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received 19 November 2018; accepted in final form 14 February 2019
published online 22 March 2019

PACS 97.10.Sj – Pulsations, oscillations, and stellar seismology
PACS 05.45.Mt – Quantum chaos; semi-classical methods
PACS 97.10.Kc – Stellar rotation

Abstract – The oscillation spectrum of pressure waves in stars can be determined by monitoring
their luminosity. For rapidly rotating stars, the corresponding ray dynamics is mixed, with chaotic
and regular zones in phase space. Our numerical simulations show that the chaotic spectra of
these systems exhibit strong peaks in the autocorrelation which are at odd with random matrix
theory predictions. We explain these peaks through a semiclassical theory based on the peculiar
distribution of the actions of classical periodic orbits. Indeed this distribution is strongly bunched
around the average action between two consecutive rebounds and its multiples. In stars this
phenomenon is a direct consequence of the strong decrease of the sound speed towards the star
surface, but it would arise in any other physical system with a similar bunching of orbit actions.
The peaks discussed could be observed by space missions and give insight into the star interiors.

editor’s  choice Copyright c© EPLA, 2019

Introduction. – Most of the information that we can
obtain from stars stems from the light that they emit.
Variations of this light can be monitored for many stars,
enabling to detect periodic patterns produced by oscilla-
tion modes of stars. In the case of the Sun, it has been pos-
sible to theoretically construct these modes and compare
them with observations, giving crucial pieces of informa-
tion on the internal structure [1]. Ultra-precise photomet-
ric data from the recent space missions COROT [2] and
Kepler [3] include many rapidly rotating stars, for which
a theory of oscillation modes is needed to infer physical
properties of their internal structure [4].

Stellar oscillations are divided into two categories that
are separated in frequencies, with gravity modes below the
Brunt-Väisälä frequency and pressure (acoustic) modes in
the high part of the frequency spectrum. Recently, ray
dynamics and semiclassical techniques have been used to
describe oscillation modes in rapidly rotating stars [5,6].
Indeed, these oscillations have a short-wavelength limit in
the same way as quantum or electromagnetic waves do,
and the ray dynamics is also governed by Hamiltonian
equations of motion [7]. In the case of acoustic waves,
which are the focus of this letter, numerical simula-
tions of this dynamics for a polytropic stellar model
showed that when the rotation rate increases, stable and

chaotic regions coexist in the phase space. As a con-
sequence, the stationary acoustic modes can be divided
into modes localized in the regular zones or in the chaotic
zones, with markedly different properties [5]. For regu-
lar island modes an asymptotic formula was built in [8],
showing that they are characterized by regular spacings.
Chaotic modes, which have been studied in the context
of quantum mechanics by the field of quantum chaos [9],
are expected to be distributed in accordance with the
predictions of random matrix theory (the relevant ma-
trix ensemble for our system is the Gaussian Orthog-
onal Ensemble (GOE)) [10,11], and should not display
regularities.

In this letter we show that chaotic modes in models
of rapidly rotating stars display pseudo-regularities which
can be clearly seen from peaks in the autocorrelation of
the spectra. They could correspond to peaks extracted
from the observed frequency spectra of δ Scuti stars [12],
a class of rapidly rotating pulsating stars. Understand-
ing their origin would then be key to derive physical con-
straints on star interiors. These peaks are also of interest
from a theoretical standpoint, since they are unseen in the
autocorrelation of GOE spectra [11]. Here, we explain the
pseudo-regularities in the chaotic mode spectrum from a
theory based on the general properties of acoustic rays in
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stars, coupled with the semiclassical theory of correlations
in chaotic spectra [13].

Pseudo-regularities in the chaotic spectrum of
stars. – To model the star, we study a self-gravitating
monoatomic perfect gas of adiabatic exponent Γ = 5/3 in
solid body rotation. The equilibrium model is a simplified
model, where the pressure and density satisfy the relation
P ∝ ρ1+1/N with an effective polytropic index N = 3. The
acoustic ray dynamics is derived making standard approx-
imations valid for high frequencies: we neglect the Coriolis
force, the perturbations of the gravitational potential and
the effect of viscosity and thermal diffusivity. In the linear
limit, one obtains a Helmholtz-type equation. The pres-
sure perturbations Ψ(x, t) satisfy(

∂2

∂t2
+ ω2

c

)
Ψ(x, t) − c2

s ∇2Ψ(x, t) = 0, (1)

where cs is the sound speed, that decreases from the center
to the surface as the square root of the temperature and
ωc is a cutoff frequency which increases sharply close to
the boundary, confining the wave inside the star [14].

