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Abstract – We theoretically study the geometric effect of quantum dynamical evolution in the
presence of a nonequilibrium noisy environment. We derive the expression of the time-dependent
geometric phase in terms of the dynamical evolution and the overlap between the time evolved
state and initial state. It is shown that the frequency shift induced by the environmental nonequi-
librium feature plays a crucial role in the geometric phase and evolution path of the quantum
dynamics. The nonequilibrium feature of the environment makes the length of the evolution
path become longer and reduces the dynamical decoherence and non-Markovian behavior in the
quantum dynamics.

editor’s  choice Copyright c© EPLA, 2019

Introduction. – The global phase related to the
dynamical evolution of a quantum system contains a
gauge-invariant component, namely, the geometric phase
which depends only on the geometry of the path traversed
by the system during the quantum evolution [1–5]. Due
to the fact that a quantum system unavoidably interacts
with its environment and undergoes decoherence, much
extensive attention has been paid to theoretical investi-
gations on the geometric phase in open quantum systems
under nonunitary dynamics [6–23]. The geometric phase
associated with quantum evolution has been observed
and measured in a variety of experiments [24–33], and it
has demonstrated that its geometric feature has potential
applications in studying quantum phase transition and
realizing geometric quantum computation [34–38]. The
investigation on the geometry in the dynamical evolution
of an open quantum system is crucial for further under-
standing the origins of decoherence, quantum-classical
transition and so on.

With the development of experimental techniques to
control and manipulate quantum systems at different time
scales and energy ranges, the study of non-Markovian be-
havior in the dynamical evolution of open quantum sys-
tems has increasingly evolved into an attractive research

(a)E-mail: xiangjicai@foxmail.com
(b)E-mail: yhzhang@sdnu.edu.cn

field [39–49]. Meanwhile, the non-Markovian effect of
the dynamics in open quantum systems on the geometric
phase has been well studied in equilibrium environ-
ments with both Markov and stationary statistical proper-
ties [50–53]. As a matter of fact, there are many significant
situations where a nonequilibrium environment has an es-
sential influence on the dynamical evolution of a quantum
system. For example, in transient and ultrafast processes
in physical or biological systems, some dynamical behav-
ior occurs on sufficiently short time scales, and there may
be no chance for the environmental initial nonequilibrium
states induced by the coupling between the system and
environment to reach equilibrium rapidly [54–57].

The environment with nonstationary statistics has been
taken into extensive consideration, corresponding physi-
cally to impulsively environmental excited phonons out of
thermal equilibrium states initially. It has drawn much at-
tention in the study of dynamical decoherence, geometric
phases and quantum speed limits of open quantum sys-
tems in nonequilibrium environments and quantum mea-
surements detected by a voltage-biased quantum point
contact (QPC) or a single-electron transistor [58–67].
Given that a quantum system may interact with a compos-
ite or structured environment, where the coupling between
the sub-environments plays an essential role in the dynam-
ical evolution of the quantum system, not only the system
dynamics but the statistical properties of the environment
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display the non-Markovian feature, namely, the memory
effect of the environmental noise [68–70]. It has been
shown that the nonequilibrium feature of the environment
gives rise to a Lamb-type renormalization of the intrinsic
energy levels which contributes additionally to the uni-
tary dynamical evolution of the quantum system and that
the environment non-Markovian feature may not result in
non-Markovian behavior in the dynamics of the quantum
system [62,65].

In this letter, we theoretically study the geometric ef-
fect of evolution of a two-level quantum system coupled
to a nonequilibrium noisy environment. Based on the
quantum master equation and geometric phase defined
for nonunitary evolution, we derive the time-dependent
geometric phase composed of the contributions from the
dynamical evolution and the overlap between the time
evolved state and initial state. We discuss how the en-
vironmental nonequilibrium feature influences the geome-
try of quantum evolution and explore the mechanism for
the geometric effect of quantum dynamical evolution in
a nonequilibrium noisy environment. It is shown that
the renormalization of the intrinsic energy of the system,
namely, the frequency shift induced by the nonequilibrium
feature of the environment has a significant impact on
both the geometric phase and the evolution path of the
dynamics.

