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Abstract – Edge states of nontrivial topology are investigated by diagonalizing the tight-binding
Hubbard model Hamiltonian for the copper-oxide superconductor YBCO strip in the presence
of the Rashba spin-orbit interaction and the Zeeman field. It is found that chiral edge states
may develop under appropriate spin-orbit coupling and the exchange field strengths. By defining
the quasi-particle creation (annihilation) operators in terms of the obtained particle and hole
functions, the zero-energy chiral edge states are proved to be the Majorana zero-energy modes
on the opposite edges of the superconductor strip. Manipulations on the Majorana modes are
promising by applying an external magnetic field normal to the strip plane. It is also showed that
the chiral edge state and the Majorana fermions are more feasible in the underdoped samples.
Moreover, domains distinguishing the d-wave pairings from the s-wave pairings are found, implying
the coexistence of the d-wave and s-wave gaps for the underdoped YBCO samples.

Copyright c© EPLA, 2018

Introduction. – Topological superconductors asso-
ciated with Majorana fermions have attracted great
interest [1,2]. Majorana fermions are particles that are
equivalent to their antiparticles [3], which are non-Abelian
and have a potential to construct the qubits and for quan-
tum computations [4,5]. A variety of systems have been
studied to realize the non-Abelian topological phase, such
as the fractional quantum Hall system [6–9], the chiral
p-wave superconductors [10–14] and fermionic cold-atom
systems [15–17]. States of matter with exotic properties
are expected when interactions having a different symme-
try with respect to that of Hamiltonian systems had been
invoked. For instance, the p-wave pairing state may de-
velop when a Rashba spin-orbit coupling is involved into
the Hamiltonian mode of an s-wave superconductor [18].

Since the discovery of copper-oxide high-temperature
superconductors (HTS) in 1986 [19], extensive efforts have
been attracted. Despite the origin of high-Tc superconduc-
tivity remains unsolved, the pairing symmetry is generally
considered to be a d-wave pairing in HTS [20]. As well
known, properties of quasi-particles are closely correlated
with the bulk topology of the pairing states and the

(a)E-mail: spzhou@shu.edu.cn (corresponding author)

topology of the Fermi surface in a superconductor. The
copper-oxide superconductors are perovskite compounds
whose superconductivity and Fermi surface vary drasti-
cally with the electron or hole-doping level. For instance,
the ground state of the normal phase goes from a strongly
antiferromagnetic (AFM) phase at an extremely under-
doping level to the pseudo-gap region at underdoping, to
the so-called marginal Fermi liquid at around the optimum
doping, and to a normal Fermi liquid at the overdoped re-
gion in the hole-doped Y Ba2Cu3O7−δ superconductor.
Then, when the superconducting phase develops as the
temperature is below the superconducting critical temper-
ature Tc, competitions between different orderings, e.g.,
the d-wave pairings and antiferromagnetic ordering, will
give rise to an intrinsic mechanism that would lead to con-
versions between states with different parity (P ) symme-
try possibly. Actually, the degeneracy at the gap-closing
points of a d-wave superconductor can be lifted by an ex-
change field, h ∗ σ (with σ the Pauli matrix and h the
exchange field strength). Consequently, Fermi wavelength
mismatching between electrons with opposite spins occurs,
allowing the coexistence of spin-singlet and spin-triplet
pairing amplitudes. Furthermore, states with nontrivial
topology are expected when the Rashba spin-orbit cou-
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pling that violates the spin-rotation symmetry is included.
In this paper, we study the properties of the ground

state in the mesoscopic d-wave HTS in the presence of
the exchange field and the spin-orbit coupling, illustrat-
ing that the zero-energy chiral edge mode is the Majorana
bound state (MBS). We will start with the model descrip-
tion, move to the discussion and clarification on the self-
consistent solutions for the model, and finish with a brief
conclusion.

