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Abstract – In this paper, we study entropy relations and bounds of regular and singular black
holes with nonlinear electrodynamics sources. We focus on the regular and singular Bardeen
and Hayward black holes in asymptotically flat and AdS spacetimes. For black holes with van-
ishing effective mass Meff, it is found that the entropy product is always mass-independent in
asymptotically flat spacetime, while the entropy sum takes the mass-independent universality in
asymptotically AdS spacetime. For the cases with nonzero effective mass Meff in asymptotically
flat and AdS spacetimes, entropy relations are both some functions of mass and charge, hence
are always mass-dependent. Besides, the non-linear electrodynamics always affects the entropy
bounds of horizons.

Copyright c© EPLA, 2019

Introduction. – Explaining the microscopic origin
of black-hole entropy is one of the major challenges in
quantum theories of gravity. There is some significant
progress in calculating the black-hole entropy, such as
the Kerr/CFT correspondence [1]. However, it works
only for the special classes of black holes including BPS
black holes, where the microscopic degrees of freedom
can be explained in terms of a two-dimensional confor-
mal field theory (see the recent review paper [2]). Many
works have successfully obtained the microscopic entropy,
which mainly focused on the extremal solutions (see [3]
for a recent example), while it is still an open question
for finding the microscopic entropy of the general black
holes. On the other hand, entanglement entropy is in-
troduced to study the microscopic origin of black-hole
physics (see the recent review paper [4]), and characterizes
some quantum features, which could also coincide with
the Bekenstein-Hawking entropy [5]. Although our un-
derstanding of the statistical viewpoints of general black-
hole entropy remains incomplete, it seems clear that the
progress on this subject reflects important features of the
underlying quantum mechanical degrees of freedom. The
recent progress is generalized to the nonextremal solu-
tions, by a phenomenological approach called universal

(a)E-mail: wu@cug.edu.cn
(b)E-mail: xuwei@cug.edu.cn (corresponding author)

entropy (area) product [6]. Other entropy relations are
also introduced [7–9]. It has been observed that these
additional thermodynamic relations always appear to be
universal [6–9] and may provide further insight into the
quantum physics of black holes [10–12]. These universal
entropy relations, including the entropy product [6] and
sum [9], are always mass-independent in the sense that
they involve thermodynamic quantities defined at multi-
horizons, including the event and Cauchy horizons, even
the “virtual” horizons. The mass-independent entropy
relations should depend solely on the quantized charges,
angular momentum and cosmological constant, which in-
dicates that the black-hole entropy might be quantized in
a quite specific manner in the black-hole thermodynamic
framework, in terms of linear combinations of the electric
charges, spin and cosmological constant [7]. For exam-
ple, based on the mass-independent entropy product, a
non-integral horizon-area quantization formula of entropy
of Kerr-Newman black hole is derived, in terms of spin
(quantized angular momentum) and electric charge [10].
The universality of entropy relations is discussed in many
modified theories [13–33]. Besides, there are some view-
points providing evidence about the relationship between
these universal relations and a CFT description [11,34–39].
However, so far no geometric proof and evidence have been
found for the universality of entropy relations.
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In the absence of a geometric understanding, it makes
sense to explore phenomenologically whether the univer-
sality of entropy relations holds in arbitrary gravity the-
ories and spacetimes. Towards this goal, we will consider
the entropy relations of a number of regular and singu-
lar black holes, which are solutions of the gravities with
a nonlinear electric or magnetic field, with the following
action [40–42]:

I =
1

16π

∫
d4x

√−g(R + 6�−2 − L(F)), (1)

where � is the AdS cosmological radius, F = dA is the
field strength of the Maxwell field, F = FμνFμν , and the
Lagrangian density L is a function of F . We will focus on
theory with the general Lagrangian density [43]

L =
4μ

α

(αF)(ν+3)/4(
1 + (αF)ν/4

)(μ+ν)/ν
. (2)

Especially, the regular black-hole solution was firstly con-
structed by Bardeen, which contains no singularities in the
spacetime [44]. Other regular black-hole models in modi-
fied gravities have been also proposed later [45–60]. Regu-
lar black holes always violate the strong energy condition,
hence can break the singularity theorems [61]. Besides,
one should note that the nonlinear electric or magnetic
fields are not necessary for constructing regular black
holes. Actually, there are uncharged regular black holes
in the gravity models with other matter sources [60,62,63].
For the discussion about the microscopic origin of regular
black-hole entropy, there is only few literature [64,65].

