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Abstract – Quantum stationary coherent states with spatial intensities localized on Lissajous
orbits are theoretically explored by taking the inverse Fourier transform of the time-dependent
coherent state. It is analytically verified that the stationary coherent state can be expressed as an
integral of the Gaussian wave packet over the classical periodic orbit. With the derived integral,
the phase singularities of the stationary coherent state can be precisely manifested from low-order
to extremely high-order states. It is found that the phase singularities near the cross-point of the
Lissajous orbits are generally arranged as rhombic vortex arrays. Finally, the stationary coherent
states can be used as a basis to manifest the connection between topological structures of quantum
eigenstates and bundles of classical Lissajous orbits.

Copyright c© EPLA, 2018

Introduction. – It has been proven that the character-
istics of the interference generally cause the wave functions
to contain phase singularities [1]. The phase singularity of
the wave function is usually called the vortex due to the
feature that the probability current density swirls around
the phase singularity [2]. Optical vortex beams have been
broadly explored in a variety of scientific fields including
optical manipulation, quantum information and commu-
nications, quantum entanglement, etc. [3–12]. Inspired by
the development of optical vortex beams, the exploration
of structured quantum waves with vortices becomes an
emerging area of research [13–20]. Over the past decades,
the salient quantum phenomena such as conductance fluc-
tuations in mesoscopic semiconductor billiards [21,22], os-
cillations in photo-detachment cross-sections [23,24], and
shell effects in metallic clusters [25,26] have been widely
confirmed to be relevant to the classical periodic orbits.
Therefore, the wave functions related to periodic orbits
and the topological structure of their phase singularities
deserve to be explored in depth for understanding the
quantum and classical connections as well as the meso-
scopic quantum phenomena.

(a)E-mail: yfchen@cc.nctu.edu.tw

The harmonic oscillator plays a unique linchpin in sci-
entific areas as diverse as mechanics, acoustics, electro-
magnetics, optics, and quantum mechanics [27]. The
two-dimensional (2D) anisotropic harmonic oscillator with
commensurate frequencies ω1/ω2 is a well-known example
of a classical superintegrable system [28]. The periodic or-
bits of the 2D commensurate harmonic oscillator, depend-
ing on ω1/ω2, are known as Bowditch curves or Lissajous
figures which were investigated by Nathaniel Bowditch in
1815 [29], and later in more detail by Jules Antoine Lis-
sajous in 1857 [30] who explored the relative frequencies
of two tuning forks to make a far-reaching discussion of
these curves. On the contrary, the quantum eigenmodes
for different 2D harmonic oscillators are always the same
to be solved as the Hermite-Gaussian (HG) modes with
rectangular symmetry [31], regardless of what the value of
ω1/ω2 happens to be.

Nowadays, the analogy between the paraxial wave equa-
tion for the spherical laser cavity and the Schrödinger
equation for the 2D harmonic oscillator enables the HG
eigenmodes to be experimentally observed from laser
transverse modes [32–35]. In addition to HG modes, we
have systematically generated the high-order transverse
modes with spatial patterns localized on Lissajous curves
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Fig. 1: (Colour online) Experimental observations for Lissajous
modes emitted from a selectively end-pumped solid-state laser
with astigmatism.

from a selectively end-pumped solid-state laser cavity with
astigmatism [36,37], as shown in fig. 1 for some exper-
imental results. Even though the SU(2) coherent state
has been theoretically exploited to reconstruct the exper-
imental laser modes localized on Lissajous curves [36–38],
this representation is a superposition of HG eigenmodes
which cannot manifest the quantum-classical correspon-
dence explicitly. It will be particularly interesting not only
for quantum physics but also for laser physics to establish
a complete relationship between quantum wave functions
and classical periodic orbits in the 2D harmonic oscillator.

