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Abstract – We show that the charge accumulated by a dielectric plasma-facing solid can be
measured by infrared spectroscopy. The approach utilizes a stack of materials supporting a surface
plasmon resonance in the infrared. For frequencies near the Berreman resonance of the layer facing
the plasma the reflectivity dip —measured from the back of the stack, not in contact with the
plasma— depends strongly on the angle of incidence making it an ideal sensor for the changes
of the layer’s dielectric function due to the polarizability of the trapped surplus charges. The
charge-induced shifts of the dip, both as a function of the angle and the frequency of the incident
infrared light, are large enough to be measurable by attenuated total reflection setups.

Copyright c© EPLA, 2018

Introduction. – Fundamental to any interface is
charge separation. This universal mantra holds also for
solids facing an ionized gas where an electron-depleted
region in front of the solid is balanced by an electron-
rich region inside or on top of the solid depending on the
solid’s electronic structure. The electron-depleted, posi-
tive part of the double layer —the plasma sheath— has
been studied rather extensively in the past, in particular,
its merging with the bulk plasma [1–3]. But the nega-
tive part —the wall charge— and its merging with the
bulk of the solid received little attention [4], although it
is an integral part of the electric response of the plasma-
solid interface and thus unavoidably linked to the overall
charge balance of the discharge. Especially the behav-
ior of microdischarges integrated on semiconducting sub-
strates [5,6] may be strongly affected by the charge dy-
namics inside the substrate. However, to develop an un-
derstanding of it requires experimental techniques prob-
ing inside the solid. So far only a few attempts have been
made to measure the charge accumulated by a solid in con-
tact with a plasma. Besides traditional electric probes [7]
and micron-size opto-mechanical charge sensors [8], which
both utilize the principle of electric influence, the opto-
electric Pockels effect [9] has been used for that pur-
pose. The latter was developed into a rather sophisti-
cated tool for lateral imaging of the wall charge in barrier
discharges [10]. It works however only for dielectric coat-
ings featuring the Pockels effect. For the dielectrics typi-

cally used in low-temperature plasma physics —SiO2 and
Al2O3— it is not applicable. The semiconductors hosting
the arrays of microdischarges referred to above are also
not Pockels-active.

In this work we propose an infrared diagnostics for the
charge collected by plasma-facing dielectrics which also
works for the standard materials used in plasma physics.
It utilizes the charge sensitivity of the infrared reflectivity
of a layered structure in contact with a plasma, where the
plasma-facing, charge-collecting layer is made out of the
dielectric of interest. Its width is chosen such that it sup-
ports a Berreman mode [11], thereby making the device
sensitive to the low charge densities expected at plasma-
solid interfaces compared to the rather high densities at
solid-electrolyte interfaces [12,13] and semiconductor sur-
faces [14,15], to which such an arrangement could be also
applied. Using an attenuated total reflection (ATR) spec-
troscopy setup enables us to utilize as a charge diagnostics
not only the charge-sensitive frequency shift of the Berre-
man mode but also the shift of the angle of incidence where
the mode occurs.

The stack of materials comprising the measuring device,
which we envisage to be inserted into the plasma wall or
the electrode, is shown in fig. 1. Due to the metal layer and
the optical prism on top of it surface plasmon polaritons
(SPPs) are excited which —by avoided resonance crossing
with the Berreman mode of the layer facing the plasma
and consisting of the material of interest— cause a strong
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Fig. 1: Structural composition of the system under considera-
tion. The prism and metal layer allow plasmon resonance. The
dielectric materials are chosen so that the surplus charges are
confined to the plasma-facing layer, which is the material of
interest.

dependence of the reflectivity of the stack on the angle
of incidence. If one is interested only in measuring the
total charge collected by the dielectric the charge can be
confined to a narrow region using a rather thin plasma-
facing layer separated from the metal by a dielectric with
negative electron affinity producing thereby a potential
well. In case the density profile normal to the interface
should also be mapped out, the plasma-facing layer has to
be thick enough to host the profile yet thin enough to still
support the Berreman resonance.

