferromagnetic systems, α is a useful parameter because
magnetization need not be considered as the order param-
eter. Zero-field CP data near the transition temperature
is fitted to the following relation:

CP = B + Cε + A±|ε|−α(1 + E±|ε|0.5) (14)

Fig. 4: (Colour online) (a) Temperature variation of sponta-
neous magnetization and initial susceptibility along with non-
linear fit using the expressions (8) and (9). (b) Experimental
(black circles) and fitted curves (red line) of the specific heat
as a function of the reduced temperature in the vicinity of TC

using eq. (14). (c) Kouvel-Fisher plot for the spontaneous mag-
netization and initial susceptibility (solid red lines represent the
linear fit). (d) Scaling plots of Mε−β vs. Hε−(β+γ) below and
above TC using the estimated critical exponents (β = 0.331
and γ = 1.034).

where ε is the reduced temperature; A±, B, C and E± are
adjustable parameters. The relevant information about
the critical behaviour of the heat capacity and fitting pro-
cedures can be found in refs. [28,29]. Figure 4(b) shows the
temperature variation of the heat capacity along with the
non-linear fit using the expression (14). From the fitting
the estimated values are α+ = 0.10(1), α− = 0.11(1) and
A+/A− = 0.49(5). The estimated critical exponents along
with the theoretical values are summarized in table 2. The
critical exponent (α) and the ratio value A+/A− point
towards 3D Ising behaviour both below and above TC

as opposed to the magnetization studies where the es-
timation indicated a crossover behaviour from 3D Ising
to mean-field behaviour across the transition. Crossover
behaviour is often observed in many hole-doped RMnO3

(R = Lanthanide) manganites. Kim et al. have ob-
served in the La0.75Sr0.25MnO3 sample that the critical
exponents lie between 3D Ising model values and mean-
field values [19]. Critical behaviour of CrSiTe3 showed a
2D Ising-type critical behaviour coupled with long-range
spin interactions [30]. Recently, Dey et al. have ob-
served through magneto-thermal measurements that the
system MnCr2O4 possesses critical exponents which lie
between 3D Heisenberg and mean-field behaviour [31].
It is important to understand the crossover behaviour in
terms of length and temperature scales. The correlation
length ξ = ξ0|ε|−υ, where υ is the correlation length ex-
ponent, can be roughly estimated by using the relation
υ = (2 − α)/d [19]; by assuming typical values for ξ0 to
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be 5–10 Å we estimated the correlation length to be 51 Å
up to 102 Å for ε ≈ 0.025. This indicates that the correla-
tion length is either comparable or much higher than the
typical grain size of a polycrystalline materials. Hence,
the critical fluctuations is more dominant than the mean-
field behaviour in the temperature range |ε| ≤ 0.025. Our
CP analysis is within this regime of uncertainty hence the
non-linear fitting of the CP (T ≈ TC) yields 3D Ising crit-
ical exponents both below and above TC . The estimation
from the magnetization studies is done with temperature
interval |ε| ≤ 0.20 which captures both 3D Ising and the
crossover behaviours. Finally, the extended type of inter-
action can be represented by J(r) ≈ r−(d+σ), where r is
the distance and σ is the range of interaction [16]. For
a homogeneous magnet, the susceptibility exponent γ can
be expressed by the following relation [32,33]:

γ = 1 +
4
d

(
nS + 2
nS + 8

)
Δσ +

8(nS + 2)(nS − 4)
d2(nS + 8)2

×
(

2G(d/2)(7nS + 20)
(nS − 4)(nS + 8)

)
Δσ2, (15)

where Δσ = σ− d
2 ; G(d/2) = 3− 1

4 (d
2 )2. In the literature,

it is customary to solve this equation counterintuitively
by choosing a correct set of parameters (d, nS) in order
to find the close γ value for the system. In our case since
d = 3 and γ ≈ 1, we believe that the trivial solution for
eq. (15) would be Δσ = 0 and this leads to γ = 1. This
assumption is not completely unphysical because σ = 1.5
signifies mean-field behaviour with long-range interaction,
whereas σ ≈ 2 implies a short-range ordering [16,30,33].
The critical exponents are inter-connected by the following
relations [30]: υ = γ/σ; α = 2 − υd; β = (2 − α − γ)/2;
δ = 1+γ/β. By using the α and γ values, σ was estimated
to be 1.6 which leads to spin interactions J(r) decaying as
r−4.587 is expected for long-range interactions.

Summary and conclusions. – In conclusion, we ob-
served a large magnetocaloric effect in Gd2Cu2In and
presented a detailed critical behaviour analysis of the
magnetic transition. The isothermal magnetic entropy
change (ΔSm) was observed to be 11.4 J/kg · K and
13.8 J/kg · K for 5T and 7T, respectively. The system
shows a moderate adiabatic temperature change (ΔTad) of
6.5K for 7T applied field. The PM-FM phase transition
is observed to be second order in nature. Four critical
exponents (β, γ, δ and α) were estimated using vari-
ous methods viz., MAP, KF, critical isotherm and non-
linear CP fit. The analysis shows that the exponents
belong to 3D Ising behaviour coupled with a long-range
interaction. The spontaneous magnetization exponent
(β) and heat capacity exponent α values are close to
the 3D Ising values, whereas other two exponents in-
dicate a long-range or mean-field–type behaviour. The
heat capacity exponent α was estimated using the rela-
tion CP = B + Cε + A±|ε|−α(1 + E±|ε|0.5) in the tem-
perature range |ε| ≤ 0.025 and the value was observed

to be 0.11(2). Finally, the extended range of interaction
J(r) decays as r−4.587 supports the presence of long-range
magnetic ordering.
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Bordeŕıas M., Herrero-Albillos J. and Franco V.,
J. Appl. Phys., 107 (2010) 09E131.

[26] Fisher M. E., Rep. Prog. Phys., 30 (1967) 615.
[27] Franco V., Blázquez J. S. and Conde A., Appl. Phys.

Lett., 89 (2006) 222512.
[28] Oleaga A., Salazar A., Thamizhavel A. and Dhar

S. K., J. Alloys Compd., 617 (2014) 534.

[29] Oleaga A. A., Salazar M., Ciomaga Hatnean

and Geetha Balakrishnan, Phys. Rev. B, 92 (2015)
024409.

[30] Liu B., Zou Y., Zhang L., Zhou S., Wang Z., Wang

W., Qu Z. and Zhang Y., Sci. Rep., 6 (2016) 33873.
[31] Dey K., Indra A., Majumdar S. and Giri S., J. Magn.

& Magn. Mater., 435 (2017) 15.
[32] Fisher M. E., Rev. Mod. Phys., 46 (1974) 597.
[33] Nair S., Banerjee A., Narlikar A. V., Prab-

hakaran D. and Boothroyd A. T., Phys. Rev. B, 68
(2003) 132404.

17003-p7