Here we will test the universality of these entropy re-
lations by investigating to what extent they do, or do
not, hold in flat/AdS spacetimes with nonlinear electro-
dynamics sources. We will focus on the regular and sin-
gular Bardeen and Hayward black holes in asymptotically
flat and AdS spacetimes. It is shown that for black holes
with vanishing effective mass Meff, the entropy product
is always mass-independent in asymptotically flat space-
time, while the entropy sum is always mass-independent
in asymptotically AdS spacetime. In order to keep this
universality of the mass-independence, the effect of the
“virtual” horizons must be included for both cases. This
is consistent with the discussion in [6]. For black holes
with nonzero effective mass Meff in asymptotically flat and
AdS spacetimes, entropy relations are all some functions
of (MADM , Meff, Q), hence are always mass-dependent.

Based on the entropy relations, one can find some en-
tropy bounds [66–69], which are related to the geomet-
rical bounds [70,71], hence it may lead to a geometrical
viewpoint about the universality of entropy relations. It
will be shown that the nonlinear electrodynamics always
affects the entropy bounds of horizons. Taking the en-
tropy bounds of Bardeen black holes with vanishing effec-
tive mass as an example, one can find that the parameter
α always diminishes the physical entropy bound for the

event horizon, while it enlarges that for the Cauchy hori-
zon; especially, the upper bound of the area for the event
horizon is the Penrose-like inequality. For Hayward black
holes with vanishing effective mass, the parameter α al-
ways enlarges the bounds for Cauchy horizons, while it
has no effect on those for the event horizon; the upper
bound of the area for the event horizon is the exact Pen-
rose inequality.

The paper is organized as follows. We will firstly study
the entropy relations and bounds of regular and singu-
lar black holes in asymptotically flat spacetime in the
next section. In the third section, we shall generalize the
discussion to the cases in asymptotically AdS spacetime.
Our conclusions with some remarks are given in the final
section.

Entropy relations and bounds for asymptotically
flat regular and singular black holes. – In asymptoti-
cally flat spacetime, the black-hole solutions read as [43,72]

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2(dθ2 + sin2 θdφ2),

f(r) = 1 − 2Meff

r
− 2α−1q3rμ−1

(rν + qν)μ/ν
,

A =
q√
2α

([3−(ν − 3)(q/r)ν ][1+(q/r)ν]−(μ+ν)/ν − 3)dt.

(3)

Here the effective mass Meff takes the following form:

Meff = MADM − α−1q3, (4)

where MADM describes the ADM mass of a black hole
which can be read off from the asymptotic behavior of
the metric function f(r), and Me = α−1q3 is a charged
term which is associated with the nonlinear interactions
between the graviton and the photon. After calculating
the Ricci scalar and other higher-order curvature invari-
ants, one can find that the solutions with Meff = 0, μ ≥ 3
correspond to regular black holes, while other cases belong
to singular black holes. The electric charge of black holes
is Q = q2

√
2α

. The entropy of the horizons should be

Si =
Ai

4
= π r2

i , (5)

where ri are the horizons of black holes, and should be
roots of f(r) = 0, i.e.,

1 − 2Meff

r
− 2α−1q3rμ−1

(rν + qν)μ/ν
= 0. (6)

However, the horizon structure is too complicated to cal-
culate the entropy relations. Hence, we will focus on some
reduced cases.