In this work, we take the inverse Fourier transform for
the time-dependent coherent state of the 2D harmonic
oscillator to derive the quantum Lissajous modes as an
integral of the Gaussian wave packet over the classical
Lissajous orbit. The derivation clearly reveals that the
accidental degeneracies play an indispensable role in the
formation of quantum wave functions concentrated on
classical periodic orbits. More remarkably, the derived in-
tegral for representing the Lissajous modes can be used to
express the probability current density straightforwardly
without involving the HG eigenmodes. The calculated re-
sults for the probability current density not only confirm
that the streamlines of probability current density along
the classical trajectories coincide with the directions of
classical velocities but also display the swirly feature of
the probability flows around phase singularities. Further-
more, it is intriguingly found that the phase singularities
near each crossing point of the Lissajous orbit generally
exhibit a rhombic array of vortex lattice. Finally, we em-
ploy the quantum Fourier transform to verify that the HG
eigenmode can be decomposed as a summation of gener-
alized Lissajous modes with different phase factors. This
decomposition clearly manifests the relationship between
the topological structures of HG eigenmodes and the clas-
sical periodic orbits.

The integral formula for quantum stationary
coherent states. – For the 2D commensurate harmonic
oscillator, the Schrödinger equation is given by[

− �
2

2μ

(
d2

dx2 +
d2

d y2

)
+

1
2
μ

(
ω2

1x
2 + ω2

2y
2)]ψ(x, y) =

Eψ(x, y), (1)

where μ is the mass of the particle. For the frequency
ratio ω1/ω2 to be a rational number q/p, where q and
p are coprime integers, the characteristic frequencies can

be written as ω1 = qω and ω2 = pω. For isotropic har-
monic oscillator ω1/ω2 = 1, the characteristic frequencies
are given by ω1 = ω2 = ω. In terms of the dimensionless
variables, x̃ =

√
μω1/�x and ỹ =

√
μω2/� y, the eigen-

function can be expressed as the product of two separate
eigenfunctions of 1D harmonic oscillator, i.e.,

ψ(HG)
n1,n2

(x̃, ỹ) = ψn1(x̃)ψn2(ỹ), (2)

where
ψn(ξ) =

1√
2nn !

√
π
Hn(ξ) e−ξ2/2, (3)

and Hn(·) are the Hermite polynomials of order n. The
eigenvalue for ψ(HG)

n1,n2(x̃, ỹ) is given by

ωn1,n2 = En1,n2/� = (n1q + n2p)ω +
(p+ q)

2
ω. (4)

In terms of a complex variable τ , the generating function
for the Hermite polynomials is generally given by [30]

e−τ2+2τ ξ =
∞∑

n=0

τn

n !
Hn(ξ). (5)

Setting τ = u/
√

2 and multiplying the term e−(|u|2+ξ2)/2

on the both sides of eq. (5), after some rearrangement and
in terms of ψn(x̃), the generating function can be used to
express the Gaussian wave packet as

π−1/4 e−(ξ2−2
√

2u ξ+u2+|u|2)/2 =
∞∑

n=0

un

√
n !
e−|u|2/2 ψn(ξ).

(6)
Equation (6) was originally derived by Schrödinger for
manifesting the quantum-classical connection of the 1D
harmonic oscillator. Applying eq. (6) to the 2D harmonic
oscillator, the time-dependent coherent state can be ex-
pressed as

g(x̃, ỹ, u1, u2) =
1√
π
e− (x̃2−2

√
2u1x̃+u2

1+|u1|2)
2 e− (ỹ2−2

√
2u2 ỹ+u2

2+|u2|2)
2

=
∞∑

n1=0

∞∑
n2=0

un1
1√
n1 !

un2
2√
n2 !

e− |u1|2+|u2|2
2 ψ(HG)

n1,n2
(x̃, ỹ), (7)

where u1 =
√
N1e

−i[q(ωt+φ1)], u2 =
√
N2e

−i[p(ωt+φ2)], N1
andN2 are related to the oscillation amplitude, and φ1 and
φ2 are related to the initial position. Clearly, the intensity
|g(x̃, ỹ, u1, u2)|2 represents a Gaussian wave packet with
the central peak to mimic the classical trajectory x̃ =√

2Re(u1) =
√

2N1 cos[q(ωt + φ1)] and ỹ =
√

2Re(u2) =√
2N2 cos[p(ωt+ φ2)].
Since the structure of the classical orbit depends only

on the relative phase between φ1 and φ2, the parameters
u1 and u2 are conveniently expressed as[

u1

u2

]
=

[ √
N1 e

−i[q(θ+φ/2)]

