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Abstract – We provide an introduction to a very specific toy model of memristive networks, for
which an exact differential equation for the internal memory which contains the Kirchhoff laws is
known. In particular, we highlight how the circuit topology enters the dynamics via an analysis of
directed graph. We try to highlight in particular the connection between the asymptotic states of
memristors and the Ising model, and the relation to the dynamics and statics of disordered systems.

perspective Copyright c© EPLA, 2019

Introduction. – This perspective paper is concerned
with the open questions that we find interesting in the
context of a seemingly simple toy model of memristive
“endogeneous” dynamics. Some aspects, important for
the understanding of the behavior of circuits of memris-
tors, also apply to the equilibrium configuration of cur-
rents in a resistive network, as well as other systems in
which Kirchhoff laws play an important role. By no means
this paper is exhaustive, and for a broader overview of the
topic of memristors we suggest the recent and less recent
reviews [1–3]. Our aim is to emphasize two aspects of the
dynamics of memristors which characterize the behavior of
a circuit with memory: the rather non-trivial connection
between the underlying circuit and the non-linear dynam-
ics of these components, and the relationship between the
physics of disordered systems and the dynamical asymp-
totic behavior of the circuit. In order to accomplish this
task, we generalize the previously obtained equation to the
case in which the disorder is present, and study the new
equation.

In the late 2000s, researchers at Hewlett-Packard re-
alized [4–6] that many transition metal dioxides had the
properties, initially theorized by Chua [7,8] in the early
1970s, of possessing an internal memory and a hysteretic
behavior; certain metal oxides such as those derived from
tungsten or titanium have the interesting property that
the resistance changes noticeably as a function of time.

The state of the resistance between two limiting values can
be parametrized by a parameter w, which is constrained
between 0 and 1. We will refer to this parameter as the
internal memory parameter. For the case of titanium diox-
ide, the evolution of the resistance was described by the
following two equations:

R(w) = Ron(1 − w) + wRoff ≡ Ron(1 + ξw),
d
dt

w(t) = αw − Ron

β
I(t),

initially studied for α = 0, and where 0 ≤ w ≤ 1,
ξ = Roff−Ron

Ron
, and I(t) is the current flowing in the de-

vice at time t. If α = 0, the second equation can be inte-
grated and w shown to be directly related to the charge
in the conductor. Albeit this model has been revisited
several times, it still serves as a prototypical model of a
memory-resistor: the memristor. Also, it became clear
that memory is a very common feature of nanoscale com-
ponents [9,10]. The interest in these components is due to
the fact that memristors can serve for the purpose of neu-
romorphic computing [11]. For a more technology-oriented
review of the subject, we suggest in particular the recent
review [1].

Given the brevity of this article, we will focus on the
stylized facts known for the vectorial differential equation,
derived in [12]. The equation describes the time evolution
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of the internal memory of a memristive circuit (circuit
made of memristors only) for the case of homogeneous
memristors (α, β, Ron, Roff identical across the network):

d
dt

�w(t) = α�w(t) − 1
β

(I + ξΩW (t))−1 Ω�S(t), (1)

where wi(t) are the internal variables constrained between
0 and 1, Wij(t) = wi(t)δij , I is the identity matrix, Ω
is a matrix which we will describe soon, and Si(t) is a
vector of the voltage sources. We can see that the con-
stants α, β and ξ control the decay and reinforcement time
scales and the non-linearity in the equation, respectively.
In principle, we could discuss the properties of this equa-
tion without referring to where it came from, but for a
deeper understanding of its properties it is useful to un-
derstand its origins. We can think of the variables wi as
living on the edges of a graph, where Ωij (which we antic-
ipate to be a projector operator) contains the information
about the topology of the graph. Each edge of the graph
represents a resistive component.

There are several limits to the applicability of eq. (13).
For instance, it has been derived only for ideal memris-
tors, in which the time derivative of the internal param-
eter depends only linearly on the current, and is ideal:
no parasitic capacitance or inductance are considered in
the dynamics. Also, we consider only an endogenous dy-
namics, e.g., there are no voltage or current generators in
parallel to the system (circuit) under scrutiny. This im-
plies that, for instance, the interesting dynamics of [13],
in which it has been shown that memristors can be used
to solve a maze, cannot be analyzed using the approach of
this paper. Also, the possibility of solving the equation in
full generality is an illusion, due to the constraints which
make the differential equation discontinuous. What is the
purpose then?

