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Abstract – The possibility of a two-dimensional (2D) phase is investigated in superconducting
boron-doped nanocrystalline diamond films. The fluctuation spectroscopy schemes such as the
Azlamazov-Larkin (AL) and Lerner-Varlamov-Vinokur (LVV) ones are used to determine the
dimensionality crossovers occurring near the superconducting phase transition. It is found that a
distinct 2D phase in the fluctuation regime occurs. One of the consequences of the 2D transport is
the manifestation of the Berezinskii-Kosterlitz-Thouless (BKT) transition which is verified through
both current voltage power law scaling as well as the Halperin-Nelson fitting to the temperature-
dependent resistance. The suppression of the BKT transition with applied field is found to be
correlated with the decrease of Josephson coupling between grains. The identification of a 2D
phase accompanied by the BKT transition highlights the subtle effects of dimensionality in this
unique system.

Copyright c© EPLA, 2018

Introduction. – Superconductivity in reduced dimen-
sions are well known to exhibit interesting physics [1],
in particular superconductivity in 2D has been investi-
gated with regard to non-trivial topological ordering due
to spontaneous time-reversal symmetry breaking [2]. Such
non-trivial topological superconductors are generally de-
scribed in terms of odd-parity and spinless wave func-
tion [3] and have been observed experimentally only in
a handful of materials [4]. Since topologically protected
states are expected to be useful for decoherence robust
qubits [5], much research is directed at identifying poten-
tial materials offering such exotic low-dimensional phases.

The theoretical models developed for identifying the
dimensionality of superconductors have been extensively
used in both single-crystal and polycrystalline materials,
proving to be invaluable in helping to classify materials so
that this area of analysis is sometimes referred to as “fluc-
tuoscopy” [6]. The main theoretical model was developed
by AL [7] to explain how the formation of finite lifetime
Cooper pair excitations above, but near to, the mean-field
critical point contribute to the excess conductivity. The
model allowed for the determination of the dimensionality
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of the transport channels in a range of superconducting
materials [8–10].

More recently the effects of granularity on the
dimensionality of the transport channels have been
suggested [11]. The granularity allows for charging and
additional scattering effects and offers a suitable system
for studies of the interplay of electron correlations and
mesoscopic disorder. LVV suggested a characteristic scal-
ing scheme for granular superconductors which is based
on the evolution of the temperature-dependent Ginzburg-
Landau coherence length driven by inter- and intra-grain
coupling [11].

This generalized model predicted that granular super-
conducting media would follow a series of dimensional-
ity crossovers starting from a 3D regime within the grain,
a quasi-0D (q-0D) regime where the coherence length is
comparable to the grain size and finally a 3D regime as
the coherence length increases beyond the grain size and
Josephson coupling between grains occurs. This model has
recently been applied to superconducting boron-doped di-
amond [12]. Although the predicted result of an upturn
in resistance due competition between the suppression
of single-electron tunnelling and coherent charge trans-
fer of Cooper pairs was not reported, the dimensionally

57004-p1



Christopher Coleman and Somnath Bhattacharyya

crossover predicted by the model has indeed been ob-
served [12]. In this work we investigate more deeply the
excess conductivity region between the q-0D and 3D tran-
sition and show that the smoothness of the transition is
due to a conductivity region that follows the scaling pre-
dicted for 2D transport. This indicates the presence of
a 2D phase that occurs just before the Josephson cou-
pling becomes significant and intergrain transport occurs.
This observation is explained in the light of the com-
plex microsctructure of this system. As superconducting
diamond has been classified as a type-two superconduc-
tor it bears many similarities with the layered cuprates.
The intergranular subsystem is believed to lead to a
superconductor-insulator-superconductor junction super-
lattice where the interfacial boundary region and weak
coupling between grains are likely responsible for the two-
dimensionality.

We present an interesting manifestation of this 2D cou-
pled system, the BKT transition in a nanodiamond sys-
tem. The BKT transition is classified as a topological
phase transition as the long-range behaviour of the system
is determined by its topology [13] instead of spontaneous
breaking of underlying symmetries that describe the sys-
tem. During the transition thermal excitations of topo-
logical defects in 2D (vortex and antivortex pairs) bind
together allowing for the long-range order. The experi-
mental characteristics of the BKT transition are well doc-
umented and generally easily identified through analysis
of temperature-dependent transport properties [13–16]. In
this study we present the temperature dependence of both
resistance and voltage-current (V -I) characteristics to ver-
ify the occurrence of the BKT transition which we relate
to the anomalous bosonic insulation (BI) phase reported
for this material [17–19].