Model. – We consider an infinitely long YBCO super-
conducting strip in the y-direction, and with a finite width
in the x-direction. The effective mean field Hamiltonian
of the Hubbard model in the presence of the Rashba spin-
orbit (SO) interaction and exchange field can be written as

Ĥ = Ĥ0 + Ĥso, (1)

Ĥ0 = −
∑
〈ij〉,σ

tijc
†
iσcjσ +

∑
i,σ

(Uniσ̄ − μ)c†iσciσ

−h
∑

i

(c†i↑ci↑ − c†i↓ci↓) +
∑
〈ij〉

(Δijc
†
i↑c

†
j↓ + H.c.), (2)

Ĥso = Vso

∑
i

[(c†i↑ci+�ex↓ − c†i↓ci+�ex↑)

− i(c†i↑ci+�ey↓ + c†i↓ci+�ey↑) + H.c.], (3)

where U is the on-site repulsion interaction and V is the
nearest-neighbor attractive interaction. c†iσ(ciσ) is the cre-
ation (annihilation) operator for the electron with position
i and spin σ, n is the particle number operator, μ is the
chemical potential and h is the exchange field strength.
The nearest-neighbor hopping integrals are expressed as
tij = t̄ · exp[iπ/φ0

∫ ri

rj

�A(r) · d�r]. Here, φ0 = hc/2e is the

flux quantum. Vso is the SO coupling amplitude. �A(r) is
the vector potential with the form of �A = (B/2)(−y, x, 0)
with B the applied magnetic field strength.

The Bogoliubov-de Gennes (BdG) equation in real space
is [21]

N∑
j

⎛
⎜⎜⎜⎜⎝

Hij↑ − h V so
1 0 Δij

V so
2 Hij↓ + h Δij 0
0 Δ∗

ij −H∗
ij↑ + h V so

3

Δ∗
ij 0 V so

4 −H∗
ij↓ − h

⎞
⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝

un
j↑

un
j↓

vn
j↑

vn
j↓

⎞
⎟⎟⎟⎟⎠ = εn

⎛
⎜⎜⎜⎝

un
i↑

un
i↓

vn
i↑

vn
i↓

⎞
⎟⎟⎟⎠ . (4)

By making use of the translation symmetry, we perform
the Fourier transformation of the electron operator with

respect to the variable y. The BdG equation (4) becomes

N∑
j

⎛
⎜⎜⎜⎜⎝

Hij↑ − h V so
1 (ky) 0 Δij

V so
2 (−ky) Hij↓ + h Δij 0

0 Δ∗
ij −H∗

ij↑ + h V so
3 (−ky)

Δ∗
ij 0 V so

4 (ky) −H∗
ij↓ − h

⎞
⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝

un
j↑(ky)

un
j↓(−ky)

vn
j↑(−ky)
vn

j↓(ky)

⎞
⎟⎟⎟⎟⎠ = εn

⎛
⎜⎜⎜⎝

un
i↑(ky)

un
i↓(−ky)

vn
i↑(−ky)
vn

i↓(ky)

⎞
⎟⎟⎟⎠ . (5)

Here Hijσ = −(1− δij)t⊥ij +(Uniσ̄ −μ− 2t
‖
i cos(ky))δij ,

Δij = (1 − δij)Δ⊥
ij + 2 cos(ky)δijΔ

‖
ij , V so

1 = V so
3 =

Vso(δi+1,j − δi−1,j − 2 sin(ky)δij), V so
2 = V so

4 =
Vso(−δi+1,j + δi−1,j + 2 sin(ky)δij),

The self-consistent conditions are

〈ni↑〉 =
1

Ny

∑
n,ky

f(εn(ky))|un
i↑(ky)|2

+ (1 − f(εn(ky)))|vn
i↑(ky)|2, (6)

〈ni↓〉 =
1

Ny

∑
n,ky

f(εn(ky))|un
i↓(ky)|2

+ (1 − f(εn(ky)))|vn
i↓(ky)|2, (7)

Δ⊥
ij =

1
Ny

∑
n,ky

V

4

[
(un

i↑(ky)vn∗
j↓ (ky) + un

j↓(ky)vn∗
i↑ (ky)

+un
i↓(ky)vn∗

j↑ (ky)+un
j↑(ky)vn∗

i↓ (ky)) tanh
(

βεn

2

)]
,

(8)

Δ‖
ij =

1
Ny

∑
n,ky

V

2
cos(ky)

[
(un

i↑(ky)vn∗
i↓ (ky)

+un
i↓(ky)vn∗

i↑ (ky)) tanh
(

βεn

2

)]
. (9)

In our calculations, we take t = a = 1, and the self-
consistent iteration continues until the difference in n and
Δ between two consecutive iterations is less than 10−6.