We seek solutions of the form Ψ = eiΛφ(x,t) where Λ−1

is a small dimensionless parameter and get an equation for
the phase φ(x, t) [7]:

−Λφ̇(x, t) = (ω2
c + c2

sk
2)1/2 = H, (2)

where k = ∇φ is the wave vector and H is the ray dynam-
ics hamiltonian. As is usual in stellar physics [4], rotation
frequencies will be given in units of the Keplerian rotation
rate Ωk = (GM/R3

eq)1/2 where the centrifugal accelera-
tion equates gravity at the equator, G being Newton’s
constant, M the mass and Req the equatorial radius of
the star. We will express acoustic frequencies in terms of
ωp = (GM/R3

p)
1/2, where Rp is the polar radius. Because

Rp varies slowly with rotation, the choice of ωp is well
suited to compare acoustic frequencies at different rota-
tion rates.

The equations of motion are solved using a 5th-order
Runge-Kutta method. As the system is cylindrically
symmetric, the ray dynamics can be reduced to a two-
dimensional problem [14]. In the particular case of ax-
isymmetric modes, acoustic rays propagate in a meridional
plane of the star. The study of the dynamics through the
Poincaré Surface of Section (PSS) reveals three main types
of structures for a wide range of rotation rates (see fig. 1):
stable islands are built around periodic orbits, whispering
gallery rays remain close to the surface and chaotic ergodic
trajectories fill all available space. Stationary modes are
associated to these different phase space regions. As pre-
sented in [14], modes associated with the stable islands
have simple spectra of the form ωn� = nδn + �δ� + α and
in the case of the most important 2-period island modes
this formula was explicited by an asymptotic theory [8].

By contrast, chaotic modes associated with the ergodic
phase space region are not predicted in general to fol-
low any simple asymptotic formula. According to the

Fig. 1: PSS of acoustic rays at four different rotations. Each
point corresponds to the crossing of an outgoing ray with a
curve at constant distance from the star surface, θ being the
colatitude and kθ the wave vector component parallel to the
curve at the crossing point.

Bohigas-Giannoni-Schmit conjecture [10] chaotic mode
spectra should have correlations given by GOE, that have
the property of repelling each other at short distance.
Conversely, generic regular modes should follow a Pois-
son distribution with no level repulsion [15]. Using a
two-dimensional code that computes the stationary oscil-
lations of a rotating star [16] we produced the frequency
spectra of the polytropic model at five different rotations
(namely the four rotations shown in fig. 1 and addition-
ally Ω/Ωk = 0.658, whose PSS is very similar to panel
c but with a disappearing 6-periodic island chain). All
modes are axisymmetric and either symmetric (even) or
antisymmetric (odd) with respect to the equator. We then
selected the chaotic modes by removing from the full spec-
tra the island modes and whispering gallery modes1. In
fig. 2 we display the distribution of the ratio of consecutive
level spacings rn = (ωn+1 − ωn)/(ωn − ωn−1) of chaotic
modes and in table 1 we indicate the average value of
r̃n = min(rn, 1/rn) [17,18]. The main panel of fig. 2 shows
the aggregated ratio distributions of four rotations. This
procedure is standard to smooth out the statistical fluctua-
tions due to small datasets [19]. The resulting distribution
is in good agreement with the GOE prediction for chaotic
systems. This is not the case for the Ω/Ωk = 0.706 spec-
trum, shown in the inset, as the ratio distribution does
not show level repulsion at small r values and the aver-
aged r̃ falls between the GOE and Poisson values. Such
anomalous statistics is often associated to the fact that

1The island modes where removed by hand using the known for-
mula for their frequencies as a guide. The whispering gallery modes
were removed automatically using the fact that their spherical har-
monic decomposition is dominated by large degree components.
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Fig. 2: The ratio distribution P (r), with 1174 levels from seven
independent spectra: Ω/Ωk = 0.481 (206 odd levels), Ω/Ωk =
0.545 (223 odd levels, 105 even levels), Ω/Ωk = 0.589 (217 odd
levels, 96 even levels), Ω/Ωk = 0.658 (207 odd levels, 120 even
levels). The solid line is the GOE distribution and the dashed
line is the Poisson distribution. The special case Ω/Ωk = 0.706,
with 283 odd levels, is shown in the inset.