Theoretical framework. – We consider a two-level
quantum system interacting with a nonequilibrium noisy
environment. The environmental effect leads to the in-
trinsic energy of the quantum system driven linearly by
a nonstationary and non-Markovian stochastic noise pro-
cess. In an equilibrium environment, when the interaction
Hamitonian is commutative with the intrinsic Hamiltonian
of the system, the pure decoherence process does not cause
the energy renormalization, whereas in a nonequilibrium
environment, it gives rise to the renormalization of the in-
trinsic energy levels due to the nonstationary statistical
properties of the environmental noise [62,65].

For the pure decoherence in a nonequilibrium environ-
ment, the uncontrolled environmental degrees of freedom
give rise to the stochastic fluctuations in the Hamiltonian
of the quantum system as [71,72]

H(t) = H0 +Hξ(t) =
h̄

2
ω0σz +

h̄

2
ξ(t)σz , (1)

where H0 is the intrinsic Hamiltonian of the quantum sys-
tem, Hξ(t) is the stochastic fluctuating term caused by
the interaction with the environment, σz is the Pauli ma-
trix, ω0 denotes the intrinsic frequency difference between
the excited state |e〉 and ground state |g〉, and ξ(t) repre-
sents the environmental noise exhibiting both nonstation-
ary and non-Markovian features. The dynamical evolution
for the total density matrix yields the Liouville equation

∂

∂t
ρ(t; ξ(t)) = − i

h̄
[H(t), ρ(t; ξ(t))]. (2)

The reduced density matrix of the quantum system
can be derived by taking an ensemble average over the
environmental noise as ρ(t) = 〈ρ(t; ξ(t))〉. In a nonequi-
librium environment, the dynamical evolution for the re-
duced density matrix of the quantum system is governed
by a time-local master equation as [64,65]

d
dt
ρ(t) = − i

2
[ω0 − s(t)][σz , ρ(t)] +

1
2
γ(t)[σzρ(t)σz − ρ(t)].

(3)
Due to the nonstationary statistical properties of the envi-
ronmental noise, the decoherence factor F (t) = |F (t)|eiφ(t)

is a complex time-dependent function with the modulus
|F (t)| and the argument φ(t) and it is employed to quan-
tify the coherence evolution of the system initially pre-
pared in the superposition state in the basis {|e〉, |g〉}.
The quantum evolution of the reduced density matrix is
closely associated with the time-dependent frequency shift
s(t) and decoherence rate γ(t) which are defined, respec-
tively, as

s(t) = −Im
[
dF (t)/dt
F (t)

]
= − d

dt
φ(t),

γ(t) = −Re
[
dF (t)/dt
F (t)

]
= − 1

|F (t)|
d
dt

|F (t)|,
(4)

where the frequency shift s(t) is used to identify the deco-
herence processes in equilibrium and nonequilibrium envi-
ronments and the decoherence rate γ(t) is related closely
to the exchange of information between the system and
environment, namely, non-Markovian behavior in the sys-
tem dynamics.

To quantify the non-Markovian effect in the dynami-
cal evolution, numerous measures for non-Markovianity
in open quantum systems have been proposed based
on different quantification of the distinguishability be-
tween quantum states, different divisibility properties
of the quantum dynamical map and some other quan-
tities related to the concepts in quantum information
which exhibit a monotonic or an oscillating behavior in
time [40–43]. A most widespread measure for quan-
tification of non-Markovianity in the dynamics of open
quantum systems is based on the general notion of dis-
tinguishability of quantum states: when the distinguisha-
bility decreases, the information flows from the system
into the environment, while an increase of the trace dis-
tance signifies a flow of information from the environment
back into the system. Based on this measure, the non-
Markovianity in the dynamical evolution of the quantum
system can be generally defined by [40]

N = max
ρ1,2(0)

∫
σ>0

σ(t, ρ1,2(0))dt, (5)

where σ(t, ρ1,2(0)) = dD(ρ1(t), ρ2(t))/dt denotes the rate
of change of the trace distance

D(ρ1, ρ2) =
1
2
tr|ρ1 − ρ2|, (6)
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with |A| =
√
A†A being the modulus of an operator A

and the bound 0 ≤ D ≤ 1. It is worth pointing out
that it is more convenient to employ an insensitive mea-
sure constructed in ref. [49] to quantify the degree of
non-Markovian behavior in the dynamics arising from the
possible overestimate of fluctuations in the trace distance,
such as in the case driven by an external field. The max-
imum of the trace distance difference in eq. (5) can be
obtained by taking optimization over all pairs of initial
states, and, thus, the time-dependent non-Markovianity
can be written as [45]

