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Abstract – Financial systems are complex systems which have been widely studied in recent
years. We here propose a model to study stock correlations in financial markets, in which an
agent’s expected return for one stock is influenced by the historical return of the other stock. Each
agent makes a decision based on his expected return with reference to information dissemination
and the historical return of the stock. We find that the returns of the stocks are positively
(negatively) correlated when agents’ expected returns for one stock are positively (negatively)
correlated with the historical return of the other. We provide both numerical and analytical studies
and give explanations to stock correlations for cases with agents having either homogeneous or
heterogeneous expected returns. The result still holds when other factors such as holding decisions
and external events are included which broadens the practicability of the model.

Copyright c© EPLA, 2018

Introduction. – Complex systems are common in ge-
ology, biology as well as social and economic areas. There
has been interest to understand the complex cooperative
behavior of complex systems as a result of simple rules of
interactions between microscopic constituents among re-
searchers. The correlation in a complex system and how
the information flows within the system is an interesting
and important topic of current research. Understanding
the underlying mechanism and the cooperative behavior of
one complex system would be helpful in the understanding
of other complex systems. Among them, financial systems
are complex systems which have been widely studied in
recent years. Understanding stock correlation is academ-
ically and practically useful. Stock correlations are high
during financial crises, which is a phenomenon in stock
markets worldwide [1,2]. Only making clear the cause of
this phenomenon, can one better understand the mecha-
nism underlying the stock correlation, and apply it more
accurately in asset pricing, investor decision-making, and
financial risk regulations.

(a)E-mail: fren@ecust.edu.cn

Later on, scholars have explained stock correlations
from the macroscopic perspective, for instance the mar-
ket [3,4], industry [5,6], and firm [7,8] level. Morck et al. [3]
and Dang et al. [4] found that stock correlations tended to
be higher in poor and emerging markets with poor institu-
tions and property rights. Kallberg and Pasquariello [5],
Antón and Polk [6] showed that firms in the same indus-
try had correlated earnings and therefore returns. Qiao
et al. [7] and Zhang et al. [8] have shown that a firm’s spe-
cific information is the primary cause of stock correlations.

Recently, scholars have also studied stock correlations
from the perspective of investors’ actions [9–11]. Some
empirical studies show that investors’ sentiment and ir-
rational actions will cause stock correlations [9]. Other
studies focus on information dissemination through in-
vestors [10,11]. To date, only few studies are devoted to
explain the microcosmic reason of stock correlations from
the perspective of agents’ actions, most of which are based
on theoretical analysis. Our study is motivated by re-
search on stock correlations with agent-based models and
reveals its microcosmic mechanism by modeling the trad-
ing behavior of individual agents.
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Minority game is a highly successful agent-based model
that can be used to explain most stylized facts in finan-
cial markets [12]. The standard minority game was first
proposed by Challet and Zhang based on the El Farol bar
problem [13]. It describes a system in which heteroge-
neous agents adaptively compete for scarce resource, and
it captures some key features of a generic market mecha-
nism and the basic interactions between agents and public
information. As a successful agent-based model to sim-
ulate the stock market, minority game has been under
rapid development and largely used in memory size [14,15],
evolution mechanism [16], strategy selection [17,18], stock
market simulations [19], market impact [20] and agent be-
havior [21]. One of the most important applications of
the minority game is its modeling for multi-assets [22,23].
Inspired by these works, we here introduce a new model
based on minority game in which agents may trade two
stocks, and focus on its explanation to stock correla-
tions. This extension makes the model closer to the
real stock markets, and can be widely applied to as-
set pricing, investor decision-making and financial risk
regulations.

We propose that an agent’s expected return on one stock
is influenced by its own and other stock’s historical re-
turn. This expected return is modeled with reference to
studies on the theory of information dissemination and
the facts that exist in real stock markets. Some stud-
ies on information dissemination theory imply that stock
price movements are influenced by the spread of informa-
tion among firms [24,25]. In addition, some other studies
demonstrated that information from different firms could
be obtained and spread by investors, which, in turn, could
affect the price movements of stocks [26,27]. In a real
stock market, we can see that investors trade stocks by
referring to the performance of other stocks in the same
industry, sometimes even the same industry chain and the
competitive industry. These investors’ behaviors will ul-
timately have an impact on the stock correlations. The
information dissemination theory proposed in the litera-
ture and the above phenomena exist in real stock markets
which provide the theoretical and realistic basis for the
establishment of the expected return in our model.