The advantages of using a toy model for analyzing a sys-
tem which would be, otherwise, much more complicated
are multiple. For instance, if the circuit is controlled with
sinusoidal voltage and none of the memristor reaches the
boundary, then the dynamics is continuous and a solution
of the equation provides a solution for the evolution of
each single memristor. A solution for small values of ξ
and S when controlled with sinusoidal voltages has been
provided in [12]. Also, when controlled with constant volt-
age, the dynamics of the circuit (as we will discuss be-
low) is interesting enough to serve as a good toy model
to the relaxation of more general circuits with memory.
If, for instance, there are parasitic capacitance and induc-
tance and the system is controlled with sinusoidal voltages,
the dynamics of equation. (13) can still serve to analyze
the dynamics for longer timescales (where now we replace
R(t) → Z(t), the admittance). Also, how do the Kirchhoff
constraints affect the dynamics? Are there any hidden
symmetries? How do memristors interact in the short-
term dynamics? Is there an emergent speed of light in the
system? As we will see, these questions can be asked (and
answered) with the toy model above.

For instance, the differential equation (13), written in
this form, highlighlites some non-obvious symmetries of
the dynamics of memristors. In fact, since we can always
write �S = Ω�S +(I −Ω)�S, it is easy to see that we can add
to �S any vector S̃ = (I − Ω)�k, which will not affect the
dynamics. This form of freedom arises from the Kirchhoff
constraints from which the differential equation has been
derived. It is due to the Kirchhoff constraints that in
principle the system could have long-range interactions;
this is one of the formal arguments we cover in this paper.

Specifically, the first half of this paper focuses on the
connection between Ω and the graph (the circuit), while
the second part on the properties of the differential equa-
tion which might be of interest to an audience of statistical
physicists. Albeit most of the work discussed in this paper
is not novel, there are some novel points of view that we
wish to share along with recent numerical simulations.

From graph theory. . . – Let us first provide a simple
explanation of the origin and applications of the matrix Ω,
as its use is not new and deeply connected to constrained
flows, and thus resistive circuits. What we state below
about the graph theoretical approach to memristors is true
in fact for resistor networks as well. Let us consider a net-
work of resistors connected in series to voltage generators;
the graph G represents a circuit, and to each edge ei of the
graph we can associate a pair of variables (Ri, Si), where
Ri is the resistance and Si the voltage. If Rij = Rjδij is
the diagonal matrix of the resistances, then it is known
that [12,14,15]

�I = −At(ARAt)−1A�S, (2)

where the vector �I is the equilibrium configuration of the
currents on each edge of the graph, and A is the cycle
matrix of the graph, which we will define shortly. We
note that in the case of unit resistances, we have

�I = −At(AAt)−1A�S = −Ω�S, (3)

where we can recognize At(AAt)−1A as a projector, which
we denote by Ω and which satisfies Ω2 = Ω. It is not
obvious to see this, but Ω expresses the Kirchhoff laws [16]
for the circuits. It is however interesting to note that Ω is
a generalization of the concept of effective resistance. Let
us assume, for instance, that voltage is applied to only one
edge in the network. We denote that edge by ek and we
label the vertices at its ends by v1 and v2. Then we have
that, since the current that flows into the resistor network
must flow out, i.e., Sk

1+Rk
= Ik. It is easy to see, using

eq. (3), that Rk is the definition of effective resistance
between the nodes v1 and v2, and thus we have

Rk = 1 +
1

Ωkk
.

In addition to this information, Ωkl will also contain the
information about the current flowing through the resis-
tance k in the network as we apply the voltage in series
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Fig. 1: A labelled directed planar graph.

on the resistance l. In order to be more precise about
the properties of Ω, we provide a quick graph theoretic
introduction. A (directed) graph consists of two objects:
vertices and edges. Vertices can be thought of as points
and edges as lines that connect some of those points. We
will label vertices as v1, . . . , vn and edges as e1, . . . , em.
Mathematically, we represent an edge starting at vertex
vi and ending at vertex vj as an ordered pair (vi, vj). We
say that a graph is planar if it can be drawn in a plane
without any of its edges intersecting.

Incidence matrix: ΩBT . Let G be a directed graph.
One way of representing G is by specifying where each of
its edges starts and where it ends. It is convenient to do
this using a matrix. We call such a matrix an incidence
matrix.