N (t) = −
∫ t

0 γ(τ)<0
γ(τ)|F (τ)|dτ, (7)

where the optimal pairs of initial states are chosen as
ρ1,2(0) = 1

2 (|e〉 ± |g〉)(〈e| ± 〈g|).
We consider the case that the environmental noise is

subject to a nonstationary non-Markovian random tele-
graph process. The amplitude of the noise process jumps
randomly with the switching rate λ between the values
±ν, and its nonstationary and non-Markovian features are
characterized by the nonequilibrium parameter a and an
exponential form of memory kernel K(t− t′) = κe−κ(t−t′)

with the decay rate κ, respectively. The environment is in
equilibrium for the nonequilibrium parameter a = 0 when
the environmental noise exhibits the stationary feature,
and the environment is memoryless when the environmen-
tal noise is Markovian for the decay rate κ → ∞ [62,65]. In
the presence of nonstationary non-Markovian random tele-
graph noise, the decoherence factor for the quantum sys-
tem can be exactly written in the analytical expression [62]

F (t) = L −1[F(p)],

F(p) =
p2 + κp+ 2κλ+ iaν(p+ κ)
p3 + κp2 + (2κλ+ ν2)p+ κν2 ,

(8)

where L −1 denotes the inverse Laplace transform, and
the initial conditions of the decoherence factor are given
by F (0) = 1 and φ(0) = 0. The nonequilibrium feature of
the environment only influences the imaginary component
of the decoherence factor on account of its effect on the
renormalization of the intrinsic energy levels of the quan-
tum system. It is worth mentioning that the decoherence
factor F (t) is a real time-dependent function and there is
no frequency shift s(t) = 0 for the equilibrium case.

The time-dependent geometric phase for the quantum
system under nonunitary dynamical evolution has been
derived as [9]

Φg(t) = arg

{ ∑
k

√
εk(0)εk(t)〈Ψk(0)|Ψk(t)〉

× exp
[

−
∫ t

0

〈
Ψk(τ)

∣∣∣ ∂
∂τ

∣∣∣Ψk(τ)
〉
dτ

]}
, (9)

where εk(t) and |Ψk(t)〉 are the k-th time-dependent eigen-
values and eigenvectors of the reduced density matrix ρ(t),

respectively. Due to the environmental effect, the evolu-
tion of the quantum system is no longer cyclic and the
system evolves along a quasicyclic path depending on the
evolution time.

We express the state of the quantum system in terms of
the Bloch vector as

ρ(t) =
1
2

[I2 + �r(t) · �σ] , |�r(t)| ≤ 1, (10)

where I2 is the 2 × 2 identity matrix, �σ = (σx, σy, σz) is
the vector of Pauli matrices and �r(t) = (rx(t), ry(t), rz(t))
denotes a real vector with

rx(t) = tr[σxρ(t)] = ρeg(t) + ρge(t),
ry(t) = tr[σyρ(t)] = i[ρeg(t) − ρge(t)],
rz(t) = tr[σzρ(t)] = ρee(t) − ρgg(t).

(11)

The state ρ(t) is pure if and only if |�r(t)| = 1, otherwise,
mixed. Based on eq. (3), the components of the Bloch
vector �r(t) satisfy the evolution

d
dt
rx(t) = −γ(t)rx(t) − [ω0 − s(t)]ry(t),

d
dt
ry(t) = [ω0 − s(t)]rx(t) − γ(t)ry(t),

d
dt
rz(t) = 0.

(12)

Consequently, the time-dependent eigenvalues of the re-
duced density matrix in terms of the Bloch vector can be
expressed as

ε±(t) =
1
2
[1 ± |�r(t)|], (13)

and the corresponding instantaneous eigenvectors can be
written as

|Ψ±(t)〉 = C±e(t)|e〉 + C±g(t)|g〉 (14)

with the expressions of the time-dependent complex
coefficients

C±e(t) =
rx(t) − iry(t)√

[2ε±(t) − 1 − rz(t)]2 + r2x(t) + r2y(t)
,

C±g(t) =
2ε±(t) − 1 − rz(t)√

[2ε±(t) − 1 − rz(t)]2 + r2x(t) + r2y(t)
.