We also propose that an agent makes a decision based on
his/her expected return and historical returns of the stock
in the minority game. The simulation results of our model
suggest that the stock returns are positively (negatively)
correlated when the expected returns are positively (neg-
atively) correlated, and the correlation of stock returns
is proportional to the correlation of the expected returns
of the stock. Compared to previous studies, this paper
makes two contributions. First, we propose a new model
based on the MG model to explain the stock correlations
from the perspective of agent-based modeling. Second, we
theoretically demonstrate that the investors’ expectation
of one stock influenced by another stock essentially leads
to the correlation between the two by both numerical sim-
ulation and analytical analysis.

Table 1: A strategy of agent i for stock j. Here rj(t − m)
denotes the historical return of the stock j at time t − m, and
re

j,i(t) denotes the expected return of agent i for stock j at time
t. + (−) means the return is positive (negative). σi

j(t) denotes
the decision that agent i makes for stock j according to the
history and expectation. 1 (−1) means buying (selling) 1 unit
of stock.

History Expectation Decision

rj(t − m) . . . rj(t − 1) re
j,i(t) σi

j(t)

+ . . . + + 1
− . . . − − −1
. . . . . . . . . . . . . . .
+ . . . + − 1
+ . . . − − −1

Model and assumptions. – To study the correla-
tion between individual stocks, we assume the simple case
when there are only two stocks traded by agents. Our
model takes the form of a repeated game with an odd num-
ber N of agents who must choose an independent decision
of buying or selling actions according to their strategies.
A strategy is a way of decision-making in which an in-
vestor makes a decision according to the historic returns
in the last m time steps and the expected return for a
specific stock. Table 1 illustrates an agent’s strategy for
the transaction of stock j in our model. The history of
a stock is the stock return series in the last m steps, and
the expectation is an agent’s expected return. The de-
cision is denoted by 1 and −1, respectively in the table,
representing buying or selling 1 unit of stock. Since there
are 2m possible bit strings of historical returns, two pos-
sible options (up or down) for each agent’s expectation,
and two decisions of buying or selling actions, hence there
are a total of 22m+1

strategies. We also consider the case
when the agent can take a holding position, making a de-
cision about not buying or selling [19]. We find that the
introduction of the holding position does not change the
main results, hence this feature will not be included in our
model.

The expected return is defined as follows:

re
j,i(t) = ajrj(t − 1) + bj,irj′(t − 1), (1)

where re
j,i(t) (j = 1, 2; i = 1, . . . , N) is the expected re-

turn of agent i for stock j at time t (t = 0, 1, . . . , T ), and
rj(t − 1) is the return of stock j at time t − 1, j′ = 1 (2)
when j = 2 (1). aj is the first-order autocorrelation coeffi-
cient of the stock j and bj,i denotes the impact of the first-
order lag return of the other stock on stock j for agent i.

We propose the expected return with reference to the
studies on the information dissemination theory. Zhang
et al. [8] and Chuang [28] both demonstrated that the
dissemination of information between firms caused stock
price co-movement. Mondria [11] found that changes in
one asset affected both asset prices when investors could
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choose linear combinations of asset payoffs to update
information about the assets. Based on these studies, we
propose that the expected return of agents to be in the
form of a linear combination of stock returns in our model.

We can also see that investors trade stocks by consider-
ing the performance of other stocks in real stock markets,
and this provides a realistic basis for the assumption of
the above expectation. The underlying reason for the in-
vestors’ behaviors that focus on the performances of multi-
assets may lie in the fundamental correlations between
these stocks, which have business relationships between
each other. For example, investors will refer to the per-
formance of other stocks in the same industry, sometimes
even the same industry chain and the competitive industry
when they trade stocks.