Methods. – The diamond samples used in this study
were synthesized using a microwave plasma enhanced
chemical vapour deposition technique on quartz sub-
strates. The grain size (30 nm to 70 nm) can be con-
trolled by varying the methane-to-hydrogen ratio from
2.5% to 5% CH4 in H2 with trimethylborane (TMB) as
a dopant precursor (∼4000 ppm in the films). Samples
have been named according to the CH4/H2 ratio used
during the synthesis of respective samples, i.e., B2.5, B4
and B5. The data presented in this article are from
the same sample (B5) and data from the other samples
(B2.5 and B4) are presented in the supplementary material
Supplementarymaterial.pdf (SM). Although the boron
precursor gas was kept constant during the synthesis of
the films, it has been shown that the boron concentration
increases with decreasing grain size16. Scanning electron
microscopy was used to determine the average grain size
of the films. The films are typically 300 nm thick. The
existence of superconductivity is confirmed by measuring
the resistance as a function of temperature as well as at
various magnetic fields and fixed bias currents. Trans-
port measurements were performed in the van der Pauw

Fig. 1: (Colour online) (a) The temperature dependence of
the sheet resistance normalized to the resistance in the normal
state. The curvature of the transition can be best fit to fluc-
tuation models taking into account 2D to 3D crossover. The
mean-field critical point used in the fitting is derived from the
peak position in the derivative of the temperature-dependent
resistance (dR/dT ) as shown in the inset. The transition region
was also fitted to the Lawerence-Doniach (LD) and Halperin
Nelson (HN) theory. (b) The crossover from the quasi-0D to
2D to 3D excess conductivity regimes is clearly indicated as a
function of the reduced temperature scale. Although the in-
termediate regime is small, this region of excess conductivity
between the q-0D and 3D follows the expected critical expo-
nent for an intermediate state. The relevant temperatures for
the crossover in dimensionality have been included.

configuration using a closed-cycle cryo-free system with
lock-in amplifier and nanovoltmeter. Magnetic fields were
applied perpendicular to the film surface. The tempera-
ture stability was better than 10% at 300 mK. All samples
undergo a metal-superconductor transition with critical
temperatures in the range 1.2 K–3.6 K.

Results. – As shown in fig. 1, the superconducting
transition of the diamond films shows a broad smooth
transition instead of a sharp downturn to the supercon-
ducting state. This is typical in superconducting materials
that show dimensional transport channel crossover. In or-
der to investigate such an occurrence, the AL equations
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have been used in a range of materials including both
thin films and bulk crystals. In this scheme [6,7] the
fluctuation-induced conductivity can be represented in 2D
as well as 3D according to

Δσ2D =
e2

16�d

T

T − TC
, (1)

Δσ3D =
e2

32�ξ(0)

(
T

T − TC

)1/2

. (2)

Or in a more compact and generalized form as

Δσ = Aε−λ, (3)

where A is a coefficient taking on the respective values for
2D or 3D depending on the coherence length ξ(0) as well
as intergrain separation or interlayer spacing (d) as given
in eqs. (1) and (2). The reduced temperature is described
as ε = (T − TC)/T . The exponent λ is dependent on the
dimensionality of the transport and takes on values of −1.0
and −0.5 for 2D and 3D, respectively. Shown in fig. 1(a)
is the application of the AL equations, where the red line
is a fit to the 2D AL equation and the dotted line a fit to
the 3D equation. As can be seen, the 3D equation does
not fit the data set particularly well, and the 2D fit can be
applied to some extent but breaks down upon approach-
ing the mean-field critical point, here defined as the peak
in the temperature-dependent derivative of the resistance
(fig. 1(a), inset). This clearly demonstrates a crossover in
the dimensionality and, thus, an additional fitting with the
Lawrence-Doniach (LD) model [20] that takes account of
the Josephson coupling between 2D planes was used and
it is given by

Δσ =
e2

16�d
ε−1

[
1 +

(
2ξ(0)

d

)2]−1/2

. (4)