The MBSs in the chiral edge states. – We first
study properties of the edge state in the absence of the ex-
ternal magnetic field by solving the BdG equation in the
K-space. We discuss the effect of the exchange field on
the excitation spectrum. The obtained excitation spectra
are shown in fig. 1. Look at eq. (5), the up- and down-spin
bands are degenerate when the exchange field strength h
is zero. As shown in the left panel for h = 0, the degener-
acy at the gap-closing points of the d-wave superconductor
is protected by the parity symmetry, and the edge state
is trivial. However, the energy spectrum changes signifi-
cantly when an appropriate exchange field presents, e.g.
the middle panel in fig. 1 for h = 0.55. The degeneracy at
preexisting gap-closing points for h = 0 is lifted, yielding
a fully gaped energy spectrum. Noticeably, a pair of new
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Fig. 1: (Color online) Energy spectra of the YBCO supercon-
ductor strip. Open boundary conditions in the x-direction and
translation symmetry in the y-direction are assumed. The pa-
rameters used are Nx = 80, Ny = 201, U = 3, V = 3, Vso = 1,
and n̄ = 0.896, but h = 0 (left panel) and h = 0.55 (mid-
dle panel). Right panel: the relative LDOS between up- and
down-spin band. Inset: the schematic diagram of the chiral
edge states.

edge states with a zero-energy crossing at k = 0 develops.
The significance of the new zero-energy states lies in that
they are stable against perturbations and are topologi-
cally protected, in contrast to the zero-energy modes for
h = 0. There do exist gap nodes in our single-band (com-
ponent) spin-singlet d-wave superconductor (left panel of
fig. 1), and a V-shape local density of state spectrum is
followed. Also, the gap closing is expected to occur at
a vortex core, or strictly, the lowest core state has the
energy scale Δ2/EF . However, the associated zero state
is topologically trivial, particularly in that the relative
phase between the quasi-particle and hole wave functions
of those zero states does not have the relationship required
for the Majorana zero-energy modes (see fig. 2 and discus-
sions below). Actually, chiral edge states and a nonzero
topological index are possible only when the Zeeman field
and the Rashba spin-orbit coupling are introduced in the
current case (middle panel of fig. 1). The relative local
DOS between the up- and down-spin band is plotted in
the right panel of fig. 1. It is seen that the zero-energy
mode consists of a pair of chiral edge states. Namely, the
up-spin electrons move along one direction and the down-
spin electrons move in the opposite direction if an in-plane
electric field is applied onto the sample. Therefore, while
the electronic conductance is negligible a quantum spin-
Hall current is expected. As shown in the middle and right
panels (fig. 1) of our paper, chiral edge states are gener-
ated in the presence of an appropriated Zeeman field and
Rashba spin-orbit interaction. The chiral edge states have
the dispersion relations of dE(k)/dky > 0 (< 0) for the
up (down)-electrons which implies that the up-spin elec-
trons will move along the y-axis, while the down-spin ones
move in the opposite direction at each of the strip bor-
ders. The equal amplitude but opposite direction electron
flow in the opposite spin-band will lead to zero electric
current jc = ji↑ + ji↓ when an electric field of y-direction
is applied. On the contrary, a spin current if defined by
js = ji↑ − ji↓ is expected.

We emphasize that the characteristics of the zero-energy
state depend strongly on the fermion parity or the lowest-
energy state parity at the zero-energy crossing. There is a
common consensus that the fermion parity is conserved in
a closed superconductive system despite that the number

Fig. 2: (Color online) The phase difference between the particle
and hole wave functions uσ(r) and vσ(r). (a) The up-spin band.
(b) the down-spin band. The parameters are the same as in
fig. 1, except that the periodic length of Ny = 20 is assumed.

of Cooper pairs may change. However, if fermions can
create or destroy when the external parameter is tuned a
situation may occur where the ground-state parity changes
while crossing at zero energy. In this case on one side of the
crossing the lowest-energy state has the even parity and
on the other the odd parity state has the lowest energy.
Therefore, one expects a sign reversing in the slope of the
highest occupied bound state at the crossing. This means
a reversing of the current and leads to a spin current jump,
signaling a topological phase transition.