To begin with, each agent i randomly picks S strategies
from the full strategy space, sticks with them throughout
the game, and keeps track of the cumulative performance
of his/her trading strategy s (s = 1, . . . , S) by assigning
a score U i,s

j (t) to each of them. The initial scores of the
strategies are set to be zero. Initially, agent i randomly
selects a strategy among his/her S own strategies, and the
trading decision is also randomly selected since there are
no historical and expected returns at t = 0. At time step
t > 0, each agent i adopts a strategy s with the highest
score. If U i,s

j (t) is the highest at time t, the decision of
agent i to trade stock j is σi

j(t) = σi,s
j (t) corresponding to

the current historical and expected returns of stock j.
After all agents have made their decisions of actions,

the excess demand of stock j at time t is calculated as

Aj(t) =
N∑

i=1

σi
j(t). (2)

Aj(t) measures the imbalance between buyers (demand)
and sellers (supply), which is commonly used to update
the price of the stock [16,19]. The price of stock j at time
t is updated according to

Pj(t) = Pj(t − 1) + sgn[Aj(t)]|Aj(t)|0.5, (3)

where the square root in the formula is commonly used in
the price dynamics of the MG model [19], which is also
supported by the evidence of empirical studies [29]. The
return of stock j at time t is

rj(t) = log(Pj(t)) − log(Pj(t − 1)). (4)

The score of strategy s held by the agent i is then updated
as below:

U i,s
j (t) = U i,s

j (t − 1) + gi,s
j (t), (5)

where the payoff gi,s
j (t) to strategy s is

gi,s
j (t) = −sgn[Aj(t)]σ

i,s
j (t). (6)

The payoff is calculated with the excess demand, which is
in line with the price update.

The agent then repeatedly chooses the best strategy
from his/her fixed S strategies according to their up-
dated scores, and makes the trading decision according to
the newly updated historical returns and expected return.
The model evolves by repeating the steps listed above.

Simulation results and analysis. – For simplicity
and the computational efficiency of the model, we choose
the case where N = 1001, m and S are relatively small.
Though the correlation becomes weaker as m increases,
the pattern of the correlation still remains for m ≤ 4. Be-
sides, considering the finite memory size of the investors
in a real stock market, we let m take a small value, and
set m = 1 as an illustrative example. The choice of S
strategies, selected from the whole pool of 22m+1

possible
strategies, can also affect the results of the correlations.
For large S, the agents have many repeated strategies, re-
sulting in the same decisions of buying or selling actions,
which will cause problems in the correlation between the
stocks. An extreme case is to use the entire strategy pool.
In fact, the investors generally have only a small number
of strategies to use in a real market. Therefore, S should
not be large, and we set S = 2 in our model. The simu-
lation result becomes stable when T ∼ 1000. Therefore,
we choose T to be 1000. The initial price of our model
is set to be 2000, large enough to ensure that the price is
positive throughout the entire evolution period. We set
the values of aj according to the first-order autoregressive
coefficients of the 15 A-share stocks trade on the Shanghai
and Shenzhen Stock Exchanges from January 4, 2011 to
December 31, 2015, which are found to be larger than 0
and smaller than 1. Therefore, we take the value of aj to
be between 0 and 1, under which the first-order autore-
gressive coefficients of the simulated data are consistent
with those of the empirical data. We consider four combi-
nations of different values of aj , namely a1 = {0.1, 1} and
a2 = {0.1, 1} in our simulation, and the values of bj,i in
two cases: homogeneous agents with the same expectation
and heterogeneous agents with different expectations.

To discuss the correlation between stocks, we calculate
the Pearson’s correlation coefficient, which is defined as

ρr =
Cov(r1, r2)√

Var(r1)
√

Var(r2)
, (7)

where Cov(r1, r2) is the covariance of the two stock return
series, and Var(r1) and Var(r2) are the variances of the two
stock return series, respectively. We perform 50 runs and
take the mean correlation coefficient as the final simulation
result.