√
N2 e

−i[p(θ−φ/2)]

]
, (8)
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where the variable θ stands for ω t to cover the range
from 0 to 2π for a complete orbit and the phase factor φ
determines the trajectorial structure. Substituting eq. (8)
into eq. (7), the summation terms for the wave packet
g(x̃, ỹ, u1, u2) can be rearranged as

g(x̃, ỹ, u1, u2) =
1√
π
e− (x̃2−2

√
2u 1x̃+u2

1+|u1|2)
2 e− (ỹ2−2

√
2u2 ỹ+u2

2+|u2|2)
2

=
∞∑

n1=0

∞∑
n2=0

N
n1/2
1√
n1 !

N
n2/2
2√
n2 !

e− N1+N2
2 ψ(HG)

n1,n2
(x̃, ỹ)

· e−i(qn1+pn2)θ e−i(qn1−pn2)φ/2. (9)

As seen in eq. (4), the differences of eigenvalues utterly
arise from the term qn1 + pn2. In other words, for a given
(N1, N2) the eigenstates ψ(HG)

n1,n2(x̃, ỹ) satisfying the equa-
tion of qn1 +pn2 = qN1 +pN2 are degenerate. As a conse-
quence, the time-dependent wave packet g(x̃, ỹ, u1, u2) in
eq. (9) can be expressed as the superposition of the sta-
tionary coherent states that have the eigenvalues to cor-
respond to the term qn1 + pn2. The kernel of the inverse
Fourier transform

1
2π

∫ 2π

0
ei(n−n′)θdθ = δn,n′ (10)

can be applied to eq. (9) to derive the stationary coherent
state from the integral

Ψ(q,p)
N1,N2

(x̃, ỹ, φ) =
1
2π

∫ 2π

0
g(x̃, ỹ, u1, u2) ei (qN1+pN2)θdθ.

(11)
It can be simply confirmed that the group of degenerate
eigenstates ψ(HG)

n1,n2(x̃, ỹ) for a given (N1, N2) can be speci-
fied as n1 = N1 − pK and n2 = N2 + qK, where K is an
arbitrary integer. Consequently, the stationary coherent
state in eq. (11) can be derived as

Ψ(q,p)
N1,N2

(x̃, ỹ, φ) =

1
2π

∫ 2π

0

1√
π
e− (x̃2−2

√
2u1x̃+u2

1+|u1|2)
2 e− (ỹ2−2

√
2u2 ỹ+u2

2+|u2|2)
2

· ei (qN1+pN2 )θdθ =
[N1/p]∑

K=−[N2/q]

N
(N1−pK)/2
1√
(N1 − pK) !

N
(N2+qK)/2
2√
(N2 + qK) !

e− N1+N2
2

· e−i(qN1−pN2) φ/2ψ
(HG)
N1−pK,N2+qK(x̃, ỹ) ei K q p φ. (12)

For a given (N1, N2, φ), the total number of the degen-
erate eigenstates ψ(HG)

N1−pK,N2+qK(x̃, ỹ) is given by M =
[N1/p] + [N2/q] + 1. As long as M � 1,the spatial in-
tensities of the stationary coherent states Ψ(q,p)

N1,N2
(x̃, ỹ, φ)

are exactly concentrated on the Lissajous figures. The
summation expression in eq. (12) is exactly the same as
the representation of the SU(2) coherent state [38–43] that
has been used to analyze the quantum wave function cor-
responding to Lissajous figure. Here it is verified that

Fig. 2: (Colour online) Numerical results of the wave patterns
|Ψ(q,p)

N1,N2
(x̃, ỹ, φ)| for six different (q, p) with N1 = 8p, N2 = 7q,

and q p φ = π/2.

the Lissajous mode Ψ(q,p)
N1,N2

(x̃, ỹ, φ) can be expressed as an
integral of the Gaussian wave-packet state over the Lis-
sajous orbit. More remarkably, the integral expression in
eq. (12) not only transparently manifests the quantum-
classical correspondence but also can be straightforwardly
calculated without involving the computation of eigen-
modes ψ(HG)