To demonstrate the feasibility of the proposal we cal-
culate the reflectivity of the structure shown in fig. 1
as a function of the angle of incidence and the wave
number (which we use in the final plots instead of the
frequency) of the incident electromagnetic wave assum-
ing —for simplicity— the surplus charges distributed ho-
mogeneously in the plasma-facing layer. The surplus
charges’ polarizability, which we obtain from a memory
function approach taking electron-phonon scattering into
account [16], modifies the dielectric function of the layer
and is the ultimate reason for the charge-induced shifts
of the Berreman mode. In the infrared the shifts we ob-
tain are large enough to be detectable with common re-
flectivity setups. For the proof of principle presented in
this work we focus on measuring the total charge and not
the whole density profile. It would require a more sophis-
ticated theoretical treatment, taking nonlocal surface ef-
fects of the electromagnetic response of the charged stack
into account, and is left for future work. The widths of
the layers can thus be used almost freely as parameters to
optimize the sensitivity of the setup.

Theoretical description. – The physical process en-
abling the structure shown in fig. 1 to be used as a charge-
sensing device is the interaction of the surface plasmon
resonance (SPR) of the metallic layer below the prism
and the Berreman mode of the plasma-facing, charge-
carrying dielectric layer. To identify suitable materials
to be stacked together we start the description of our

proposal with a discussion of the role of each layer. The
prism and the metallic layer are essential for the SPR.
They constitute a Kretschmann configuration [17], where
total reflection of the incident wave at the prism-metal in-
terface creates the evanescent wave necessary for exciting
a SPP at the metal-dielectric interface [18]. For SPR the
wave extending into the plasma needs to be evanescent as
well. Hence, the total reflection condition sin2 α > 1/εP

imposes a lower limit to the angle of incidence which de-
pends on the dielectric function εP of the prism material.
Because of this relation, it should be nearly independent
of frequency ω in the range of interest. In addition it
should be real and positive. In the exploratory calcula-
tion presented below we use KBr, a material commonly
used in infrared optics because of its transparency in that
frequency range [19]. Its dielectric function varies little in
the relevant frequency range, but the critical angle already
depends significantly on frequency. The only condition for
the metal layer is a large negative real and a nonvanish-
ing imaginary part of the dielectric function for infrared
frequencies. A common material choice for SPR is gold.
We found a thickness of the gold film around 10 nm to
be optimal for our purpose. It is smaller than the 50 nm
typically used in optical SPR [18].

The actual plasma wall of interest is the plasma-facing
layer. Separated from the metal by another dielectric
layer, it is made out of the material whose charge accumu-
lation properties one wants to study. Since the dielectrics
commonly used in plasma physics are electro-positive, and
these are the ones we are aiming at, adding a separation
layer with negative electron affinity confines the surplus
electrons collected from the plasma to the plasma-facing
layer. The separating (insulating) layer also prevents the
surplus electrons from spilling into the metal layer. Since
in this work we focus on determining the total amount
of charge collected by the material in contact with the
plasma, it is advantageous to make the plasma-facing layer
rather thin. The insulating layer, preventing the surplus
electrons from leaving the film, leads then to a high lo-
cal space charge density and thus to a high polarizabil-
ity modifying the dielectric function of the film. It is
this modification that makes the reflectivity of the stack
charge-sensitive. We found a thickness of d2 = 20nm
to give satisfactory results. In our simulations Al2O3

is used as the plasma-facing material, but other electro-
positive dielectrics, such as SiO2, could be used as well.
The thickness of the insulating layer is not critical. We
choose d1 = 40nm, but even much thicker layers would
not change the results significantly (see discussion below).
For the material there are little restrictions except of being
electro-negative. However, it is convenient if the infrared
resonances of this layer are well separated from the reso-
nances of the plasma-facing layer. We thus use MgO which
is electro-negative and also satisfies the latter criterion.
Since the densities of ions and electrons in the plasma are
extremely low, the plasma is treated like a vacuum, that
is, its dielectric function ε = 1.
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We investigate the reflectivity, that is, the ratio of the
incident and reflected beam intensities as a function of the
angle of incidence and the frequency of the impinging in-
frared light. As usual, only p-polarized light is able to
excite SPPs [18]. Using the method of Lambin et al. for
multilayered materials [20,21], the solution of the Maxwell
equations yields an effective dielectric function ξ0(k, ω)
that can be written as a continued fraction,

ξ0(k, ω) = a1 −
b2
1

a1 + a2 − b22
a2+a3−...