Regular and singular Bardeen black holes. When
ν = 2, the solution belongs to the Bardeen family of black
holes [42,44]. The horizon function is simplified as

f(r) = 1 − 2Meff

r
− 2α−1q3rμ−1

(r2 + q2)μ/2 . (7)
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For simplicity, we firstly study the case with vanishing
effective mass, whose horizon function takes the form

f(r) = 1 − 2α−1q3rμ−1

(r2 + q2)μ/2 , (8)

for which, the μ = 3 limit is just the Bardeen black
hole [44]. Then the equation of horizons could be sim-
plified as

(R + q2)μ − 4M2
e Rμ−1 = 0, R = r2. (9)

We will view R as the radial variable, then the entropy
should be

Si = π Ri. (10)

In the form of mass and charge, eq. (9) becomes

(R +
√

2αQ)μ − 4M2
e Rμ−1 = 0, (11)

which indicates that the maximal number of the horizons
is exactly equal to μ, including the “virtual” horizons. By
applying the Viète theorem, it is straightforward to find
the mass-independent entropy product

μ∏
i=1

Si = (−
√

2αQπ)μ (12)

and mass-dependent entropy sum

μ∑
i=1

Si = π (4M2
ADM −

√
2αQμ), (13)

as the black-hole mass is MADM = Me now. For this case,
the effect of the “virtual” horizons should be included, in
order to obtain the universal entropy product. This is
consistent with the discussion in [6].

Especially for the singular solution with Meff = 0,
μ = 2, there are two horizons, i.e., the event hori-
zon and Cauchy horizon RE,C = (2M2

ADM − √
2αQ) ±√

M2
ADM (M2

ADM − √
2αQ). This leads to a condition for

the existence of horizons

M2
ADM ≥ √

2αQ. (14)

The entropy relations are simplified as

SESC = 2απ2 Q2,

SE + SC = π (4M2
ADM − 2

√
2αQ).

(15)

Since rE ≥ rC , i.e., SE ≥ SC , it is easy to obtain these
relations SC ≤ √

2αQπ ≤ SE and SC ≤ π (2M2
ADM −√

2αQ) ≤ SE ≤ π (4M2
ADM − 2

√
2αQ). Then by consid-

ering the condition for the existence of horizons together,
one can obtain the bounds for the event horizon and the
Cauchy horizon,

SC ∈ (0,
√

2αQπ ],

SE ∈ [2π M2
ADM , 4π M2

ADM ] ×
(

1 −
√

2αQ

2M2
ADM

)
,
(16)

respectively. For gravity with Maxwell source, one can
find that the electric charge Q diminishes the physical
entropy bound for the event horizon, while it enlarges
that for the Cauchy horizon. Besides, considering the ef-
fect of nonlinear electrodynamics on entropy bounds, it
is shown that the parameter α plays a similar role as the
electric charge Q. Furthermore, it is easy to obtain the
area bounds

√
AC

16π
∈

(
0,

√√
2αQ

2

]
,√

AE

16π
∈

[
MADM√

2
, MADM

]
×

(
1 −

√
2αQ

2M2
ADM

)
,

(17)

where the upper bound of the area for the event horizon
is the Penrose-like inequality. When α is vanishing, it re-
duces to the exact Penrose inequality [70] which is the
first geometrical inequality of a black hole. This provides
a clue for the geometric understanding of the universal
entropy relations of black holes with nonlinear electrody-
namics sources.

Generalizing the study into black holes with nonzero ef-
fective mass Meff, the discussion becomes too complicated,
hence we take the singular case with μ = 2 as an example.
The horizons should be the roots of f(r) = 0, i.e.,

r3 − 2MADMr2 +
√

2αQr − 2
√

2αQMeff = 0, (18)

for which there should be one or three positive roots. As
we are interested in entropy relations of black holes with
multi-horizons, we will only consider the case with three
positive horizons ri (i = 1, 2, 3). Applying the Viète the-
orem, one can obtain some useful relations,

r1 + r2 + r3 = 2MADM ,

r1r2 + r2r3 + r1r3 =
√

2αQ,

r1r2r3 = 2
√

2αQMeff.