Simulation results and analysis for homogeneous agents
with the same expectation. When all agents have the
same expected return, we have bj,i = bj . We here assume
that the values of bj are between −1 and 1, and the interval
is 0.1. The simulation results are shown in fig. 1.

From the simulation result in fig. 1(a), we can see that
the correlation coefficients between the stock returns are
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Fig. 1: (Color online) The correlation coefficients between the
stock returns with parameters m = 1 and S = 2 for (a) a1 =
a2 = 1, (b) a1 = a2 = 0.1, (c) a1 = 1, a2 = 0.1, (d) a1 =
0.1, a2 = 1.

positive (negative) when b1 > 0 and b2 > 0 (b1 < 0 and
b2 < 0), and the absolute values of the correlation coef-
ficients are large when b1 and b2 are near 1 or −1. In
fig. 1(b), the correlation coefficients between the stock
returns are small in most cases, and the absolute val-
ues of the correlation coefficients are large when b1 and
b2 are near 0.1 or −0.1. For a1 = 1 and a2 = 0.1 in
fig. 1(c), the expected return of stock 2 is almost only af-
fected by stock 1 and the expected return of stock 1 is
affected by both stocks, hence the correlation coefficients
between two stocks’ returns are positive (negative) when
b1 > 0 (b1 < 0). In addition, the expected return of stock
2 is almost unaffected by either stock when b2 is near 0,
hence the correlation coefficients between the stock returns
are very small. The results in fig. 1(d) are similar to the
results in fig. 1(c). Therefore, we will take the simulation
results in fig. 1(a) as a representative to analyze.

It is worth studying how much investors’ expectations
of stock returns account for the stock return correlation
when other factors are included in their trading decisions.
For instance the exogenous factor [30], which considers a
case when the market is impacted by external events. The
internal and external contributions to the overall excess
demand are introduced as

Aj(t) = Aint
j (t) + Aext

j (t), (8)

where Aint
j (t) is the excess demand defined in eq. (2),

and Aext
j (t) represents the contribution of external events,

which has a general formula

Aext
j (t) = (−1)θ(t)ÃjEj(t). (9)

To make Aext
j (t) more realistic, we use the empirical data

of the news of A-share stocks trade on Shanghai Stock
Exchange during the period from December 16, 2013 to
November 22, 2016 to calculate the average probability of
the occurrence of an external event per minute, and use it
to determine the probability p(Ej(t) = 1) = 0.0082. The
basic results remain to be the same if p(Ej(t) = 1) is not
too large. θ(t) is a randomly generated integer, which de-
termines the sign of the impact. Ãj reflects the impact

Fig. 2: (Color online) The correlation coefficients between the
stock returns for the case in which external events are included
into investors’ trading decisions with parameters m = 1, S = 2
and a1 = a2 = 1 for (a) k = 1 and (b) k = 4.

strength of the external event, which is measured in units
of the standard deviation sj of Aint

j (t), i.e., Ãj = ksj .
The simulation results for the case when k = 1 and 4 are
shown in fig. 2. As the impact strength of external events
increases, the correlation between the stocks becomes rel-
atively smaller. However, the main results are essentially
similar to the ones shown in fig. 1(a). The stock returns
are still correlated under the interference of exogenous fac-
tor, and this shows that the stock return correlations are
largely determined by the mechanism of the expected re-
turns proposed in our model.

From the simulation results, regularities in stock return
correlations can be seen. However, what causes the reg-
ularities, and why the correlation coefficient is very close
to zero in some cases and greater (less) than zero in other
cases? To explain these phenomena, it is necessary to ana-
lyze the source of the stock correlation. From the assump-
tions of the model, we know that the correlation between
the stock returns is mainly determined by the agent’s ex-
pected returns of the stocks. Since the expected return of
the agent on one stock takes into account the influence of
the other stock, the correlation between the expected re-
turns is bound to affect the correlation between the stock
returns. To verify this, we should analyze the relationship
between the stock return and its expected return.