The LD fitting is indicated by the green line in fig. 1(a)
and shows a good correlation to the data particularly near
TC . To better understand the various transport dimen-
sionalities within the fluctuation-induced regimes the ex-
cess conductivity is plotted as a function of the reduced
temperature, as shown in fig. 1(b). The crossover from
the quasi-0D to the 3D regime previously described [13] is
clearly interrupted by a region following the 2D critical ex-
ponent of λ = 1. This 2D region is furthermore believed to
be significant as the 2D scaling occurs across most of this
intermediate temperature regime and was consistently ob-
served between samples. As this system is composed of a
complex microstructure where superconducting diamond
grains are separated from each other by the intergranular
sublattice system, it is believed that the weak Josephson
coupling ensures that the Cooper pairs are confined even
as the pair size (coherence length) increases beyond the di-
ameter of the grain, in order to accommodate the growing
Cooper pair size the wave function exploits on the surface
of the diamond crystallites leading to a skin-effect before
intergranular coupling occurs.

One of the most striking features of the 2D phase is
the manifestation of an apparent BKT transition [21,22].
The hallmark feature of the BKT transition is the power
law behaviour of V -I characteristics, which is related
to the universal jump in the superfluid density due to
vortex-antivortex binding upon reaching the BKT transi-
tion temperature (TBKT). This jump in superfluid density
is determined through analysis of the power law expo-
nent describing the V -I characteristics. The BKT transi-
tion is expected when the slope of the V -I curve is steep
enough to yield an exponent with value of α = 3, i.e.,
V ∼ I3.

This has indeed been observed in a range of samples (see
SM), and occurs at approximately 1.3 K for the particu-
lar film represented in fig. 2(a) as indicated by the dashed
line. The occurrence of the BKT transition was also deter-
mined to be extremely sensitive to the applied field, when
evaluating that the power law behaviour of the V -I char-
acteristics the BKT transition was completely suppressed
at fields as low as 0.2 T. Figure 2(b) shows the V -I curves
for the same sample as that represented in fig. 2(a), this
time, however, at an applied field of 1 T.

There is a substantial change in the curvature and the
power exponent is not observed to reach a value of 3 in the
experimentally accessible temperature range. Figure 2(c)
shows the temperature dependence of the exponent, where
a stark difference between zero and small applied fields can
be seen. As mentioned above, only when no field is applied
can the BKT transition be observed. The BKT transition
can also be identified in the temperature-dependent resis-
tance, this is achieved firstly through fitting the normal-
ized resistance to the Halperin-Nelson (HN) formula [14]
valid between TBKT and TC .

RN

R
= 1 +

(
2
A

sinh
b√
t

)2

, (5)

where A is a coefficient of order 1 and b is related to the
temperature difference between TC and TBKT . This fit-
ting is indicated by the blue solid line in fig. 1(a). The
BKT temperature obtained from the HN fitting is the
same as that obtained from the V -I analysis (i.e., 1.3 K for
the sample presented here). This occurrence of a transi-
tion is also demonstrated when plotting the temperature-
dependent resistance on a log scale. As shown in fig. 3(a),
the resistance then clearly shows a resistive peak feature
at the BKT temperature. As before, when the magnetic
field is applied, the BKT transition is not observed, as
indicated by the absence of the resistive upturn.

Further verification of the BKT transition can be made
by comparing the resistance data to predictions of the
BKT theory [13,14], i.e., showing that the resistance tail
below TC depends exponentially on the inverse square root
of the reduced temperature:

ln

[
Rs(T )

Rn

]
= a − bt−1/2, (6)
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Fig. 2: (Colour online) (a) The power law scaling of the I-V
characteristics as a function of temperature at 0T. The univer-
sal jump in superfluid density is indicated by the dashed line.
(b) The effect of applying magnetic fields at low temperature,
the expected scaling for the BKT transition is not observed at
any field above 0.2 T; also indicated in the inset is the power
law scaling of the critical current as a function of the applied
field. As can be seen, the scaling does not increase to above 3
for the accessible temperature range. (c) The critical exponent
defining the power law scaling of I-V as a function of temper-
ature at different applied magnetic fields. The BKT transition
is completely suppressed in the accessible temperature range
for fields as small as 0.2 T.

where a and b are non-universal dimensionless constants.
The BKT temperature can also be extracted through
analysing the temperature dependence of d(lnR/dT )−2/3.