(19)

By using these relations, the entropy relations can be cal-
culated as

3∏
i=1

Si = 8α Q2M2
effπ3,

3∑
i=1

Si = π(4M2
ADM − 2

√
2αQ),

(20)

which are the functions of (MADM , Meff, Q), hence depend
on mass. Besides, it is easy to observe that the entropy
sum is exactly the same, no matter whether the effective
mass Meff is vanishing or nonvanishing. On the other
hand, after assuming r1 ≤ r2 ≤ r3, i.e., S1 ≤ S2 ≤ S3,
one can derive the entropy bounds for three horizons
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directly from the entropy sum,

S1 ∈
[
0,

4π M2
ADM

3

]
×

(
1 −

√
2αQ

2M2
ADM

)
,

S2 ∈
[
0,

8π M2
ADM

3

]
×

(
1 −

√
2αQ

2M2
ADM

)
,

S3 ∈
[
4π M2

ADM

3
, 4π M2

ADM

]
×

(
1 −

√
2αQ

2M2
ADM

)
.

(21)

This indicates that the parameter α always diminishes
the physical entropy bounds for horizons. Note that
r3 is the event horizon, the upper bound of the area
for the event horizon is also the Penrose-like inequality√

AE

16π ≤ MADM × (1 −
√

2αQ
2M2

ADM
), while the α → 0 limit

corresponds to the exact Penrose inequality. One can fol-
low this spirit to find the geometric understanding of the
universal entropy relations for black holes with three phys-
ical horizons.

Regular and singular Hayward black holes. When
ν = μ, the solution is the Hayward family of black
holes [49,72]. The horizon function is reduced to

f(r) = 1 − 2Meff

r
− 2α−1q3rμ−1

(rμ + qμ)
. (22)

We also begin with the case having vanishing effective
mass, whose horizons should be roots of the equation

rμ − 2Mer
μ−1 + qμ = 0. (23)

Note that the μ = 3 limit is just the Hayward black
hole [50]. There exist μ roots, including some “virtual”
horizons. We list some relations

μ∏
i=1

ri = −qμ,
∏

1≤ i<j≤µ

rirj = 0,

μ∑
i=1

ri = 2Me, (24)

by which, it is easy to derive the entropy relations, includ-
ing the mass-independent entropy product

μ∏
i=1

Si = πμ

(
μ∏

i=1

ri

)2

= πμq2μ = (
√

2αQπ)μ (25)

and mass-dependent entropy sum

μ∑
i=1

Si = π

(
μ∑

i=1

ri

)2

− 2π
∏

1≤ i<j≤μ

rirj = 4π M2
ADM . (26)

In order to observe the effect of nonlinear electrody-
namics on entropy bounds, we take the singular case with
Meff = 0, μ = 2 as an example. The event horizon and

Cauchy horizon are rE,C = MADM ±
√

M2
ADM − √

2αQ,
which results in the condition for the existence of horizons
M2

ADM ≥ √
2αQ. From the entropy product and sum, we

can obtain the relations 0 < SC ≤ √
2αQπ ≤ SE and

0 < SC ≤ 2π M2
ADM ≤ SE ≤ 4π M2

ADM , which lead to
the entropy bounds

SC ∈ (0,
√

2αQπ], SE ∈ [2π M2
ADM , 4π M2

ADM ]. (27)

The parameters α and Q may always enlarge the bounds
for Cauchy horizons, while they have no effect on that for
the event horizon (in the external form). Besides, one can
obtain the area bounds

√
AC

16π ∈
(

0,

√√
2αQ
2

]
,

√
AE

16π ∈
[

MADM√
2

, MADM

]
,

(28)

where the upper bound of area for the event horizon is
actually the exact Penrose inequality [70].

Then we begin to find the effect of nonzero effective
mass Meff on entropy relations. The equation of horizons
could be simplified as

rμ+1 − 2MADMrμ + qμ r − 2Meffqμ = 0. (29)

Consider the singular case with μ = 1, the entropy rela-
tions should be

2∏
i=1

Si = 4
√

2αQM2
effπ2,

2∑
i=1

Si = π

((
2MADM −

√√
2αQ

)2

+ 4Meff

√√
2αQ

)
,

(30)

which are both mass-dependent as well. The correspond-
ing entropy bounds should be