First, we draw the scatter plots of both stocks when
m = 1, S = 2 and a1 = a2 = 1 in fig. 3. It can be seen
that generally there is a linear relationship between the
return and its expected return, though the scatter points
cluster in three regions, which may be related to the crowd
effects. In the minority game, agents show crowd effects
when 2m � N , and the synchronization of their actions
induce periodicity in the return distribution [31]. We thus
observe that the scatter points cluster in fig. 3. We fur-
ther perform a linear regression analysis between the re-
turn and its expected return, and find the p-value for the
t-test, a significance test of the regression coefficient, is
very close to 0 while the R-square is about 0.75. Hence,
there is a significant positive linear correlation between
the return and its expected return. We therefore analyze
the correlation between the two stocks’ expected returns
in order to explain the correlation between two stocks’
returns.

Since the correlation between the stock returns is mainly
determined by the values of bj , we concentrate on how the
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Fig. 3: (Color online) Scatter plots of the return vs. its ex-
pected return for (a) stock 1 and (b) stock 2 when m = 1,
S = 2 and a1 = a2 = 1. Colors correspond to the returns of
different runs.

values of bj affect the correlation between the expected
returns of the stocks. The correlation between the stocks’
expected returns will be explored using the variances of
their expected returns. From eq. (1), when a1 = a2 = 1,
the variance of the expected return for stock j is

Δre
j (t) = Δrj(t − 1) + bjΔrj′(t − 1), (10)

where the variance of stock j is defined as Δrj(t − 1) =
rj(t−1)−rj(t−2). Since the agents are homogeneous, the
variance of the expected return for different agents is the
same. We further study the positive (negative) correlation
between the expected returns by calculating the probabil-
ity of having the same (opposite) sign of their variances
under different combinations of the parameters b1 and b2.
See appendix for details of the analysis.

From the results of fig. 3 and the regression analysis, we
have concluded that there is a significant positive linear
correlation between the returns and expected returns. We
then summarize the results of simulated returns based on
the correlation of expected returns in the following. The
correlation between the stock returns is positive (negative)
when b1 > 0 and b2 > 0 (b1 < 0 and b2 < 0), and gets
stronger as bj (j = 1, 2) increases (decreases). The cor-
relation is weak when b1 and b2 have opposite signs, and
changes from negative to positive as bj (j = 1, 2) increases.
We can also observe that the results in fig. 1(a) and the
analytic results in the above thus agree with each other.

Simulation results and analysis for heterogeneous agents
with different expectations. In a real stock market,
agents are heterogeneous and their expected returns are
not exactly the same. Indeed, we can consider the het-
erogeneous agents that have different values for both aj

and bj,i. The parameter bj,i can reflect the information
dissemination through stocks, which plays a core role in
explaining the correlation between stocks. Besides, we
have also studied the case with a uniform distribution
of aj ∼ U(0, 1), and found that the results remain sim-
ilarly. Hence, we mainly focus on the parameter bj,i in
the following discussions. We will make an additional
assumption that each agent i in the model matches a
unique bj,i, which is subject to a uniform distribution, i.e.,
bj,i ∼ U(cj − δj , cj + δj). The center of the distribution is
cj , and the distribution range is 2δj .

It is worth noting that the results do not depend on the
specific formula of the distribution, but only the symmetry

Fig. 4: (Color online) The correlation coefficients between the
stock returns when m = 1, S = 2, a1 = a2 = 1 and δ1 = δ2 = 1.

feature of the distribution significantly affects the results.
As one will see in the following discussions, the stock cor-
relation is positive (negative) when the distribution center
is bias to positive (negative), which may be driven by the
forces of news or big events in real stock markets.

We first consider the case of a uniform distribution with
varying distribution center and fixed distribution range.
The simulation result for a1 = a2 = 1 and δ1 = δ2 = 1 is
shown in fig. 4. Centers c1 and c2 are from −1 to 1, and
the intervals are 0.2. Similar to the analysis for homo-
geneous agents with the same expectation, we draw the
scatter plots of the returns vs. expected returns of the
two stocks for four combinations of c1 and c2 in fig. 5. We
also perform a regression analysis for the stocks, where
the p-value is very close to 0 and the R-square is within
0.73–0.88. Hence, there is a significant positive linear cor-
relation between the return and its expected return when
b1 and b2 are uniformly distributed.