As shown in fig. 3(c), (b) both representations yield a
BKT temperature between 1.27 K and 1.31 K, i.e., a devi-
ation of only 40 mK, indicating good consistency between
the respective models. Pronounced resistive upturns in
this material have been observed before and attributed
to the formation of a bosonic insulating phase consisting

Fig. 3: (Colour online) (a) The evolution of the temperature-
dependent resistance as the applied field is increased plot-
ted in log scale. With zero applied field an upward turn and
peak in the resistance are clearly seen. The upward turn is
not seen in any instance the field is applied. Different scal-
ing relations based on the Halperin-Nelson interpolation for-
mula are presented in (b) yielding a BKT temperature of
1.21 K (b) and 1.27 K (c), indicating consistency within 40 mK.
(c) The inset shows temperature-dependent resistance at dif-
ferent orientations of the applied field, a clear change in
the transition temperature is observed indicating anisotropic
transport.

of localized Cooper pairs due to confinement effects [19],
such bosonic insulating phases are well known to lead
to a dual charge-BKT transition in low-dimensional
systems [23] and Josephson-Junction arrays tuned to the
low-coupling regime [24]. The observation of the BKT-
transition at the insulating phase thus unifies the bosonic
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Fig. 4: (Colour online) The temperature-dependent resistance
in double log scale, the various temperature regions where
dimensionality crossover occurs as determined from the AL
and LVV fittings have been indicated. The accompanying
images on the right show that the difference between the
dimensionality regimes with the q-0D phase has a Cooper pair
size comparable to the grain diameter, the intermediate 2D
state represented as a surface state around the circumference
of the diamond grain and lastly the 2D + 1 phase where grain
coupling sets in and Cooper pairs can travel between grains.

insulating phase discovered by Zhang et al. [17–19] with
other systems exhibiting the bosonic insulating phases.

In order to explain the physical observations presented
above we rely on the fluctuation spectroscopy already
conducted on boron-doped superconducting diamond [12].
There it was suggested that upon cooling to the supercon-
ducting state the system exhibits a 3D to quasi-0D to 3D
transition. This crossover was explained in terms of the
scaling of the temperature dependence of the Ginzburg-
Landau coherence length of the Cooper pairs. As shown in
the inset of fig. 3(c) temperature-dependent resistance ob-
tained in applied fields of different orientation has shown
shifting of the critical temperature, this is a strong indica-
tion of anisotropy related to the dimensionality crossover.
At temperatures slightly higher than the TC the conduc-
tivity is dominated by fluctuations due to Cooper pair for-
mation, in this temperature regime the scaling is 3D as the
coherence length is less than the grain size and can increase
in three spatial dimensions. As the systems is cooled, the
coherence length increases until reaching the grain size.
This temperature range is called the quasi-0D regime and
is characteristic of Cooper pairs localized within the indi-
vidual grains.

According to the LVV model for granular supercon-
ductors [12] the system is then expected to enter the 3D
regime (or 2D + 1) as the coherence length increases tun-
nelling of the Cooper pairs between grains resulting in the
3D behaviour. In this work it is demonstrated that there
is evidence suggesting that (at least 300 mK) before this
final coupling between grains is reached the system enters
into a 2D phase that follows the AL 2D theory.

At temperatures below the mean-field critical point,
the observation of the BKT transition, which is the
vortex-antivortex binding point, is most likely a result

of the Josephson coupling between adjacent grains, sim-
ilar to the coupling between 2D layers in the high TC

cuprates [25,26]. This crossover in the dimensionality is
demonstrated schematically in fig. 4. The suppression of
this BKT transition with applied field can be explained as
a result of the magnetic-flux lines which propagate along
the grain boundaries decreasing the coupling strength be-
tween the grains.

Having presented evidence for both the 2D nature and
the topological excitations causing the BKT transition,
it is quite plausible to expect a topological phase. The
occurrence of topologically protected phases has been
theoretically predicted and experimentally observed in a
wide range of low-dimensional carbon and boron mate-
rials [27–30]. In fact, very recently Fermi arcs were ob-
served in the Fermi surface of a low-dimensional boron
called borophene [31]. Recent XRD and Raman spec-
troscopy studies based on polycrystalline boron-doped dia-
mond also suggested the existence of structurally arranged
bilayer boron sheets [32] and since weak surface supercon-
ductivity in single-crystal bulk boron-doped diamond [33]
has already been observed, it is not difficult to imagine
the existence of a topological 2D phase in nanocrystalline
films presented here, especially considering the enhanced
confinement effects already reported for this system.