(15)

If the initial state is pure, e.g., |�r(0)| = 1, the smaller
eigenvalue ε−(t) makes no contribution to the geometric
phase defined in eq. (9) since ε−(0) = 0 at time t = 0.
For the general case that the system is prepared in an
arbitrary initial state, we can, based on eq. (9), rewrite
the geometric phase as

Φg(t) = arg
[
r+(t)eiϕ+(t)eiψ+(t) + r−(t)eiϕ−(t)eiψ−(t)],

(16)
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where we have used the definitions

r±(t) =
∣∣∣√ε±(0)ε±(t)〈Ψ±(0)|Ψ±(t)〉

∣∣∣ ,
ϕ±(t) = arg〈Ψ±(0)|Ψ±(t)〉,

ψ±(t) = i

∫ t

0

〈
Ψ±(τ)

∣∣∣ ∂
∂τ

∣∣∣Ψ±(τ)
〉
dτ

=
∫ t

0

[
ω0 +

d
dτ
φ(τ)

]
|C±e(τ)|2dτ.

(17)

It is obvious that the geometric phase for the system evolv-
ing from an arbitrary initial state is defined as a sum
over the phase factors with the weights related closely to
the time-dependent eigenvalues and eigenvectors of the re-
duced density matrix.

For simplicity, we assume that the system is initially
prepared in the pure eigenstate

|Ψ(0)〉 = cos
θ

2
|e〉 + sin

θ

2
|g〉, (18)

with the initial values of the components of the Bloch vec-
tor rx(0) = sin θ, ry(0) = 0 and rz(0) = cos θ. After
time t, the state of the quantum system evolves to

|Ψ(t)〉 = e−iω0t−iφ(t) cos θ+(t)|e〉 + sin θ+(t)|g〉, (19)

where the time-dependent real coefficients satisfy

cos θ+(t) =
sin θ|F (t)|√[

2ε+(t) − 1 − cos θ
]2 + sin2 θ|F (t)|2

,

sin θ+(t) =
2ε+(t) − 1 − cos θ√[

2ε+(t) − 1 − cos θ
]2 + sin2 θ|F (t)|2

,
(20)

with the larger eigenvalue ε+(t) of the reduced density
matrix which only makes a contribution to the geometric
phase

ε+(t) =
1
2

[
1 +

√
cos2 θ + sin2 θ|F (t)|2

]
. (21)

Thus, the time-dependent geometric phase in eq. (16) can
be expressed as

Φg(t) = ΦP (t) + Φe(t), (22)

which contains the contribution arising from the overlap
between the time evolved state |Ψ(t)〉 and initial state
|Ψ(0)〉, namely, the Pancharatnam relative phase [1,9],
which can be written by

ΦP (t) = arg〈Ψ(0)|Ψ(t)〉
= − arctan

sin[ω0t+ φ(t)]
cos[ω0t+ φ(t)] + tan θ

2 tan θ+(t)
,

(23)

and the contribution resulting from the geometric effect of
the dynamical evolution, namely, the effective geometric
phase, which can be expressed as

Φe(t) = i

∫ t

0

〈
Ψ(τ)

∣∣∣ ∂
∂τ

∣∣∣Ψ(τ)
〉
dτ

=
∫ t

0
[ω0 − s(τ)] cos2 θ+(τ)dτ.

(24)

The reason why the phase in eq. (24) is called the effective
geometric phase is that Φe(t) is closely associated with the
dynamical evolution and that for a given evolution time,
the Pancharatnam relative phase ΦP (t) in eq. (23) maybe
disappears and makes no contribution to the dynamical
evolution. For the case that the system evolves along a
quasicyclic path with the evolution time t = 2π/ω0, the
expression of the geometric phase in eq. (22) is consistent
with that obtained in refs. [16,17]. Obviously, in contrast
to that in an equilibrium environment, the renormalization
of the intrinsic energy of the system induced by the envi-
ronmental nonequilibrium feature, namely, the frequency
shift s(t) gives additional contribution to the geometric
phase.

It is worth mentioning the situation when the environ-
ment is in equilibrium (a = 0) and the evolution of the
system is quasicyclic with time t = 2π/ω0. In this case,
there is no frequency shift and the decoherence factor F (t)
is real with zero argument. As a consequence, the Pan-
charatnam relative phase in eq. (23) is zero and the ge-
ometric phase in eq. (22) only arises from the effective
geometric phase of the dynamical evolution which can be
reduced to

Φg(t) = Φe(t) = ω0

∫ t

0
cos2 θ+(τ)dτ. (25)

This expression returns to the well-known results obtained
in refs. [12,14,51].