N1−pK,N2+qK(x̃, ỹ). Figure 2 shows the numer-

ical results of the wave patterns |Ψ(q,p)
N1,N2

(x̃, ỹ, φ)| for six
different (q, p) with N1 = 8p, N2 = 7q, and q p φ = π/2.
The calculated wave patterns can be clearly seen to be
exactly in agreement with Lissajous orbits. On the other
hand, when the indices (N1, N2) are so small that N1 < p
and N2 < q, there are no degenerate eigenstates in the
stationary coherent state Ψ(q,p)

N1,N2
(x̃, ỹ, φ). Under this cir-

cumstance, the stationary coherent state Ψ(q,p)
N1,N2

(x̃, ỹ, φ)

is just the pure single eigenstate ψ(HG)
N1,N2

(x̃, ỹ) and its wave
pattern is independent of the relative phase factor φ.

The probability current density for a wave function
Ψ(x̃, ỹ) is given by

J(x̃, ỹ) =
�

μ
Im [Ψ∗(x̃, ỹ)∇Ψ(x̃, ỹ)] . (13)

For the stationary coherent state Ψ(q,p)
N1,N2

(x̃, ỹ, φ), the in-
tegral form in eq. (11) can be used to obtain

∇Ψ(q,p)
N1,N2

(x̃, ỹ, φ) =

−1
2π

∫ 2π

0
g(x̃, ỹ, u1, u2)

[
ax(x̃−

√
2u1) + ay(ỹ −

√
2u2)

]
· ei (qN1+pN2 )θdθ. (14)

By using eqs. (11) and (14), the probability current density
J(x̃, ỹ) for the stationary coherent state Ψ(q,p)

N1,N2
(x̃, ỹ, φ)

can be straightforwardly calculated without using the
eigenmodes ψ(HG)

N1−pK,N2+qK(x̃, ỹ). Figure 3 shows the nu-
merical results of the probability current density J(x̃, ỹ)
for the stationary coherent state Ψ(q,p)

N1,N2
(x̃, ỹ, φ) displayed

in fig. 2. The streamlines of probability flows along the
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Fig. 3: (Colour online) Numerical results of the probabil-
ity current density J(x̃, ỹ) for the stationary coherent state
Ψ(q,p)

N1,N2
(x̃, ỹ, φ) displayed in fig. 2.

classical trajectories can be seen to consist with the di-
rections of classical velocities. On the contrary, the swirly
feature of the probability current density around the phase
singularity is a distinctly non-classical character of quan-
tum structured wave. The structure of the phase singu-
larities can be manifested by the phase distribution of the
wave function that is given by

Θ(x̃, ỹ) = tan−1

⎧⎨
⎩

Im
[
Ψ(q,p)

N1,N2
(x̃, ỹ, φ)

]
Re

[
Ψ(q,p)

N1,N2
(x̃, ỹ, φ)

]
⎫⎬
⎭ . (15)

The relationship between Θ(x̃, ỹ) and J(x̃, ỹ) is given by

J(x̃, ỹ) =
�

μ
ρ(x̃, ỹ) ∇Θ(x̃, ỹ), (16)

where ρ(x̃, ỹ) = |Ψ(q,p)
N1,N2

(x̃, ỹ, φ)|2. Figure 4 depicts the
numerical results of the phase distribution Θ(x̃, ỹ) for the
probability current density J(x̃, ỹ) shown in fig. 3. Note
that the Lissajous orbit always intersects itself except for
the case (q, p) = (1, 1). From fig. 4, the phase structure
near the crossing point can be seen to display an array
of isolated singularities that are arranged in the rhombic
shape.

Decomposition of eigenmodes based on
stationary coherent states. – The discrete Fourier
transform {F0, F1, · · · , FM−1} of a discrete function

Fig. 4: (Colour online) Numerical results of the phase distribu-
tion Θ(x̃, ỹ) for the probability current density J(x̃, ỹ) shown
in fig. 3.