Table 1: Average value of r̃.

Poisson ≈ 0.38629
GOE ≈ 0.53590
Ω/Ωk = 0.706 ≈ 0.4743
Other rotations ≈ 0.5618

the spectrum contains independent subspectra. We will
explain this peculiarity below by the presence of partial
barriers in the chaotic zone.

The ratio of consecutive level spacings is a short-range
quantity; to investigate the correlations at longer range we
computed the two-point autocorrelation function R2(ξ) =
〈d(ω − 1/2ξ) d(ω + 1/2ξ)〉, where d(ω) is the spectral den-
sity and 〈.〉 is a frequency average defined by 〈f〉 =

∫
fdω.

As shown in fig. 3, a deviation from GOE statistics [11] ap-
pears in the form of a peak centered at value Δ � 1.15 ωp

(panel (a)). This peak is robust in the sense that it appears
at every rotation rate, though its position shifts slightly
(see fig. 3, panels (b), (c), (d)). Other peaks emerge from
the noise, especially as rotation increases (fig. 3, panels (c)
and (d)) around 1/3Δ and 4/3Δ. In the following, we will
explain the origin of the most robust peaks and their evolu-
tion with respect to rotation, using semiclassical methods.
We will also link the presence of the additional peaks to
the existence of partial barriers.

Semiclassical analysis. – Semiclassics (here large-ω
limit) is built on the Gutzwiller trace formula, which re-
lates the spectral density to a sum over periodic orbits
of the system [9], and was introduced in the framework
of quantum mechanics. We have adapted the deriva-
tion to the case of acoustic modes; it leads to the for-
mula d(ω) − d̄(ω) = Re

∑
i Ai(ω) eiSi(ω) where i labels

Fig. 3: Frequency autocorrelations computed at four rotations
for chaotic modes, using only one symmetry class (odd modes)
since odd and even spectra are independent. Datasets: (a) 206
levels from 28.35 ωp to 46.89 ωp, (b) 223 levels from 28.15
ωp to 44.09 ωp, (c) 217 levels from 26.02 ωp to 40.29 ωp and
(d) 283 levels from 23.57 ωp to 36.22 ωp. Dashed lines mark the
position of the most robust peak, at much longer range than
the mean level spacing (≈ 0.09 ωp).

periodic orbits, S is the action, A is an amplitude, sup-
posed to be slowly varying with ω, which depends on the
length and stability of the orbit and d̄(ω) is the smoothed
density. In our system the action can be expressed as
S = ω

∫
ds

√
1 − ω2

c/ω2/cs, where s is the curvilinear co-
ordinate along a given ray path. Therefore T = ∂S/∂ω
corresponds to the travel time (or acoustic time) of a ray.
In order to relate the autocorrelation of the chaotic spec-
tra to the acoustic ray dynamics, we follow the method of
Berry [13], which uses the so-called diagonal approxima-
tion. The idea is to consider the form factor:

K(T ) =
1√
2π

∫ ∞

−∞
dξ exp(iξT )C(ξ) (3)

which is the Fourier transform of the autocorrelation:

C(ξ) =
〈
[d(ω − 1/2ξ) − d̄(ω − 1/2ξ)]

×[d(ω + 1/2ξ) − d̄(ω + 1/2ξ)]
〉

=
〈(

Re
∑
i

Aie
iSi(ω−1/2ξ)

)

×
(
Re

∑
j

Aje
iSj(ω+1/2ξ)

)〉
.