From the linear relationship between the return and its
expected return, one can interpret the correlation between
the returns based on the correlation between the expected
returns. For heterogeneous agents who have different ex-
pected returns, the variances of their expected returns
should be averaged over different agents

Δre
j (t) =

1
N

N∑

i=1

ajΔrj(t−1)+
1
N

N∑

i=1

bj,iΔrj′(t−1). (11)

Since bj,i are subject to the uniform distribution, we have
1
N

∑N
i=1 bj,i = cj . When aj = 1, the average variances in

eq. (11) become

Δre
j (t) = Δrj(t − 1) + cjΔrj′(t − 1). (12)

We now study the correlation of the expected returns
from eq. (12), which takes the same form as eq. (10), with
cj replacing bj . Similar to the analysis for fixed values
of bj , we can obtain the correlation between the returns,
which is summarized below. The correlation between the
stock returns is positive (negative) when c1 > 0 and c2 > 0
(c1 < 0 and c2 < 0), and becomes stronger as cj (j = 1, 2)
increases. The correlation is weak when c1 and c2 have
opposite signs, and the correlation changes from negative
to positive as cj increases, in agreement with fig. 4.

We then consider the case of a uniform distribution with
fixed distribution center and varying distribution range.
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Fig. 5: (Color online) Scatter plots of the return vs. its
expected return for (a) stock 1 and (e) stock 2 with 0 <
c1 < 1 and 0 < c2 < 1, (b) stock 1 and (f) stock 2 with
−1 < c1 < 0 and −1 < c2 < 0, (c) stock 1 and (g) stock 2
with 0 < c1 < 1 and −1 < c2 < 0, (d) stock 1 and (h) stock 2
with −1 < c1 < 0 and 0 < c2 < 1. Colors correspond to the
returns of different runs, with parameters m = 1, S = 2 and
a1 = a2 = 1.

Fig. 6: (Color online) The correlation coefficients between the
stock returns for m = 1, S = 2, a1 = a2 = 1 and c1 = c2 = 0.

Fig. 7: (Color online) Scatter plots of the return vs. its ex-
pected return for (a) stock 1 and (b) stock 2 when m = 1,
S = 2 and a1 = a2 = 1. Colors correspond to the returns of
different runs.

The simulation results for a1 = a2 = 1 and c1 = c2 = 0
are shown in fig. 6. The ranges of δ1 and δ2 are from 1
to 5, and the intervals are 0.5. From fig. 6, we can see that
the correlation coefficients are small, and the correlation
between the stock returns is weak.

Scatter plots of the returns vs. the expected returns of
the stocks when c1 = c2 = 0 are shown in fig. 7, where
a linear relationship between the return and its expected
return can be clearly observed. We therefore carry out
a regression analysis of the stocks separately, where the
p-value is close to 0 and the R-square is about 0.99. Hence,
there is a significant positive linear correlation between the
return and its expected return, based upon which one can
interpret the correlation between the returns by analyzing
the correlation between the expected returns.

From eq. (11), when aj = 1 and cj = 0, we have
Δre

j (t) = Δrj(t − 1). In this case, we can easily see that

the mean value of the expected return is only relevant to
the stock return itself. Hence, the expected returns of the
stocks are uncorrelated. From fig. 7 and the regression
analysis results, we see that the return and its expected
return are strongly correlated, implying that stock returns
are not correlated. This is confirmed by the simulation re-
sults in fig. 6.