{f0, f1, · · · , fM−1} and its inverse are given by

Fk =
1
M

M−1∑
m=0

fm e−i2πm k/M , (17)

fm =
M−1∑
k=0

Fk e
i2πm k/M . (18)

The quantum Fourier transform is a discrete Fourier trans-
form upon the quantum state. From eq. (12), it can be
found that the stationary coherent state Ψ(q,p)

N1,N2
(x̃, ỹ, φ)

consists of M = [N1/p] + [N2/q] + 1 degenerate eigen-
modes ψ(HG)

N1−pK,N2+qK(x̃, ỹ) with the weighting coefficient
including the relative phase term ei K q p φ. We can use
the concept of the discrete Fourier transform to divide the
phase factor φ into M different values given by q p φm =
2πm/M with m = 0, 1, · · · ,M − 1. Consequently, the set
{Ψ(q,p)

N1,N2
(x̃, ỹ, φm)} can form a complete basis to repre-

sent the eigenmode ψ(HG)
N1−pK,N2+qK(x̃, ỹ) by means of the

inverse quantum Fourier transform. The inverse Fourier
transform for eq. (12) can be derived as

N
(N1−pK)/2
1√
(N1−pK) !

N
(N2+qK)/2
2√
(N2+qK) !

e− N1+N2
2 ψ

(HG)
N1−pK,N2+qK(x̃, ỹ)=

1
M

M−1∑
m=0

Ψ(q,p)
N1,N2

(x̃, ỹ, φm) e i(qN1−pN2) φm/2e−iKqp φm , (19)
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q p
N N x y qp

q p
N N x y qp

q p
N N x y qp

q p
N N x y qp

q p
N N x y qp

q p
N N x y qp

q p
N N x y qp

q p
N N x y qp

HG
N N x y

Fig. 5: (Colour online) Calculated results for ψ(HG)
N1,N2

(x̃, ỹ) and

Ψ(q,p)
N1,N2

(x̃, ỹ, φm) by using eqs. (12) and (20) for (N1, N2) =
(24, 14) and (q, p) = (4, 5).

where the index K is the integer between K = −[N2/q]
and K = [N1/p]. No matter what the numbers N1 and N2
are, eq. (19) is definitely available for K = 0. Substituting
K = 0 into eq. (19), the eigenmode ψ(HG)

N1,N2
(x̃, ỹ) can be

derived as

ψ
(HG)
N1,N2

(x̃, ỹ) = CN1,N2

1
M

M−1∑
m=0

Ψ(q,p)
N1,N2

(x̃, ỹ, φm)

× e i(qN1−pN2) φm/2, (20)

where

CN1,N2 =

[
N

N1/2
1√
N1 !

N
N2/2
2√
N2 !

e− N1+N2
2

]−1

, (21)

The expression in eq. (20) reveals that the eigenmode
ψ

(HG)
N1,N2

(x̃, ỹ) can be considered as a summation of M

generalized Lissajous modes Ψ(q,p)
N1,N2

(x̃, ỹ, φm), where each
Lissajous mode exactly ono-to-one corresponds to a classi-
cal orbit. Moreover, eq. (20) provides a general expression
for the eigenmode ψ(HG)

N1,N2
(x̃, ỹ) without involving the Her-

mite polynomials. Since the number M is given by
M = [N1/p] + [N2/q] + 1, its value depends (q, p) for
a fixed (N1, N2). In other words, the same eigenmode
ψ

(HG)
N1,N2

(x̃, ỹ) can be decomposed as different Lissajous
modes, depending on (q, p). Considering (N1, N2) =
(24, 14) as an example, the value of M can be found
to be 8 for (q, p) = (4, 5) and 16 for (q, p) = (2, 3).
Figure 5 shows the calculated results for ψ

(HG)
N1,N2

(x̃, ỹ)

and Ψ(q,p)
N1,N2

(x̃, ỹ, φm) by using eqs. (12) and (20) for
(N1, N2) = (24, 14) and (q, p) = (4, 5), where the values for

qp

qp

qp
qp

qp
qp

qp

qp

qp

qp

qp

qp
qp

qp

qp

qp

HG
N N x y

Fig. 6: (Colour online) A plot similar to fig. 5 for the case of
(N1, N2) = (24, 14) and (q, p) = (2, 3).