SC ∈ (0, 2
√√

2αQMeffπ],

SE ∈ [1/2, 1] × π

((
2MADM −

√√
2αQ

)2

+4Meff

√√
2αQ

)
, (31)

where the condition for the existence of a black-hole solu-
tion is used. The α → 0 limit is just the exact Penrose
inequality. Following the same procedure, one can obtain
the mass-dependent entropy relations for the cases with
μ > 1

μ+1∏
i=1

Si = πμ+1(2Meffqμ)2 = 4M2
eff(

√
2αQ)μπμ+1,

μ+1∑
i=1

Si = 4π M2
ADM . (32)
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Especially for the singular case with μ = 2, one can cal-
culate the entropy bounds from the entropy sum, i.e.,

S1 ∈
[
0,

4π M2
ADM

3

]
,

S2 ∈
[
0,

8π M2
ADM

3

]
, (33)

S3 ∈
[
4π M2

ADM

3
, 4π M2

ADM

]
,

for which, the parameter α has no effect on the bounds for
horizons (in the external form), while the upper bound of
the area for the event horizon is just the exact Penrose
inequality.

Totally, in asymptotically flat spacetime, it is shown
that for black holes with vanishing effective mass Meff, the
entropy product is always mass-independent, while the en-
tropy sum depends on the mass; for the case with nonzero
effective mass Meff, they are both mass-dependent and are
some functions of (MADM , Meff, Q). Besides, the nonlin-
ear electrodynamics always affects the entropy bounds of
horizons1. Especially, the upper bound of the area for the
event horizon is the Penrose-like inequality for Bardeen
black holes, while it is the exact Penrose inequality for
Hayward black holes. These results are useful for under-
standing the geometric origin of the universal entropy re-
lations of regular and singular black holes with nonlinear
electrodynamics sources.

Entropy relations and bounds for asymptotically
AdS regular and singular black holes. – In asymp-
totically AdS spacetime, the black-hole solutions read
as [43,73]

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2

k,

f(r) =
r2

�2 + k − 2Meff

r
− 2α−1q3rμ−1

(rν + qν)μ/ν
, (34)

A =
q√
2α

([3 − (ν − 3)(q/r)ν ][1 + (q/r)ν ]−(μ+ν)/ν − 3)dt,

where dΩ2
k denotes the metric of the two-dimensional

sphere/hyperboloid/torus with constant curvature
k = 1, −1, 0. The black-hole effective mass and electric
charge take the same forms as the case in asymptotically
flat spacetime. We will study the entropy relations for
some reduced cases.

Regular and singular Bardeen AdS black holes. When
ν = 2, the solution reduces to the Bardeen family of AdS
black holes with the horizon function

f(r) =
r2

�2 + k − 2Meff

r
− 2Mer

μ−1

(r2 + q2)μ/2 . (35)

1For some cases in the Hayward family of black holes, there seems
to be no effect for the entropy bounds in the external form, while
MADM is actually related to the parameter α.

For simplicity, we only study the case with vanishing
effective mass, whose metric function is simplified as

f(r) =
r2

�2 + k − 2Mer
μ−1

(r2 + q2)μ/2 . (36)

Then the horizons are roots of the equation(
R

�2 + k

)2

(R +
√

2αQ)μ − 4M2
ADMRμ−1 = 0, (37)

which contains (μ + 2) horizons, including the “virtual”
horizons. It is straightforward to get the entropy relations

μ+2∏
i=1

Si = πμ+2
μ+2∏
i=1

Ri = �4k2(−
√

2αQ)μπμ+2,

μ+2∑
i=1

Si = π

μ+2∑
i=1

Ri = −π(
√

2αQμ + 2k�2)

(38)

by using the Viète theorem. This indicates that both en-
tropy product and sum are mass-independent only when
the effect of the “virtual” horizons is included. Es-
pecially for the singular Bardeen AdS black hole with
μ = 1, k = −1, one can get the entropy bounds from the
entropy sum, i.e.,

S1 ∈
[
0,

1
3

]
× π(2�2 − √

2αQ),

S2 ∈
[
0,

2
3

]
× π(2�2 −

√
2αQ), (39)

S3 ∈
[
1
3
, 1

]
× π(2�2 − √

2αQ),

for which, the parameter α always diminishes the bounds
for horizons. These entropy bounds bring a way for the ge-
ometrical understanding of entropy relations in AdS space-
time.