(1)

with

ai =
εi√

1 −
(

ω
kc

)2
εi tanh

(√
1 −

(
ω
kc

)2
εi kdi

) (2)

and bi the same as ai when replacing tanh by sinh. Here
k = ω/c

√
εP sinα is the y-component of the wave vec-

tor which is conserved throughout the system, εi is the
(ω dependent) dielectric function in layer i, di is the
layer’s thickness and c is the vacuum speed of light. For
the semi-infinite plasma layer the coefficients are a4 =
1/

√
1 − (ω/(kc))2 and b4 = 0. The value ξ0 is the so-

lution of a Ricatti equation at the prism-metal-interface,
that is at z = 0 (see fig. 1), and determines the reflectivity
of the system via

|R|2 =
∣∣∣∣ξ0 − iεP tan α

ξ0 + iεP tan α

∣∣∣∣
2

. (3)

For the full derivation see ref. [21], where the calculation is
given without the prism, but the adjustments to account
for it are fairly simple.

In the infrared, the dielectric functions are highly fre-
quency dependent. Most dielectric materials can be mod-
eled as a system of damped oscillators, so that the real
and imaginary part of the dielectric function, labeled ε′

and ε′′ respectively, can be calculated as

ε′(ω) = ε∞ +
∑

i

fiω
2
i (ω2

i − ω2)
(ω2

i − ω2)2 + γ2
i ω2

(4)

and

ε′′(ω) =
∑

i

fiω
2
i γiω

(ω2
i − ω2)2 + γ2

i ω2
. (5)

The values for the resonance frequencies ωi, the weighting
factors fi, the damping coefficients γi, and the limit values
ε∞ are given in table 1 for MgO [22] and Al2O3 [23]. For
the gold layer, values from ref. [24] were used and when
necessary interpolated. In the infrared the absolute value
of both real and imaginary part are large (> 1000), the
real part being negative, and show roughly a ω−2 pro-
portionality. The dielectric function of KBr is given as a
Sellmeier equation and converted to the form of eq. (4) for
convenience, but no imaginary part is considered.

Analyzing eqs. (1)–(3), it becomes clear that the reflec-
tivity |R|2 will be unity if the dielectric functions have

Table 1: Material parameters for the dielectric functions of
MgO [22], Al2O3 [23] and KBr [19].

MgO Al2O3 KBr

ε∞ 3.01 3.2 1.39408
ω1( cm−1) 401 385 114.00
f1 6.6 0.3 2.06217
γ1( cm−1) 7.619 5.58 0
ω2( cm−1) 640 442 164.99
f2 0.045 2.7 0.17673
γ2( cm−1) 102.4 4.42 0
ω3( cm−1) 569 53476
f3 3.0 0.15587
γ3( cm−1) 11.38 0
ω4( cm−1) 635 57803
f4 0.3 0.01981
γ4( cm−1) 12.7 0
ω5( cm−1) 68493
f5 0.79221
γ5( cm−1) 0
m∗/m 0.4

no imaginary parts, because then ξ0 is real as well. Al-
though the dielectric function of gold has a significant
imaginary part in the whole infrared range, it only par-
takes in the absorption process through the surface plas-
mon. If the plasmon dispersion relation is not met, there
is no absorption by the gold layer. Taking the bulk di-
electric function of Al2O3 —the material of interest we
use as an illustration— plotted in fig. 2 into considera-
tion, absorption frequencies can be identified. They are
independent of the angle of incidence and occur where the
imaginary part of the dielectric function is considerable
compared to the real part, that is, at the resonance fre-
quencies ωi, or where the real part crosses or approaches
zero while the imaginary part stays finite, as it is the case
near λ−1 = 900 cm−1. At this particular wave number,
an enhanced absorption occurs for a film whose thickness
is much smaller than the corresponding wavelength. In
the infrared the film can be as thick as a few hundred
nanometers for the resonance —which is called Berreman
resonance [11]— to occur. It turns out to be very charge-
sensitive and thus most suitable for our purpose because
the additional polarizability in the film due to the surplus
charges leads to a strong shift of the Berreman resonance.