As an example, consider the graph labelled as in fig. 1.
Each column of its incidence matrix represents an edge:

the first edge starts at vertex 1 and ends at vertex 2, so the
first column of the matrix has entry 1 in the first row and
entry −1 in the second row. All the other entries in the
first column are 0 because none of the other vertices are
a part of that edge. By continuing this process for every
edge, we get the incidence matrix B of the given graph:

B =

⎛
⎜⎜⎜⎜⎝

1 −1 −1 0 0 0 0 0
−1 0 0 1 1 0 0 0
0 1 0 −1 0 −1 −1 0
0 0 0 0 0 1 0 −1
0 0 1 0 −1 0 1 1

⎞
⎟⎟⎟⎟⎠ . (4)

More formally, if a graph G has v vertices and e edges,
then the incidence matrix B of G is a v × e matrix (i.e., a
matrix with v rows and e columns), whose entry (i, j) is
defined as

Bij :=

⎧⎪⎨
⎪⎩

1, if vi is the initial vertex of the edge ej ,
−1, if vi is the terminal vertex of the edge ej,
0, otherwise.

(5)
If B is an incidence matrix, we can define the projector

operator ΩBT :

ΩBT = BT
(
BBT

)−1
B, Ω2

BT = ΩBT . (6)

If we try to compute ΩBT from the definition, we will
find that the inverse

(
BBT

)−1 does not exist in general.

Fig. 2: An example of a cycle.

This can be solved by either considering the reduced inci-
dence matrix (obtained by removing a row from the orig-
inal incidence matrix) or by taking the pseudoinverse of
the expression instead of the “regular” inverse.

Cycle matrix: Ω. Before we can define the projector
operator Ω, we discuss a few more objects from graph
theory. We define a walk on a directed graph G to be a
sequence of vertices, say v1, v2, . . . , vn, such that for every
pair of consecutive vertices in the sequence there exists
an edge that connects them, i.e., for every i such that
1 < i ≤ n either (vi−1, vi) ∈ E(G) or (vi, vi−1) ∈ E(G),
where E(G) is the edge set of the graph G.

A cycle is a walk W = v1v2 . . . vn such that l ≥ 3,
v0 = vn and the vertices vi, 0 < i < n are distinct from
each other and from v0. An example of a cycle is shown
in fig. 2.

The space spanned by the edges has a structure of a
vector space. A cycle space is the subset of edge space
that is spanned by all cycles of a graph. A graphical rep-
resentation of this fact is shown in fig. 3. A cycle matrix
A is a matrix whose columns form a basis of the cycle
space. For example, if {�c1, . . . ,�cn} is a set of column vec-
tors that form a basis of the cycle space, then the cycle
matrix is A = (�c1, . . . ,�cn). Finally, the projector oper-
ator Ω on the cycle space of the graph is defined to be
Ω = A(AT A)−1AT . The following useful identity connects
the projector operator Ω (based on the matrix A) to the
projector operator ΩBT (based on the incidence matrix B)
Ω = I − ΩBT .

Locality. One question which arises immediately is:
given the fact that the Kirchhoff constraints introduce
some sort of non-locality between resistors (at equilibrium)
and memristors (out of equilibrium), it is worth mention-
ing a few results about the matrix Ω. As we will see, this
problem is connected to the graph embedding problem as
well. Let us first focus on planar graphs. In [17] the fol-
lowing bound on locality of interactions for planar graphs
was proved:

|Ωi,j | ≤ e−zd(i,j)+ρ̃. (7)

For the purpose of this paper, we can think of z, ρ̃ as con-
stants and of d(i, j) as the distance between edges i and j.
The full derivation can be found in [17]. Here we will focus
on one of the key parts of the calculation and provide a
no-go theorem for the generalization of the argument for
arbitrary non-planar graphs. Finding an analytic expres-
sion for a quantity which involves an inverse of a poten-
tially large matrix is a non-trivial problem. To overcome
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Fig. 3: Addition of cycles.

this in the case of Ω = A(AT A)−1AT , it was noticed that
the expression for Ω simplifies if the matrix A is orthonor-
malised first. If we denote by Ã the orthonormalised ma-
trix, we get Ω = ÃÃ−1, which is a matrix product. The
difficulty is now in calculating the orthonormalised matrix
Ã from A. We proceed by using a non-algorithmic expres-
sion for the Gram-Schmidt process: the p-th column, Ap,
of the orthonormalised matrix Ã is given by

Ãp = det

⎛
⎜⎝

〈 �A1, �A1〉 〈 �A1, �A2〉 . . . 〈 �An, �An〉 �A1
...