To clarify the zero-energy chiral edge state being the
Majorana mode, we write down the Bogoliubov quasi-
particle creation/annihilation operator (γ†

n/γn) as

γ†
n =

∑
i

(un
i↑c

n†
i↑ − vn

i↓c
−n
i↓ ) + (un

i↓c
n†
i↓ + vn

i↑c
−n
i↑ ), (10)

γn =
∑

i

(un∗
i↑ cn

i↑ − vn∗
i↓ c−n†

i↓ ) + (un∗
i↓ cn

i↓ + vn∗
i↑ c−n†

i↑ ). (11)

Here the index n (−n) represents the energy εn (−εn) of
an eigenstate for the BdG equation (4). By making use
of the partical-hole symmetry property, un

i↑ = v−n∗
i↑ and

un
i↓ = −v−n∗

i↓ , we can get

γn =
∑

i

(v−n
i↑ cn

i↑+u−n
i↓ c−n†

i↓ )+(−v−n
i↓ cn

i↓+u−n
i↑ c−n†

i↑ ) = γ†
−n.

(12)
The last expression indicates that the quasi-particle cre-
ating operator would behave as an annihilation operator
if acting on the zero-energy state, satisfying the Majorana
condition. It is therefore concluded that the Majorana
fermions are readily fabricated/constructed with the zero-
energy chiral edge modes.

One more point we would stress is that Majorana
fermions have to appear in pair nonlocally. In the present
case, Majorana zero-energy modes may develop at the
opposite edges of the YBCO strip. It is accessible as
the electron and hole wave functions associating with the
lowest-energy state have an identical phase factor on one
edge and a reverse phase factor at the opposite edge of the
superconductor strip, as shown in fig. 2.

We take the lowest state as the zero-energy state
and denote the eigenvector as a = [un

i↑, u
n
i↓, v

n
i↑, v

n
i↓].

According to the partical-hole symmetry, the vector
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Fig. 3: (Color online) The superconductor order parameter dis-
tribution in a magnetic unit cell with two superconductive flux-
ons. Top panel: the d-wave superconductor order parameter,
evaluated as Δd = (ΔA

i+�ex,i + ΔA
i−�ex,i − ΔA

i,i+�ey
− ΔA

i,i−�ey
)/4,

with ΔA
ij = Δij exp[i(π/φ0)

R (�ri+�rj)/2

�ri

�A(r) · d�r]. The inset

shows the s-wave order parameter [Δs = (ΔA
i+�ex,i + ΔA

i−�ex,i +

ΔA
i,i+�ey

+ΔA
i,i−�ey

)/4] as a function of x on the line y = 0 cross-
ing the vortex cores. The spatial distribution of uσ(x) (thick
line) and vσ(x) (thin line) along y = 0 for the up-spin band
(middle panel) and for the down-spin band (bottom panel).

b = [vn∗
i↑ ,−vn∗

i↓ , un∗
i↑ ,−un∗

i↓ ] is also an eigenvector. To guar-
antee the vector base that satisfies the particle-hole sym-
metry, one can construct a vector c given by c =

√
2

2 (a +
b), denoted as [u0

i↑, u
0
i↓, v

0
i↑, v

0
i↓]. Apparently, the elec-

tron (hole) wave function u0
i↑(↓)(v

0
i↑(↓)) has an identi-

cal spatial distribution as that of un
i↑(↓)(v

n
i↑(↓)). The

Majorana fermion creation/annihilation operator may be
constructed as below.

We examine what occurred on the left edge (labeled
as 1). As electron and hole wave functions have opposite
signs, that is, u0

i1↑ = −v0
i1↑(see, fig. 2) the up-spin electron

wave function u0
i1↑ has to a pure imaginary in order to

satisfy the electron-hole symmetry constrain u0
i1↑ = v0∗

i1↑.
For the down-spin band, u0

i1↓ is also a pure imaginary
since u0

i1↓ = v0
i1↓ (see, fig. 2) while u0

i1↓ = −v0∗
i1↓ (the

particle-hole symmetry condition). On the same account,
the electron wave function u0

i2↑ and u0
i2↓ are both real

number on the right edge (labeled as 2). Therefore, the
Bogoliubov quasi-particle operator in eq. (11) becomes
γ1σ = i(c0†

i1σ−c0
i1σ), and γ2σ = (c0†

i2σ+c0
i2σ). Pairs of Majo-

rana zero-energy modes are then generated with the quasi-
particle operators γ1σ and γ2σ acting on [u0

i↑, u
0
i↓, v

0
i↑, v

0
i↓].