The polarizability αP = 4πiσb/ω, which is added to the
dielectric function of the plasma-facing layer, is caused by
the charges deposited into the plasma-facing layer. Us-
ing the memory function approach of ref. [16], the bulk
conductivity σb determining αP can be calculated as

σb(ω) =
e2nb

m∗
i

ω + M(ω)
, (6)
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Fig. 2: (Colour online) Bulk dielectric function of Al2O3 ob-
tained from eqs. (4) and (5) using the parameters given in
table 1. Absorption resonances occur when the imaginary part
of the dielectric function is large. The zero crossing of the real
part at about λ−1 = 900 cm−1 (see inset) will give rise to a
Berreman resonance in a film of thickness much smaller than
the corresponding wavelength [11]. It is the mode we use for
charge detection. Other resonances occur at lower wave num-
bers, but are significantly weaker and thus unsuitable for our
purpose.

where e and m∗ are the electron charge and conduc-
tion band effective mass, and nb is the bulk density of
the surplus electrons. The memory function M(ω) takes
electron-phonon scattering into account via the interaction
Hamiltonian Hint =

∑
k,q Mc†k+qck(aq + a†

−q)/(
√

V q),

with M =
√

2πe2h̄ωLO(ε−1
∞ − ε−1

0 ), where a
(†)
q and c

(†)
k

are the annihilation (creation) operators of phonons and
electrons, respectively, and V is the volume of the layer.
To second order in M the memory function is given by

M(ω) = M0

∞∫
−∞

dν̄
j(−ν̄) − j(ν̄)

ν̄(ν̄ − ν − i0+)
(7)

with

j(ν) =
eδ

eδ − 1
|ν + 1|e−δ(ν+1)/2K1(δ|ν + 1|/2)

+
1

eδ − 1
|ν − 1|e−δ(ν−1)/2K1(δ|ν − 1|/2), (8)

where ν = ω/ωLO is the frequency in units of the longitudi-
nal optical (LO) phonon frequency, δ = h̄ωLO/(kBT ) is the
LO phonon energy in units of the thermal energy (we use
T = 300K), K1 is a modified Bessel function, the prefactor
in eq. (7) is M0 = 4e2

√
m∗ωLOδ(ε−1

∞ − ε−1
0 )/(3

√
(2πh̄)3),

ε0 is the static dielectric function, and ωLO = 807 cm−1 is
a longitudinal optical phonon frequency [16].

Results. – The reflectivity of the stack of materials
without surplus charges is shown in fig. 3 as a function of
the wave number λ−1 and the angle of incidence α. Since
the dispersion of SPPs is below the one of regular light,
SPR occurs in our setup only for angles larger than the
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Fig. 3: (Colour online) Reflectivity of the uncharged stack as a
function of the angle of incidence α and the wave number λ−1.
The parameters are dM = 10 nm, d1 = 40 nm and d2 = 20 nm.
On the left the reflectivity is shown as a function of λ−1 for
a fixed angle of incidence α = 42◦, indicated by the vertical
dashed line, and on the bottom the reflectivity is plotted as
a function of the angle of incidence for λ−1 = 895 cm−1, in-
dicated by the horizontal dashed line. The solid black line
gives the critical angle for each wave number. The top hori-
zontal branch at about 900 cm−1 is caused by the Berreman
resonance of the Al2O3 layer, the lower one near 700 cm−1 is
the Berreman mode of the MgO layer, and the strong feature
slightly above 500 cm−1 is an ordinary SPR.