The effective geometric phase in eq. (24) can be ex-
pressed, by making the correction, as [14]

Φe(t) = ΦUe (t) + δΦe(t), (26)

where ΦUe (t) = ω0t cos2(θ/2) denotes the unitary effective
geometric phase with no influence from the environment,
and δΦe(t) is the correction to the effective geometric
phase made between the cases under nonunitary and uni-
tary dynamical evolution. For the case under unitary
dynamics and evolution time t = 2π/ω0, the effective geo-
metric phase can be reduced to ΦUe = π(1 + cos θ). Com-
bining eqs. (24) with (26), it indicates that the frequency
shift s(t) induced by the environmental nonequilibrium
feature also has a significant impact on the correction to
the effective geometric phase.

Results and discussion. – In this section, we show
the results of the geometric effect of the dynamical evo-
lution in Markovian and non-Markovian regions induced
by the nonequilibrium environment. We mainly focus on
the influence of the environmental nonequilibrium feature
on the geometric effect of the quantum dynamics. For
simplicity, we set ω0 = 0 and use the case for the envi-
ronment in equilibrium (a = 0) as a reference. In this
case, the effective geometric phase can indirectly reflect
the correction to the unitary geometric phase.

Figure 1 shows the time evolution of the effective geo-
metric phase Φe(t) for different environmental nonequi-
librium parameter a in Markovian and non-Markovian
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Fig. 1: Effective geometric phase Φe(t) as a function of
evolution time t for different values of a with θ = π/2 in
(a) the Markovian dynamics region with ν = 0.5λ and κ = λ
and (b) the non-Markovian dynamics region with ν = 2λ and
κ = λ (the solid and dashed lines are plotted for a > 0 and
a < 0, respectively).
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Fig. 2: Time evolution of the frequency shift s(t) for different
values of a with θ = π/2 and κ = λ in (a) the Markovian
dynamics region with ν = 0.5λ and (b) the non-Markovian
dynamics region with ν = 2λ (the solid and dashed lines are
also for positive and negative a, respectively).

dynamics regions, respectively. When the environment is
out of equilibrium, in both dynamics regions, Φe(t) shows
symmetrical behavior on opposite sides of the equilibrium
case for positive and negative a. As time passes, in the
Markovian dynamics region as shown in fig. 1(a), Φe(t)
gradually tends to a stable value, whereas it increases
monotonically in the non-Markovian dynamics region as
shown in fig. 1(b). Furthermore, as the environment de-
parts from equilibrium for a given evolution time, in the
Markovian dynamics region, Φe(t) deviates from the equi-
librium case; on the contrary, the behavior of deviation is
not obvious in the non-Markovian dynamics region. This
suggests that the environmental nonequilibrium feature
gives different additional contributions to the geometric
effect of the dynamical evolution in the two dynamics re-
gions and that the correction to the geometry of quantum
evolution is mainly ruled by the nonequilibrium feature of
the environment in the Markovian dynamics region. Fur-
thermore, the effective geometric phase Φe(t) in the non-
Markovian dynamics region is much larger than that in
the Markovian dynamics region, which indicates that the
non-Markovian behavior in the dynamics makes a large
correction to the geometric effect of the dynamical evolu-
tion. This shows very good agreement with the conclu-
sions obtained in ref. [61].

To study the reason of the difference in the effective geo-
metric phase between the equilibrium and nonequilibrium

Fig. 3: Geometry of the dynamical evolution of the quantum
system in Bloch sphere representation: (a) Markovian dynam-
ics region with ν = 0.5λ and κ = λ and (b) non-Markovian
dynamics region with ν = 2λ and κ = λ. The left and right
columns are plotted for a > 0 and a < 0, respectively. Blue
line: a = ±1; red line: a = ±0.5; and black line: a = 0.