The MBSs in the vortices. – In this section, we
showed that the Majorana edge modes may be manip-
ulated with a normal magnetic field. We assume that
a magnetic unit cell has dimension 40a × 20a, where a
is the lattice constant. We discuss the case of two flux
quanta in two magnetic unit cells. We make the open

boundary condition in the x-direction and the periodic
boundary condition in the y-direction. We diagonalize the
model Hamiltonian by solving the BdG equation (4) self-
consistently. Spatial distributions of the order parameters
are shown in fig. 3 for an underdoped (n̄ = 0.896) YBCO
superconductor. Remarkably, strip-like domains have de-
veloped. Close to the sample edges there are the d-wave
dominant domains. Meanwhile, vortex cores locate at the
center of the d-wave domains. In the middle region, how-
ever, an s-wave domain is found. We would point out that
the s-wave domain would shrink to disappear when the
doping level increases to or beyond the optimum doping
region, say, the average electron number density n̄ < 0.85.
These results suggest that an s-wave pairing state may
coexist with the d-wave pairing state for the underdoped
YBCO superconductor. Recent experiments on the under-
doped Bi2Sr2CaCu2O8+δ superconducting film by Zhong
et al. [22] also reported an analogous phenomenon.

Another noticeable phenomenon is that an identical
phase or a π phase difference in the electron and hole
wave functions for the zero-energy chiral edge state re-
mains holding for only at the horizontal axis y = 0 (the line
with the y-direction grid number Ny = 10) that crosses
through the vortex cores. Due to a cylindrical symmetry
of the vortex, the microscopic current has only an angular
component. The relative phase difference in electron and
hole wave functions for the edge states must have an ex-
actly same value as that for the core state with zero energy,
to guarantee no normal current on the edges at y = 0. The
dashed lines intersecting with the horizontal axis marked
the vortex core locations. Spatial variations of uσ(x, 0)
and vσ(x, 0) as a function of the x variable are shown in
the middle and bottom panels in fig. 3. Very interestingly,
while the phases in the electron and hole wave functions
are synchronized for one core state with zero energy it has
a π phase different at another core state. Furthermore,
the wave functions of the zero-energy core state have an
exactly the same spatial distribution as that of the neigh-
boring edge state. Thus, as described in eqs. (11) and (12),
the Majorana particle creation and annihilation operators
can be constructed with those zero-energy modes, for in-
stance, either a pair of the zero-energy core state or one
core state and the remote edge state.

The phase diagram with Vso vs. δ. – As dis-
cussed in previous sections, the spin-orbit coupling and
Zeeman exchange field-induced conversion in the ground-
state parity give a fundamental mechanism for the occur-
rences of the chiral edge state and the MBS. In practical
settings, the exchange field can be included into the model
Hamiltonian by depositing the high-Tc superconducting
film on a magnetic substrate. The Rashba spin-orbit cou-
pling is, however, more subtly, despite that a relatively
strong surface Rashba-type spin-orbit coupling would be
expected [23] by doping ions with different valances on
the metallic Cu-O plane, which leads to the up-down
symmetry violation [24]. Therefore, a discussion on the
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Fig. 4: (Color online) The phase diagram for the hole-doped
YBCO superconductor. The parameters used are T = 0, Nx =
80, Ny = 201, U = 3, V = 3, and h = 0.55.

low-boundary value of the SO coupling that would sup-
port the chiral edge state becomes important. Figure 4
shows the phase diagram. The doping level δ is defined
as δ = 1 − n̄, with n̄ the average electron density. The
dashed line is the phase boundary that separates the chi-
ral edge state phase of nontrivial topology from the phase
of trivial topology. It illustrates how the lowest SO am-
plitude required for the chiral edge state surviving would
increase (exponentially) with the doping level. It would
become unphysical large when the doping level is beyond
the so-called optimum doping δ = 0.15, the overdoped
case. On the other hand, the chiral edge state is ex-
pected in the presence of a reasonable large SO coupling
for the underdoped sample. This is because the topology
of the Fermi surface changes dramatically with the doping
level in copper-oxide high-Tc superconductors. The nor-
mal phase itself is a Fermi liquid for the overdoped sample,
but a non-Fermi liquid for the underdoped samples.