critical angle αc = arcsin(1/
√

εP) which is wave number
dependent because of the wave number dependence of the
prism’s dielectric function (solid black line). The SPP dis-
persion is the relation between the wave number and the
angle of incidence where absorption is observed. Because
of the wave number dependence of αc the dispersion is bent
over to larger angles. When another absorption mecha-
nism occurs at the same wave number, like the Berreman
resonance, avoided resonance crossing deforms the disper-
sion further, as can be seen for λ−1 around 900 cm−1 and
700 cm−1. Far away form the critical angle, that is, far
away from the black solid line, only the bulk absorption of
the dielectric layers at these wave numbers is observable
and there is no angle dependence. However, approaching
the critical angle, the horizontal absorption lines merge
into the plasmon mode. Because the dispersion can be
rather flat, when measuring the reflectivity as a function of
the angle of incidence around these wave numbers, a very
broad minimum is observed compared to the narrow min-
imum resulting from the undisturbed plasmon dispersion.
This broad minimum in the angle of incidence shown in
the bottom panel of fig. 3 for λ−1 around 900 cm−1 is very
sensitive to the wave numbers. It will thus be modified
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Fig. 4: (Colour online) Reflectivity for different surface charges. On the left it is shown as a function of the angle of incidence
and λ−1 = 895 cm−1 while on the right it is plotted as a function of λ−1 and α = 42◦. The insets show the minimum value
of the dip as a function of the surface charge n, which is homogeneously distributed in the plasma-facing layer giving rise to a
space charge density nb = n/d2. The parameters are the same as in fig. 3. The shifts at the maximum density n = 1015 m−2

are 0.1014◦and 0.6377 cm−1.

when surplus charges change the dielectric function of the
plasma-facing layer and hence the zero-crossing of its real
part.

Two practical ways are thus possible to measure a re-
flectivity curve in this type of setup. Either the wave
number λ−1 of the incident laser is fixed and the reflec-
tivity is measured as a function of the angle of incidence
α, or the latter is fixed and the laser’s wave number is
varied. When surplus charges are added to the plasma-
facing layer, the dispersion slightly changes because of the
modification of the layer’s dielectric function by the polar-
izability of the charges, and the dips in both measurement
methods shift. As can be seen in fig. 4 typical values for
these shifts are 0.1◦ in the angle and 0.6 cm−1 in the wave
number —or 8 nm in the wavelength— for a surface charge
density of n = 1015 m−2 which is a rough estimate of the
charge density maximally expected based on the upper
limit of the charge of micron-size dust particles in a low-
temperature neon discharge [25]. These shifts should be
measurable in common ATR setups which in the visible
range achieve resolutions of about 10−3 degree or 0.1 nm.
Refined setups provide even resolutions up to 10−5 degree
or 5 × 10−4 nm [26,27]. From the measured shift we can
then determine the surface charge n which for homoge-
neously distributed space charges obeys n = nbd2 with nb

the bulk density and d2 the thickness of the plasma-facing
layer. In the inset of fig. 4 we show how the minimum of
the dips shifts as a function of the charge density. Mea-
suring the position of the dip minimum opens thus a way
to determine the surface charge n.

The shifts can be explained as follows: Considering that
the additional charges shift the dielectric function linearly,
and that the absorption mode occurs where the dielectric

function crosses zero, it is quite clear that the surface
charges will shift the dispersion upward in the vicinity of
the Berreman mode. At a fixed wave number, the absorp-
tion dip as a function of the incident angle will thus shift
to a lower angle, while for a fixed angle the dip will move
to a higher wave number by about as much as the zero
crossing of the dielectric function is shifted. To maximize
the shift of the minimum angle, the dispersion should be
as flat as possible at the chosen wave number. On the
other hand, since the absorption becomes weaker as λ−1

approaches the Berreman resonance, due to the avoided
resonance crossing, the depth of the absorption dip is sig-
nificantly reduced. Thus, one needs to balance between
sensitivity and absorption strength when choosing the pa-
rameters. The data for the reflectivity dips and the charge-
induced shifts of the reflection minimum shown in fig. 4
were obtained for a particular choice of parameters. How-
ever, especially the angular sensitivity can be significantly
enhanced by other choices of parameters, as we will now
discuss, but at the cost of flatter and broader absorption
curves, that is, a decreased detectability.

In the rest of this section we describe the influence of the
system parameters on the dispersion and the reflectivity
curves shown in figs. 3 and 4. As mentioned above, the
metallic layer is necessary for SPR, that is, for exciting
SPPs. In the visible frequency range the optimal thickness
dM of the gold layer is about 50 nm. It is imposed by two
effects. Too thick layers reduce SPP excitation by too
much absorption in the metal, while too thin layers lead
to too high radiation damping in the prism attenuating
thereby also the SPR. In our case, the SPR creates a weak
angle dependence of the reflectivity near the Berreman
resonance, which is in the infrared. To be of any use as
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a charge diagnostics it has to be detectable. We have
thus to ensure that the metal layer is not too thick for
most of the infrared radiation to be reflected at the prism-
metal interface. Absorption by the SPPs or the modes of
the dielectric bulk would then be too weak to produce a
sizeable reflectivity dip. For a thickness of dM = 10nm we
find about a 5 to 10% drop at the minimum (see figs. 3
and 4). If the layer is twice that thick the drop is only
around 1 to 2%.