cases, we show the frequency shift s(t) for different values
of a in the Markovian and non-Markovian dynamics re-
gions in fig. 2(a) and (b), respectively. In both dynamics
regions, s(t) shows the symmetry for a taking positive and
negative values. When the environment is in nonequilib-
rium, in the Markovian dynamics region, s(t) decays with
oscillatory behavior and discrete zeros and it asymptot-
ically approaches zero as time passes. However, s(t) os-
cillates periodically in time with nonzero midline in the
non-Markovian dynamics region. Furthermore, as the en-
vironment deviates from equilibrium for a given evolution
time, s(t) increases in the Markovian dynamics region,
whereas it hardly changes in the non-Markovian dynam-
ics region. The behavior in time-dependent frequency shift
s(t) is closely associated with the effective geometric phase
as shown in fig. 1. It further indicates that the envi-
ronmental nonequilibrium feature which gives rise to the
renormalization of the intrinsic energy of the quantum sys-
tem plays an important role in the geometric effect of the
dynamical evolution.

In order to study how the environmental nonequilibrium
feature influence the path of the dynamical evolution, we
show the time-dependent of the reduced density matrix
of the system for different values of a in the Bloch sphere
representation in fig. 3. This helps us to better understand
the combined effects of the unitary and nonunitary parts
of dynamical evolution which are closely associated with
the energy renormalization and dynamical decoherence.
The radius |�r(t)| of the Bloch vector denotes the absolute
value of the decoherence factor: the normal and tangential
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slopes of the radius are related to the decoherence rate
and frequency shift, respectively, and the rate of change
of the radius is associated with non-Markovian behavior
in the system dynamics. Obviously, when the environ-
ment is out of equilibrium, the geometric evolution path
displays antisymmetrical behavior in the Bloch sphere for
positive and negative a in both dynamics regions. In the
Markovian dynamics region as shown in fig. 3(a), |�r(t)|
decays monotonically, whereas as shown in fig. 3(b) in
the non-Markovian dynamics region, it decays with pe-
riodical oscillations, namely coherence revivals induced
by environmental backaction. Furthermore, in the non-
Markovian dynamics region, the oscillatory behavior in
|�r(t)| gets reduced as the environment departs from equi-
librium, which reflects that the environmental nonequilib-
rium feature can suppress the non-Markovian behavior in
the system dynamics. Moreover, as the environment devi-
ates from equilibrium in both dynamics regions, the length
of the evolution path becomes longer, which suggests that
the environmental nonequilibrium feature reduces the dy-
namical decoherence of the quantum system.

Conclusions. – In this letter, we have studied the
geometry of dynamical evolution of a two-level quan-
tum system coupled to a nonequilibrium noisy environ-
ment. Due to the nonstationary statistical properties
of the environmental noise, the decoherence factor is a
complex time-dependent function and the imaginary part
of the decoherence factor gives an additional contribution
to the unitary evolution of the system dynamics. Based on
the quantum master equation in a nonequilibrium environ-
ment, we derived the time evolution of the geometric phase
closely associated with the renormalization of the intrinsic
energy of the system, namely, the frequency shift. We have
demonstrated that the environmental nonequilibrium fea-
ture plays a crucial role in both the geometric phase and
evolution path of the quantum dynamics. It was shown
that the nonequilibrium feature of the environment makes
the length of the evolution path become longer and reduces
the dynamical decoherence of the quantum system com-
pared with the equilibrium case. This result is significant
to quantum information processing based on the geometry
of dynamical evolution of open quantum systems.

The investigation on the geometric effect of dynamical
evolution in a nonequilibrium environment helps us under-
stand better the non-Markovian decoherence dynamics of
open quantum systems. Within some theoretical and ex-
perimental frameworks, the phase information of quantum
evolution can be measured by the interferometric measure-
ment via nuclear magnetic resonance (NMR) or by the cur-
rent measurement via a QPC device [16,29,30,66,67]. In
principle, the observation of the environmental nonequi-
librium feature on the geometry of dynamical evolution
would be expected to be realized experimentally by using
a NMR interferometry or a QPC detector based on the
theoretical frameworks demonstrated in refs. [16] and [67],
respectively.
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Göppl M., Gambetta J. M., Schuster D. I.,

Frunzio L., Schoelkopf R. J. and Wallraff A., Sci-
ence, 318 (2007) 1889.

[29] Du J., Zou P., Shi M., Kwek L. C., Pan J.-W., Oh

C. H., Ekert A., Oi D. K. L. and Ericsson M., Phys.
Rev. Lett., 91 (2003) 100403.

[30] Du J., Zhu J., Shi M., Peng X. and Suter D., Phys.
Rev. A, 76 (2007) 042121.
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