...
. . .

...
...

〈 �An, �A1〉 〈 �An, �A2〉 . . . 〈 �An, �An〉 �An

⎞
⎟⎠ .

(8)
We will now show how the inner products 〈Ai, Aj〉 can

be expressed in terms of the adjacency matrix.
In the case of a grid graph G, we perform the following

steps:

– First, we pick a basis of the cycle space of G as in
fig. 4.

– Then we denote by G′ the graph that has a vertex
for each basis cycle of G and an edge between two
vertices if the corresponding cycles in G are adjacent.

– Finally, we express the inner products as

〈Ai, Aj〉 =

{
Mi,j , if i = j,

|Ci|, if i = j,
(9)

where Mi,j is the adjacency matrix of G′ and |Ci|
is the length of the cycle corresponding to the i-th
vertex of G′.

The last step was key as it allowed manipulations which
ultimately lead to the expression for the bound in [17].

Let us now focus on the case of non-planar graphs,
where the problems arise. We found that the same method
cannot be applied to the non-planar graphs, and here we
provide an explanation of the reason. Physically, we would
expect that for graphs that present a notion of distance
(unlike, for instance, random graph, where the graph dia-
mater scales as D ≈ log(N) in the number of nodes N), a
similar bound would apply. In the case of planar graphs,
it was possible to choose a basis of the cycle space in such
a way that the basis cycles bound the faces of the graph,
greatly simplifying the proof.

A generalisation of this construction to non-planar
graphs is not obvious due to the fact that in non-planar

Fig. 4: A choice of a basis on the grid graph G.

Fig. 5: An example of a non-planar graph, K3,3.

graphs the notion of faces is not well defined. In an at-
tempt to overcome this, we defined the faces of a non-
planar graph G to be the faces of an embedding of G in
some higher-dimensional closed orientable surface.

We illustrate this on the simplest non-planar graph,
K3,3, shown in fig. 5. Let T 2 be a torus. An embed-
ding of K3,3 in T 2 is shown in fig. 6. We thus define the
faces of K3,3 to be the connected components of T 2 \K̄3,3,
where K̄3,3 denotes the embedding of K3,3 inside the torus
T 2. To be able to use the method from [17], we have to
find a basis of the cycle space consisting only of cycles
that bound faces. However, the number of elements in
the basis of a cycle space of K3,3 is 4. As can be seen in
fig. 6 above, there are only 3 faces in the embedding of K3,3
in T 2. This is a problem which we elucidate further below.
Setting aside the question of well-definedness of faces, it
might seem that if we embed K3,3 in a different way or in
some other closed orientable surface (for example a triple
torus shown in fig. 7), we could get a sufficient number
of faces. We prove below that there exists no embedding
with sufficient number of faces.

Let us introduce the Euler characteristic of a graph G
embedded in a surface S to be

χG,S = |V | − |E| + |F |. (10)
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Fig. 6: An embedding of K3,3 in a torus.

Fig. 7: A “triple torus”.

We want the number of faces to be greater than or equal
to the dimension of the cycle space. Thus,

|F | ≥ dim C = |E| − (|V | − 1), (11)

where C denotes the cycle space. Substituting eq. (11) into
the expression for Euler characteristic given by eq. (10),
we get

χG,S = |V | − |E| + |F |
≥ |V | − |E| + (|E| − (|V | − 1)) .

That is, we need χG,S ≥ 1. A graph embedded in a surface
has Euler characteristic equal to the Euler characteristic of
that surface. We can also express the Euler characteristic
of a surface in terms of its genus g as χG,S = 2 − 2g.
Hence, using the previously obtained inequality we get
g ≤ 1/2. That is, we can only find the sufficient number
of cycles that bound faces in surfaces with less than 1/2
holes. The only such closed orientable surface is a sphere
(with 0 holes), and a sphere is equivalent to a plane for all
our purposes. Therefore, we cannot use the same approach
as in the planar case. This leaves us with the open question
of how to generalize the bound on the interaction strength
between memristors to more general non-planar graphs.