The insulating dielectric layer underneath the metal is
not involved in the absorption process at the relevant wave
numbers, because the Berreman resonance affiliated with
this material is at a lower wave number, see fig. 3. More-
over, at the considered wave numbers and angles the elec-
tromagnetic wave propagates through the insulating layer.
Thus, its thickness d1 is more or less arbitrary. Even for
d1 > 1μm the shifts of the Berreman mode of the plasma-
facing layer are still present. Only the avoided resonance
crossing of the Berreman mode of the insulating layer is
somewhat suppressed. The particular numerical values of
the shifts of the reflectivity dips, both in the angle of inci-
dence and the wave number, vary with the thickness. For
instance, for d1 = 1μm with the rest of the parameters
as in fig. 3, the shifts for n = 1015 m−2 are 0.142◦ and
0.386 cm−1, while for d1 = 4μm the shifts are 0.076◦ and
0.712 cm−1.

The thickness d2 of the plasma-facing layer has —in the
present case, where we want to measure only the total
amount of surplus charge, and hence use the layer also for
charge confinement— a significant influence on the charge
sensitivity of the method. It affects both the reflectivity
dip in angle and in wave number. The reason is quite obvi-
ous since we assume the total surface charge n provided by
the plasma homogeneously distributed within that layer.
Hence, the bulk charge density, entering the polarizability
through the conductivity (6), is given by nb = n/d2. The
thicker the plasma-facing layer the smaller is therefore nb

and hence the polarizability driving the shifts of the reflec-
tivity minima. The larger d2 the less pronounced is thus
the reflectivity dip as a function of λ−1 for a fixed angle
making it thus less suitable for charge diagnostics. How-
ever, in the setup we use a thicker layer also implies that
the avoided resonance crossing becomes stronger, that is,
the flat branch of the dispersion at around 900 cm−1 (viz:
fig. 3) degrades already at larger angles. As a result, the
reflectivity dip as a function of the angle becomes wider
and less deep. But surprisingly it shifts stronger with the
surface charge density n than the narrower dip of a less
thick layer. Thus, by choosing the thickness d2 accord-
ingly, the charge sensitivity of the reflectivity dip as a
function of angle for fixed λ−1 can be enhanced. Pushing
the laser frequency closer to the Berreman resonance has
the same effect. It makes the reflectivity dip flatter and
wider but at the same time also more charge-sensitive.

Conclusion. – We showed that in an infrared ATR
setup the presence of surplus charges deposited into a

plasma-facing dielectric layer manifests itself in a shift of a
reflectivity dip both in the wave number and the angle of
incidence. The results we obtained suggest moreover that
the shifts are detectable by standard infrared equipment.
In this exploratory work we focused on detecting the to-
tal charge accumulated in the plasma-facing film which we
moreover assumed to be homogeneously distributed. The
thicknesses of the layers of the stack used as a charge mea-
suring device could thus be chosen freely to optimize the
dip’s detectability and charge sensitivity. In principle the
device can also be used to map out the density profile nor-
mal to the interface. The plasma-facing layer then has to
be thick enough to host the whole space charge profile.
More refined theoretical treatments are then necessary.
The principle of the method however remains the same:
Using the Berreman mode of the plasma-facing layer as
a charge sensor. Compared to other approaches measur-
ing the wall charge, the method we suggest does not ex-
ploit material-specific properties. Being a spectroscopic
technique it may have the potential to track the charge
accumulation in time. It does not require complex experi-
mental setups. In fact we expect it to be compatible with
commonly used discharge geometries. The stack of mate-
rials measuring the wall charge can be integrated into the
plasma wall or the electrode. Mechanical stability is then
provided by a sufficiently thick prism.
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