Conclusions. – In conclusion, we have investigated
the chiral edge states and Majorana fermions in the hole-
doped YBCO mesoscopic strip. Coexistences and com-
petitions of different orderings provided fundamental and
intrinsic processes for the state with nontrivial topology
in the system. Spin-orbit coupling and Zeeman field as-
sistant conversions between states with different symme-
try have been discussed. The Majorana zero-energy mode
is predicted, which is most likely to occur in the under-
doped samples. It is worthwhile to mention that there
were no Majorana zero-energy modes in edges or vortex for
a s-wave superconductor in the absence of the spin-orbit
interaction and the Zeeman field. For a p-wave supercon-
ductor, however, there are indeed Majorana zero modes
in a vortex, as studied by several research groups [14,25]
and 1 chiral Majorana-Weyl mode per edge (central charge
c = 1/2). This is related to the Ising anyon [26]. In addi-
tion, for a (d + id)-wave superconductor, the gap-closing
condition does not depend on the amplitude of the pairing
gap. Interestingly, with a weak Zeeman field less than the
gap amplitude, the gap can also close and the topological
phase transition [27] occurs, this will be investigated in
our future work.

∗ ∗ ∗
We are grateful to L.-F. Zhang for fruitful discus-

sions. This work was supported by National Natural Sci-
ence Foundation of China under Grants No. 61571277 and
No. 61771298.

REFERENCES

[1] Hasan M. Z. and Kane C. L., Rev. Mod. Phys., 82
(2010) 3045.

[2] Qi X.-L. and Zhang S.-C., Rev. Mod. Phys., 83 (2011)
1057.

[3] Majorana E., Nuovo Cimento, 14 (1937) 171.
[4] Stern A., Nature (London), 464 (2010) 187.
[5] Nayak C., Simon S. H., Stern A., Freedman M. and

Das Sarma S., Rev. Mod. Phys., 80 (2008) 1083.
[6] Moore G. and Read N., Nucl. Phys. B, 360 (1991) 362.
[7] Read N. and Green D., Phys. Rev. B, 61 (2000) 10267.
[8] Bonderson P., Kitaev A. and Shtengel K., Phys.

Rev. Lett., 96 (2006) 016803.
[9] Clarke D. J., Alicea J. and Shtengel K., Nat. Com-

mun., 4 (2013) 1348.
[10] Ivanov D. A., Phys. Rev. Lett., 86 (2001) 268.
[11] Tewari S., Das Sarma S. and Lee D. H., Phys. Rev.

Lett., 99 (2007) 037001.
[12] Gurarie V. and Radzihovsky L., Phys. Rev. B, 75

(2007) 212509.
[13] Bolech C. J. and Demler E., Phys. Rev. Lett., 98

(2007) 237002.
[14] Lou Y. F., Wen L., Zha G. Q. and Zhou S. P., Sci.

Rep., 7 (2017) 9871.
[15] Tewari S., Das Sarma S., Nayak C., Zhang C. and

Zoller P., Phys. Rev. Lett., 98 (2007) 010506.
[16] Zhang C., Tewari S., Lutchyn R. M. and Das Sarma

S., Phys. Rev. Lett., 101 (2008) 160401.
[17] Jiang L., Kitagawa T., Alicea J., Akhmerov A. R.,

Pekker D., Refael G., Cirac J. I., Demler E., Lukin

M. D. and Zoller P., Phys. Rev. Lett., 106 (2011)
220402.

[18] Sato M., Takahashi Y. and Fujimoto S., Phys. Rev.
Lett., 103 (2009) 020401.

[19] Bednorz J. G. and Mller K. A., Z. Phys. B, 64 (1986)
189.

[20] Tsuei C. C. and Kirtley J. R., Rev. Mod. Phys., 72
(2000) 969.

[21] Meng H., Zhao H. W., Zhang L. f., Shi L. M., Zha

G. Q. and Zhou S. P., EPL, 88 (2009) 17005.
[22] Zhong Y., Wang Y., Han S., Lv Y. F., Wang W.

L., Zhang D., Ding H., Zhang Yi. M., Wang L. L.,

He K., Zhong R. D., Schneeloch J. A., Gu G. D.,

Song C. L., Ma X. C. and Xue Q. K., Sci. Bull., 61
(2016) 1239.

[23] Silsbee R. H., J. Phys.: Condens. Matter, 16 (2004)
R179.

[24] Edelstein V. M., Phys. Rev. Lett., 75 (1995) 2004.
[25] Matsumoto M. and Heeb R., Phys. Rev. B, 65 (2001)

014504.
[26] Putrov P., Wang J. and Yau S.-T., Ann. Phys. (N.Y.),

384 (2017) 254.
[27] Sato M., Takahashi Y. and Fujimoto S., Phys. Rev.

B, 82 (2010) 134521.

17006-p5