Given that the circuit enters the equation only in Ω and
that it represents the Kirchhoff constraints, its study is
useful. The locality bound is useful for bounding also the
long-term dynamics of the system. As shown, for instance,
in [17], these locality bounds imply an emergent speed of
light in the system, similarly to the Lieb-Robinson bounds
for quantum systems [18,19]:

|〈wi(t)wj(0)〉| ≤ Ke−(dij−vefft), (12)

where dij is the Hamming distance between the mem-
ristors and veff an effective speed of light. It is thus

interesting to study these bounds for more general circuits
that are not necessarily planar.

. . . to statistical physics. Insofar we have focused on
a network of resistors via the study of the matrix Ω. An
initial attempt at studying the statistical properties of dy-
namical graphs with memory was the one of [20], where the
emergence of scale-free networks out of the endogeneous
dynamics of excitable memristor-like components was ob-
served. What about a network of memristors which satisfy
Kirchhoff laws? In this case the non-linearity of the dif-
ferential equation makes the analysis more complicated.
The differential equation becomes vectorial as in eq. (13),
where the variables �w are constrained on the hypercube
[0, 1]M with M being the number of memristors. It has
been noted in [12] that the for “complex enough” circuits,
the average parameter 〈w〉 = 1

N

∑
i wi relaxes slowly to

the asymptotic values w = 1 and w = 0.
The operator Ω′ plays an important role in the differen-

tial equation (1), as it is the only place where the graph
topology enters. In the regime of large (random) graphs,
slow relaxation can be observed in the average parameter
〈w〉. A power law type of relaxation had been observed in
the relaxation of 〈w〉 to the asymptotic values of w = 1
and w = 0 (t−ρ with ρ ≈ 0.92). This feature is similar
to what was observed experimentally in [21,22] for atomic
switch networks. What seems to be a good parameter
for the transition from fast to slow relaxation is the ratio
between the number of (fundamental) circuit loops and
memristors components, which is upper bounded by one.

In the case with disorder, i.e., when not all memristors
have similar properties, it can be shown that a generalized
differential equation for the memories still exists and is
given by

d
dt

�w(t) = A�w(t) − B−1 (I + Ω′W (t))−1 Ω′T −1�S(t), (13)

where now Aij = αiδij , Bij = βiδij and where T =
δij(1 + Nii) represents the disorder among the compo-

nent. The matrix T characterizes the ratio Ri
off−Ri

on
Ri

on
for

each single memristor and Nii represents the disorder at
fixed network topology. The matrix T enters also in the
modified projector operator Ω′. The operator Ω′ is in fact
a non-orthogonal projector, i.e., Ω′ = At(ATAt)−1AT ; if
Nij = 0, we recover the previous equation with a sym-
metric projector operator. This type of non-orthogonal
projectors was also found relevant for the mixture of ac-
tive and passive memristive components, in which T can
also take negative values [12,23].

Recent simulations, in which we have accounted for the
disorder, have shown that for larger graphs and statistics,
the relaxation of the average internal memory, once we
factor in the disorder, is compatible with a logarithmic
one. For instance, in fig. 8 we plot the average parameter
〈w〉 that was obtained by averaging over different realiza-
tions of the disorder and for longer times. We see that
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Fig. 8: Average relaxation for fixed σ = 0.05, averaged over
20 simulations, on a complete graph with 50 vertices (1225
edges). The simulations were performed using dt = 0.1,
α = 0.003, β = 100 and were homogeneous across the system.