Regular and singular Hayward AdS black holes. When
ν = μ, the solution belongs to the Hayward family of AdS
black holes. The metric function reduces to

f(r) =
r2

�2 + k − 2Meff

r
− 2α−1q3rμ−1

(rμ + qμ)
. (40)

The equation of horizons could be simplified as

rμ+3

�2 + krμ+1 − 2MADMrμ

+
qμ r3

�2 + kqμ r − 2Meff qμ = 0. (41)

Then one can derive some useful relations for the horizons
ri (i = 0, . . . , (μ + 3)) when μ ≥ 3

μ+3∏
i=1

ri = 2Meff qμ�2,
∏

1≤ i<j≤(μ+3)

rirj = k�2,

μ+3∑
i=1

ri = 0, (42)
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which directly lead to entropy relations

μ+3∏
i=1

Si = πμ+3

(
μ+3∏
i=1

ri

)2

= πμ+3(2Meff qμ�2)2

= (2Meff �2)2(
√

2αQ)μπμ+3, (43)

μ+3∑
i=1

Si = π

(
μ+3∑
i=1

ri

)2

− 2π
∏

1≤ i<j≤(μ+3)

rirj

= −2 k�2π. (44)

Here, the entropy product depends on the mass, while the
entropy sum is mass-independent, which is different from
the cases in asymptotically flat spacetime. Especially for
singular cases with μ = 1, 2, this property still holds while
the results are modified slightly.

In a word, in asymptotically AdS spacetime, it is shown
that the entropy sum is always mass-independent when
the effect of the “virtual” horizons is included.

Conclusion. – In this paper, we study entropy rela-
tions and bounds of regular and singular black holes with
nonlinear electrodynamics sources. We calculate them for
the regular and singular Bardeen and Hayward black holes
in asymptotically flat and AdS spacetimes. There are
some interesting features as follows:

– For black holes with vanishing effective mass Meff,
the entropy product is always mass-independent in
asymptotically flat spacetime, while the entropy sum
is always mass-independent in asymptotically AdS
spacetime. However, now it is not clear to find the
potential physical significance of this opposite depen-
dence of entropy relations. For both cases, the effect
of the “virtual” horizons must be included, in order
to keep this universality.

– For the cases with nonzero effective mass Meff in
asymptotically flat and AdS spacetimes, entropy re-
lations are always mass-dependent and are actually
some functions of (MADM , Meff, Q).

– The nonlinear electrodynamics always affects the en-
tropy bounds of horizons, which result from the en-
tropy relations. Especially in asymptotically flat
spacetime, the upper bound of the area for the event
horizon is the Penrose-like inequality for Bardeen
black holes, while it is the exact Penrose inequality
for Hayward black holes. This sheds some lights on
the geometric understanding of the universal entropy
relations of regular and singular black holes with non-
linear electrodynamics sources.

For the future works, it is interesting to study the uni-
versal mass independence for general regular and singular
black holes with nonlinear electrodynamics sources, in-
cluding the rotating black holes, in order to reveal some

viewpoints about the microscopic origin of the black-
hole entropy. One can also try to find the forms as to
how the black-hole entropy could be quantized in the
black-hole thermodynamic framework, based on the mass-
independent entropy product or sum. Besides, studying
the entropy bounds of general (AdS) black holes with non-
linear electrodynamics sources will bring a further under-
standing of their geometrical properties.

∗ ∗ ∗

JW was supported by the National Natural Science
Foundation of China (NSFC) under Grant No. U1738130.
WX was supported by the National Natural Science Foun-
dation of China (NSFC) under Grants No. 11505065, No.
11374330 and No. 91636111, and the Fundamental Re-
search Funds for the Central Universities, China Univer-
sity of Geosciences (Wuhan).

REFERENCES

[1] Guica M., Hartman T., Song W. and Strominger

A., Phys. Rev. D, 80 (2009) 124008.
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