Conclusion. – In this paper, we study stock correla-
tions by using a model based on the minority game, in
which we propose that an agent makes a decision with
the historical return of the stock and his/her expected re-
turn, which is influenced by the historical return of the
other stock. We model the stock correlation for homoge-
neous agents with the same expectation, and find that the
investor’s expectation regarding the stock return is an im-
portant factor for the stock correlation. We also find that
stock returns are positively (negatively) correlated when
the expectations of returns are positively (negatively) cor-
related, and the correlation of stock returns is propor-
tional to the correlation of stock expected returns. We
then model the stock correlation for heterogeneous agents
with different expectations, whose parameters bj,i obey a
uniform distribution. The simulation results suggest that
the center of the distribution has a significant influence
on the stock correlation but the range of the distribution
has no influence on the stock correlation. These results
remain to be true when we consider other factors such as
external events in financial markets.

To the best of our knowledge, this is the first time that
one models the correlations between stocks from the per-
spective of agent-based modeling. Our model is derived
from the standard MG model, in which the agents are al-
lowed to trade multi-assets simultaneously. The expected
returns of the agents are modeled with reference to infor-
mation dissemination in financial markets. To improve the
practicability of the model, we further introduce variables
that model external news and events in financial markets
and fix their values from the analysis of real data. These
features make our model simulate real stock markets more
closely, and help to expand its practical implications in
many issues dealing with multi-assets or systematic prob-
lems. The model not only can reveal the microscopic
mechanism underlying the stock correlations, but also can
be applied to asset pricing, investor decision-making and
financial risk regulations.
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Appendix

Analysis for the correlation between the stocks’ ex-
pected returns under four combinations of the parameters
b1 and b2: I) 0 < b1 < 1 and 0 < b2 < 1, II) −1 < b1 < 0
and −1 < b2 < 0, III) 0 < b1 < 1 and −1 < b2 < 0,
IV) −1 < b1 < 0 and 0 < b2 < 1.

I) 0 < b1 < 1 and 0 < b2 < 1.
a) If Δr1(t − 1) > 0 and Δr2(t − 1) > 0, then

Δre
j (t) = Δrj(t − 1) + bjΔrj′(t − 1) > 0. (A.1)

Here, the expected returns of both stocks increase at the
same time, and the correlation between the expected re-
turns is positive.

b) If Δr1(t − 1) < 0 and Δr2(t − 1) < 0, the analysis is
similar to I) a). Here, the correlation between the expected
returns is positive.

c) If Δr1(t − 1) > 0 and Δr2(t − 1) < 0, we discuss the
possibilities for four cases of combinations of Δre

1(t) and
Δre

2(t).
According to eq. (10), the condition satisfying

Δre
1(t) < 0 and Δre

2(t) > 0 is

−Δr2(t − 1)
b2

< Δr1(t − 1) < −b1Δr2(t − 1). (A.2)

Since −Δr2(t − 1)/b2 > −b1Δr2(t − 1) when Δr2(t − 1)
< 0, eq. (A.2) cannot be satisfied, therefore the case when
Δre

1(t) < 0 and Δre
2(t) > 0 is impossible.

For the case when Δre
1(t) > 0 and Δre

2(t) < 0 are satis-
fied, according to eq. (10), the condition will be

−b1Δr2(t − 1) < Δr1(t − 1) < −Δr2(t − 1)
b2

. (A.3)

The value range of Δr1(t − 1) becomes smaller when b1

and b2 approach 1. Therefore, the negative correlation
between the expected returns becomes weaker.

If Δre
1(t) > 0 and Δre

2(t) > 0 are satisfied, according to
eq. (10), the condition will be Δr1(t−1) > −Δr2(t−1)/b2.
The value range of Δr1(t − 1) becomes larger when b2

approaches 1. Therefore, the positive correlation between
the expected returns becomes stronger.

Similarly, if Δre
1(t) < 0 and Δre

2(t) < 0 are satisfied,
the positive correlation of the expected returns is stronger
when b1 approaches 1.

Among the four cases above, three of them are valid,
which include two cases when the expected returns are
positively correlated with large probability. Therefore, the
correlation is positive on average, and becomes stronger
when bj approaches 1.

d) If Δr1(t − 1) < 0 and Δr2(t − 1) > 0, the analysis is
similar to I) c). Here, the positive correlation between the
expected returns becomes stronger when bj approaches 1.

The analysis of II), III) and IV) are similar to I), and
we will not go into details here.
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