Conclusion. – We have shown through the AL and
LVV scaling analysis that a distinct 2D phase is observ-
able in the temperature-dependent resistance. Although
the LVV scaling has been investigated before in super-
conducting boron-doped diamond, this is the first inves-
tigation of the 2D phase which was determined to set in
before intergranular coupling occur. The 2D phase is ex-
pected to have implications on the transport of the sys-
tem. We have verified this by identifying the occurrence
of the BKT transition at temperatures below the mean-
field critical point just before global coherence and the
zero resistance occur. This has been achieved through
both current-voltage power law scaling analysis as well
as analysis of the temperature-dependent resistance us-
ing the Halperin-Nelson equation. It was also observed
that the BKT transition was suppressed drastically with
the application of magnetic field. As the BKT transition
is due to topological excitations (vortex-antivortex pairs)
this phenomenon is a strong indication that topological
distinct phases occur in this system. Although more re-
search is required to determine whether the phase is trivial
or not. This study highlights the similarity between the
boron-doped diamond and layered high-TC materials and
shows how the combination of both granularity and the
intergranular subsystem can lead to low-dimensional con-
finement effects.

∗ ∗ ∗
SB is very thankful to M. Nesládek (Hasselt Univer-
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Li J., Vanacken J., Szabó P., Huang J., Pereira P.

J., Cerbu D. and Moshchalkov V. V., Phys. Rev. A,
6 (2016) 064011.

[18] Zhang G., Zeleznik M., Vanacken J., May P. W.

and Moshchalkov V. V., Phys. Rev. Lett., 110 (2013)
077001.

[19] Zhang G., Samuely T., Du H., Xu Z., Liu L. et al.,
ACS Nano, 11 (2017) 11746.

[20] Lawrence W. E. and Doniach S., in Proceedings of
the Twelfth International Conference on Low Tempera-
ture Physics, edited by Kanda E. (Keigaku, Tokyo) 1971,
p. 361.

[21] Coleman C. and Bhattacharyya S., AIP Adv., 7
(2017) 115119.

[22] Mtsuko D., Coleman C. and Bhattacharyya S.,
arXiv:1606.06672.

[23] Fisher M. P. A., Phys. Rev. Lett., 65 (1990) 923.
[24] Mooij J. E., van Wees B. J., Geerligs L. J., Peters

M., Fazio R. and Schön G., Phys. Rev. Lett., 65 (1990)
645.

[25] Blatter G., Feigel’man M. V., Geshkenbein V. B.,

Larkin A. I. and Vinokur V. M, Rev. Mod. Phys., 66
(1994) 1125.

[26] Dodgson M. J. W., Geshkenbein V. B. and Blatter

G., Phys. Rev. Lett., 83 (1999) 5358.
[27] Gomes K. K., Mar W., Ko W., Guinea F. and

Manoharan H. C., Nature, 483 (2012) 306.
[28] Weng H., Liang Y., Xu Q., Yu R., Fang Z., Dai X.

and Kawazoe Y., Phys. Rev. B, 92 (2015) 045108.
[29] Zhai X. and Jin G., Appl. Phys. Lett., 102 (2013)

023104.
[30] Tang P., Zou Z., Wang S., Wu J., Liu H. and Duan

W., RSC Adv., 2 (2012) 6192.
[31] Feng B. et al., Phys. Rev. Lett., 118 (2017) 096401.
[32] Polyakov S. N., Denisov V. N., Mavrin B. N.,

Kirichenko A. N., Kuznetsov M. S., Yu Mar-

tyushov S., Terentiev S. A. and Blank V. D.,
Nanoscale Res. Lett., 11 (2016) 11.

[33] Blank V., Buga S., Bormashov V., Denisov V.,

Kirichenko A., Kulbachinskii V., Kuznetsov M.,

Kytin V., Kytin G., Tarelkin S. and Terentiev S.,
EPL, 108 (2014) 67014.

57004-p6