(4)

For short times, the frequency average eliminates the off-
diagonal terms i 	= j by phase incoherence, allowing to
approximate the form factor as K(T ) ≈ ∑

j A2
jδ(T − Tj),

i.e., the density of periodic orbits weighted with intensities
A2

j [13,20]. This approximation fails for long times, typ-
ically higher than the Ehrenfest time [21], because there
are pairs of orbits with very close actions Si ≈ Sj and
higher-order terms need to be computed [22–25].
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Fig. 4: Number of n-chord trajectories, with n = 1, . . . , 15,
vs. their travel time T at rotation Ω/Ωk = 0.589. The n-chord
samples contain 4750 chords each. The inset shows the 1-chord
distribution in more detail, with 70000 chords. The dashed line
marks its mean value, very close to T0.

The next step of Berry’s method is to use the general
result of Hannay and Ozorio de Almeida [26] which im-
plies that

∑
j A2

jδ(T − Tj) ∝ T for sufficiently large T .
To make this result explicit we express the amplitude
and the density as functions of the metric and topo-
logical entropies hM , hT : A(T ) ∝ Te−(1/2)hMT and∑

j δ(T − Tj) → ρ(T ) ≈ (1/T ) ehT T and suppose these
two entropies to be equal [20,27]. These formulas give
K(T ) → A2(T ) ρ(T ) ∝ 2T , which is the GOE prediction
at leading order (the factor of two comes from the fact that
orbits are twice degenerate due to time-reversal symme-
try [13]). In our system, however, the peculiar distribution
of periodic orbits ρ(T ) modifies the form factor behavior.

Like classical trajectories in billiards, acoustic rays
bounce on the reflective caustic close to the surface. Thus
any periodic orbit can be divided into chords, each chord
connecting two successive surface bouncing points. Peri-
odic orbits thus belong to a class of trajectories that we
call n-chords, whose endpoints have to lie on the surface.
While it is extremely difficult to find all periodic orbits of
our system, we can nevertheless infer some of their proper-
ties from the study of large samples of n-chord trajectories.

Figure 4 shows the distribution of travel times for
n-chords in the chaotic region of phase space at rotation
Ω/Ωk = 0.589. In stars, the travel time is not propor-
tional to the geometric length, as, e.g., in billiards. In-
deed, since the sound velocity is much smaller near the
surface of the star, all trajectories spend much more time
near the surface than in the core. This results in a travel
time distribution that concentrates around specific values
evenly spaced out (see fig. 4). As the number of chords
increases the individual packets grow wider (similarly to
the law of large numbers), until the width becomes much
larger than the interpeak distance, and the distribution
turns into a smooth curve. This is quantified by the ratio

Fig. 5: Theoretical value of Δ/ωp (circles) compared to the nu-
merical peak’s position (triangles) for five rotation rates. Left
inset: theoretical autocorrelations around the main peak, from
left to right the rotation rate decreases. Right inset: the solid
line shows the variation of the normalized peak height H/H0,
where H0 is the peak height at Ω/Ωk = 0.481, with increas-
ing σ0 at fixed T0. The points show the corresponding values
obtained from the simulated spectra.

σ0/T0, σ0 being the standard deviation of the first packet
and T0 the average distance between the mean values of
consecutive packets. In the case of a billiard whose bound-
ary is shaped like our star surface, σ0/T0 ≈ 0.32 meaning
that the packet structure disappears after a few rebounds.
In the stellar case σ0/T0 grows with rotation but remains
below 0.08. The packets are thus discernable for much
longer times.

We model the distribution of fig. 4 as P(T ) =∑
n Pn(T ), with Pn(T ) the probability distribution of n-

chords travel times:

Pn(T ) =
1√

2πn σ0
exp

(
− (T − n T0)2

2(
√

nσ0)2

)
, (5)

where the values of T0 and σ0 are taken from the numer-
ical simulations of acoustic rays. We checked that the
packets have indeed a mean value close to nT0 and that
their standard deviation grows as

√
nσ0. Physically, T0

is the characteristic travel time of a single chord. Thus,
T0 and σ0 are directly related to the star volume and the
sound speed profile in the star interior. In particular, the
small variance of the travel times is a consequence of the
strong decrease of the sound speed near the surface. As
mentioned before we cannot find directly the periodic or-
bits, but we claim that the constraints imposed by P(T )
are strong enough to explain the correlations seen in the
spectra.