φm are given by φm = 2πm/8q p withm = 0, 1, · · · , 7. The
relationship between ψ

(HG)
N1,N2

(x̃, ỹ) and Ψ(q,p)
N1,N2

(x̃, ỹ, φm)
can be clearly seen. Figure 6 shows a similar plot for
the case of (N1, N2) = (24, 14) and (q, p) = (2, 3), where
the values for φm are given by q p φm = 2πm/16 with
m = 0, 1, · · · , 15. Compared with the results shown in
fig. 5 for the same (N1, N2) = (24, 14), the number of su-
perposed Lissajous modes in fig. 6 becomes more due to
smaller values for (q, p).

Conclusions. – In conclusion, structured quantum
waves related to Lissajous curves have been analytically
derived as an integral of the Gaussian wave packet over
the classical periodic orbit by taking the inverse Fourier
transform for the time-dependent coherent state of the
2D harmonic oscillator. The derived integral for express-
ing quantum Lissajous modes can be straightforwardly
used to analyze the probability current density to explore
the phase structure without involving the HG eigenmodes.
The calculated results for the probability current density
reveal that the streamlines of probability current density
along the classical trajectories coincide with the directions
of classical velocities. More intriguingly, the phase sin-
gularities near the cross-point of the Lissajous curve are
found to generally exhibit a rhombic vortex array. By
means of quantum Fourier transform, the generalized Lis-
sajous modes have been employed to decompose the HG
eigenmode for understanding the relationship between the
topological structures of eigenmodes and the classical pe-
riodic orbits.

∗ ∗ ∗
This work is supported by the Ministry of Science

and Technology of Taiwan (Contract No. 106-2628-M-
009-001).

30002-p5



Y. F. Chen et al.

REFERENCES

[1] Masajada J. and Dubik B., Opt. Commun., 198 (2001)
21.

[2] Soskin M. S. and Vasnetsov M. V., Prog. Opt., 42
(2001) 219.

[3] Indebetouw G., J. Mod. Opt., 40 (1993) 73.
[4] Andrews D. L., Structured Light and Its Applica-

tions: An Introduction to Phase-Structured Beams and
Nanoscale Optical Force (Academic Press, New York)
2008.

[5] Santamato E., Sasso A., Piccirillo B. and Vella A.,
Opt. Express, 10 (2002) 871.

[6] Gahagan K. T. and Swartzlander G. A. jr., Opt.
Lett., 21 (1996) 827.

[7] MacDonald M. P., Opt. Commun., 201 (2002) 21.
[8] Song Y., Milam D. and Hill W. T., Opt. Lett., 24

(1999) 1805.
[9] Xu X., Kim K., Jhe W. and Kwon N., Phys. Rev. A,

63 (2001) 3401.
[10] Kuga T., Torii Y., Shiokawa N., Hirano T., Shimizu

Y. and Sasada H., Phys. Rev. Lett., 78 (1997) 4713.
[11] Courtial J., Dholakia K., Robertson D. A., Allen

L. and Padgett M. J., Phys. Rev. Lett., 80 (1998)
013601.

[12] Mair A., Vaziri A., Weihs G. and Zeilinger A., Na-
ture, 412 (2001) 313.

[13] Bialynicki-Birula I., Bialynicka-Birula Z. and
Sliwa C., Phys. Rev. A, 61 (2000) 032110.

[14] Allen L. J., Faulkner H. M. L., Oxley M. P. and
Paganin D., Ultramicroscopy, 88 (2001) 85.

[15] Bliokh K. Y., Bliokh Y. P., Savel’ev S. and Nori F.,
Phys. Rev. Lett., 99 (2007) 190404.

[16] Uchida M. and Tonomura A., Nature, 464 (2010) 737.
[17] Verbeeck J., Tian H. and Schattschneider P., Na-

ture, 467 (2010) 301.
[18] McMorran B. J., Agrawal A., Anderson I. M.,

Herzing A. A., Lezec H. J., McClelland J. J. and
Unguris J., Science, 331 (2011) 192.

[19] Harris J., Grillo V., Mafakheri E., Gazzadi G. C.,

Frabboni S., Boyd R. W. and Karimi E., Nat. Phys.,
11 (2015) 629.

[20] Bliokh K. Y., Ivanov I. P., Guzzinati G., Clark

L., Van Boxem R., Béché A., Juchtmans R.,
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