a log(t) regime is established after an initial slow relax-
ation. This is one of the typical features of glassy systems
which we find interesting in these rather simple systems.
If we aim to use these systems for computation, glassiness
in the dynamics will naturally imply a slow approach for
the solution of the problem under scrutiny, for instance.
It is interesting to note that a connection to disordered
systems can be made a bit more precise by looking at the
properties of the asymptotic states wi as a function of the
matrix Ω even in the case with homogeneous memristors.
It is interesting to note that the equation which describes
the evolution of memristors, similarly to the case of re-
sistors, also tries to solve another optimization problem,
but this time more complicated: the QUBO, or Quadrat-
ically Unconstrained Binary Optimization and known in
physics as the ground state of the Ising model. It has been
noted first in [24] that for a model of mean-field memris-
tor interaction a Lyapunov function, similar in spirit to the
Blume-Capel model [25], exists. That model, in particu-
lar, is shown to be exactly solvable. In particular, it has
been suggested in [24] that the the mean-field theory, simi-
larly to the case of the Curie-Weiß model, provides a good
estimate of the asymptotic value of the parameter 〈w〉,
which can be considered an order parameter which par-
allels the mean magnetization of the Ising model. Given
the fact that we are interested in the zero-temperature
limit of the system, the mean-field theory is used at fi-
nite temperature and the temperature sent to zero at the
end of the calculation. The averages are then intendended
as averages over the initial conditions for the dynamics.
For instance, in fig. 9 we show the order parameter 〈w〉
for the case α > 0 and α < 0 obtained via Monte Carlo
and compared with the mean-field theory result as a func-
tion of the mean external voltage S. The case α < 0 is
asymptotically stable, while the case α > 0 is asymptoti-
cally unstable. Yet, the information on the position of the

Fig. 9: Mean-field theory vs. numerical results for the asymp-
totic average parameter 〈w〉, taken from [24].

asymptotic fixed point of the dynamics can be used for
obtaining information about the averages 〈w〉. In particu-
lar, this suggests that the mean-field theory of spin glasses
could be an important source of inspiration to study more
general systems [26].

For the more general case of eq. (13), it has been noted
that the Lyapunov functional can be approximated by
an Ising model (i.e., binary, rather than continuous vari-
ables), in which the exchange interaction is proportional
to Ωij and with a non-zero effective external field. For the
case of ideal memristive circuits, Ω has to be a very spe-
cific matrix based on the circuit [27]. It has been observed
numerically that for random graphs, the distribution of
the elements Ωij is a trimodal distribution; however, the
bulk of the probability is well approximated by a zero-
centered Gaussian distribution with 〈Ω2

ij〉 ≈ 1
N , where N

is the number of memristors (or edges in the circuit). This
implies memristive networks, reinforcing the connection to
the theory of mean-field spin glasses [28].

From the point of view of optimization purposes, how-
ever, the system of differential equations can be simulated
for arbitrary Ω in principle, which suggests a heuristic
optimization algorithm for the QUBO type of problems.
Thus, the memristive differential equation can serve as a
heuristic method for tackling a NP-complete problem such
as QUBO [27]. These problems are NP-complete because
there is no known algorithm that is better than exhaustive
search: because of the binary nature of the variables, we
necessarily have to explore all the 2N possible values of
the variables �w to decide which extremum (or extrema)
is better. In a certain sense, the memristive differential
equation is a relaxation of the QUBO problem to contin-
uous variables. This is the same class of the frustrated
Ising model. The connection to NP-complete problems
has also been observed in other memristor-based architec-
tures [29,30]. The functional that the memristive networks
are trying to locally maximize is the functional

M(W ) =
∑

i

(
ri − p

2
Σii

)
wi − p

2

∑
i�=j

wiΣijwj , (14)
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where ri are the external fields and Σ the exchange in-
teraction. The mapping between the optimization of the
returns above and the equivalent memristive equation is

Σ = Ω,
p

2
= αξ.

α

2
+

αξ

3
Ωii − 1

β

∑
j

ΩijSj = ri − p

2
Σii,

(15)

We can obtain the vector S through inversion of the ma-
trix Σ, if it is invertible. Algorithmically, there is still the
freedom of choosing ξ and α given p, but the two limits are
different in nature: ξ 
 1 is the deep nonlinear regime,
while α 
 1 is the deep diffusive regime. Nonetheless, the
mapping between the asymptotic dynamics and the Ising
model allows the use of inference methods for the Ising
model [31]. It is worth mentioning that other connections
to statistical physics of disordered systems, and in partic-
ular highlighting the importance of memristor switching
for the dynamics of memristive systems have been inves-
tigated in [32,33].

Conclusions. – In the present paper we have discussed
the connection between the dynamics of memristors, graph
theory and the properties of certain disordered systems.
This paper is meant as an invitation to the more theoret-
ically inclined researchers. We have highlighted the open
problems in the analysis of a specific toy model of memris-
tive endogenous dynamics and heuristic optimization al-
gorithms for quadratically unconstrained binary optimiza-
tion. We hope that the reader will use the toy model we
have discussed in this paper as a playground for answering
some precise mathematical questions regarding the inter-
esting dynamics of memristors.
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