To take into account the exponential growth rate of
the number of periodic orbits with T , the density of pe-
riodic orbits in our system is thus modeled as ρ(T ) ∝
(1/T ) ehT T × P(T ). Assuming A(T ) ∝ Te−(1/2)hMT gives
the result

K(T ) → A2(T ) ρ(T ) ∝ T P(T ). (6)

As the variance of the Pn(T ) grows with n, P(T ) becomes
flat for sufficiently long times. For such long times we
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Fig. 6: Monte Carlo simulations showing N/Ntot vs. t for dif-
ferent rotations, where t is a discretized time (number of cross-
ing of rays with the PSS), Ntot the number of initial chaotic
trajectories and N the number of trajectories that remain in
the partial barrier zone. The intercept is representative of the
relative area and the slope gives the escape rate λ, i.e., the out-
ward flux: λ(Ω/Ωk = 0.589) � 0.17, λ(Ω/Ωk = 0.658) � 0.11
and λ(Ω/Ωk = 0.706) � 0.06. Insets are snapshots of the time
evolution showing the zones delimited by partial barriers.

recover the sum rule [26]
∑

j A2
jδ(T − Tj) ∝ T , which is

consistent with the existence of GOE statistics at short
spectral distance (fig. 2). For shorter times P(T ) creates
a specific regime departing from GOE.

The Fourier transform

F (ξ) = 1/(
√

2π)
∫ ∞

−∞
dT exp(−iξT )TP(T )

is shown in the left inset of fig. 5 for different rotations. It
shows a peak, as in the spectral data (fig. 3), that moves
towards low frequencies for increasing rotation. The peaks
extracted from the numerical spectral data and obtained
from semiclassical theory are in good agreement (fig. 5,
main panel). The discrepancy of about 5% is similar to
what was obtained for island modes in [8], and can be
attributed to the relatively low values of numerically com-
puted frequencies, as the theoretical values are derived
under the semiclassical (high-frequency) approximation.
The model also predicts that the peak width should show
a slow increase with rotation, as can be seen in the left
panel of fig. 5. In the right panel, we show that the peak
height decreases rapidly with σ0/T0; this explains why the
peak is not usally visible in chaotic systems with large
σ0/T0.

Other peaks. – The semiclassical theory outlined
above explains the origin of the main peak in the autocor-
relation. Other peaks are sometimes visible in the autocor-
relations of fig. 3, especially for the rotation Ω/Ωk = 0.706
where P (r) deviates strongly from GOE (see fig. 2). We
attribute these peaks to the presence of partial barriers
in the chaotic zone around the main stable island. Par-
tial barriers isolate some zones of phase space, from which
trajectories escape more slowly than in the rest of the

chaotic zone [28,29]. To find them we compute trajecto-
ries with initial condition near the main island and moni-
tor their evolution on the PSS. Without barrier all points
would spread ergodically, however fig. 6 shows that a sub-
set of points remains near the island for a long time. Close
to Ω/Ωk = 0.706, the region enclosed by partial barriers
grows in size and traps trajectories more efficiently. For
the relatively low-frequency waves here considered, they
will act as barriers and quantize independently a subset
of modes. This will weaken the level repulsion at short
spectral distance as seen in fig. 2. Besides, as trapped tra-
jectories revolve around a 6-periodic orbit, we expect the
modes to quantize like island modes [8], leading to a Δ/3
regularity.

Conclusion. – In this letter, we have shown that speci-
ficities in the distribution of the actions of periodic orbits
can create a peak in the autocorrelation of chaotic spectra.
Such a peak can potentially be detected in the frequency
spectrum of chaotic pressure modes in rapidly rotating
stars. Recent data have confirmed the existence of peaks
in the autocorrelation spectrum of the rapidly rotating
δ Scuti stars [12]. They have been attributed so far to
regular island modes but our results indicate that chaotic
modes should also produce such peaks. These two kinds
of peaks should be close2 but still distinct at most rota-
tion rates. Whether these two peaks could be discernable
in observed data remains to be investigated. In addition
to astrophysical observations, the phenomenon described
here could be tested with an experimental setup such as,
e.g., electromagnetic waves in a cavity with a strong gra-
dient of the refractive index along the radial direction.
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