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PACS 61.72.Lk – Linear defects: dislocations, disclinations
PACS 74.25.Uv – Vortex phases (includes vortex lattices, vortex liquids, and vortex glasses)
PACS 45.70.Vn – Granular models of complex systems; traffic flow

Abstract – A controllable soft solid is realised in vortex matter (Eskildsen M. R. et al., Rep.
Prog. Phys., 74 (2011) 124504; Guillamon I. et al., Nat. Phys., 10 (2014) 851; Lukyanchuk I.
et al., Nat. Phys., 11 (2015) 21) in a type-II superconductor. The two-dimensional unit cell area
can be varied (Fasano Y. and Menghini M., Supercond. Sci. Technol., 21 (2008) 023001) by a
factor of 104 in the solid phase, without a change of crystal symmetry offering easy exploration of
extreme regimes compared to ordinary materials. The capacity to confine two-dimensional vortex
matter to mesoscopic regions (see paper by Lukyanchuk et al. again and Kes P. H. et al., Phys. C:
Supercond., 408 (2004) 478) provides an arena for the largely unexplored metallurgy of plastic
deformation at large density gradients. Our simulations reveal a novel plastic flow mechanism in
this driven non-equilibrium system, utilising two distinct, but strongly interacting, populations
of dislocations. One population facilitates the relaxation of density; a second aids the relaxation
of shear stresses concentrated at the boundaries. The disparity of the bulk and shear moduli in
vortex matter ensures the dislocation motion follows the overall continuum flow reflecting density
variation.

editor’s  choice Copyright c© EPLA, 2019

Soft matter forms a versatile laboratory to study plas-
tic deformation, including: the observation of disloca-
tion nucleation [1], motion [2–7], reactions [8] and role
in grain boundary processes [9]. Soft vortex matter has
the specific advantage that the density of vortices can
be changed easily by altering the magnetic field applied,
and a density gradient is created by applying a field
gradient [10,11]. The regime of large density gradients
has been extensively studied in colloidal systems [12,13].
Here, the regime of large density gradients in vortex mat-
ter is naturally studied by extrusion along a channel
between reservoirs of different densities. The resulting
time-dependent non-equilibrium state is the subject of this
article.

The channel is formed by a clean (unpinned) region of
width w between walls provided by two pinned regions of
vortex lattice. Altering the external magnetic field alters
the density of vortices within the channel, while the pinned
regions are unaltered for moderate changes of field. Except
when we explicitly compare with the liquid phase, our
simulations are at a sufficiently low temperature so that

—for our finite sample— there are no thermally excited
Halperin-Nelson-Young dislocations.

That vortex dynamics is collective in such a channel
was demonstrated [2] by the application of the electrical
current to a small region of the channel which generated
motion of vortices up to 5μm = 30w away. This implies a
value of 5μm for the Larkin-Ovchinnikov length [14], over
which the vortex lattice is not pinned. Motivated by these
results, we will consider the clean limit for the channel in
this article, with an ordered pinned lattice defining the
channel edges.

To investigate flow (both in solid and liquid phases) at
controllable density gradients, our simulations add a reser-
voir with a chosen vortex density to each end of the chan-
nel (fig. 1). Experimentally, the reservoirs could be fed via
vortex pumps [15]; in the simulation vortices are added or
removed sufficiently remotely from the channel exit and
entrance so as not to affect the flow. This is achieved by
calculating the field in each reservoir and adding or re-
moving vortices at the lateral edges of each reservoir in
order to maintain the required field. Using this method
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Fig. 1: The model of a thin channel superconductor with an imposed magnetic-field gradient B(x)ẑ, where z is normal to the
plane. Mobile vortices from a high-density source move along the channel under the action of a vortex density gradient. The
channel edges are defined by pinned vortices.

gives more control over the field gradient than a periodic
boundary condition on the flow.

The geometry of the channel is shown in fig. 1, where
BL and BR are the fields in the left and right reservoirs,
with BL > BR, favouring vortex motion from left to right
in the channel. We work in the regime where the average
density in the channel is comparable to the pinned lattice,
so experimental changes of field would be small. We ex-
amine a “wide” channel of width, w ∼ 10a0, where a0 is
the lattice parameter of the pinned lattice, which is our
unit of length (and the associated unit of field, B0). So,
although the channel lattice is only slightly mismatched
with the pinned lattice, the cumulative effect across the
width of the channel can be several lattice parameters.
The “wide” channel will allow a continuum description.

Figure 2(a) shows the yield stress for plastic flow at
BL −BR = ΔBy = 0.08 for T = 0. Above the yield stress
v ∝ (ΔB), i.e., linear to a good approximation. In the
liquid phase, for T > Tm = 0.014, linearity is present for
all ΔB. That ΔBy and Tm are numerically small reflects
the disparity of bulk and shear moduli in the vortex lattice.

A reference for density changes along the channel is pro-
vided by the local vortex spacing in the liquid phase, a�(x),
which is smooth:

a�(x) �
√

2√
3

Φ0

(BR − BL)(x/L) + BL
,

where L is the channel length and Φ0 is the flux quantum.
If the “solid”, plastic, phase were glassy or hexatic, the
density might vary continuously as well. However, as can
be seen from fig. 3(a), this is not true. While the inter-
vortex spacing parallel to the channel, ap(x), tracks the
liquid variation, a�(x), the perpendicular component of the
spacing, bp(x) (b =

√
3/2a for an equilateral triangular

lattice), is step-like along the channel.

The interpretation, confirmed by examination of fig. 4,
is that the vortex matter is mostly crystalline with the
inter-row spacing commensurable with the channel width.
The commensurability dictates discrete changes along the
channel, where rows disappear, associated with an edge
dislocation in the “bulk” of the channel. Because vortex
matter has no cohesive energy, the inter-row separation
expands (and the unit cell expands) as x passes an edge
dislocation, the lattice filling the channel laterally with
fewer rows. The required number of bulk dislocations
is increased by increasing the magnetic-field gradient or
the width of the channel (which requires more rows to
be removed for a given density change). Our simulations
demonstrate this for density gradients necessitating up to
4 edge dislocations, with channel widths of up to 30b0.

The unit cell changes shape from a compressed isosceles
triangle to an equilateral triangle upon passing an edge
dislocation. I.e., the transition from n + 1 rows to n rows
occurs when b = (

√
3/2)ap(x) = w/n. To avoid gross

mechanical disequilibrium, we expect the unit cell area to
be continuous as a function of x. Equating the unit cell
sizes in the sections with different rows at the boundary
implies a discontinuity in ap(x), a+−a− = (2/

√
3)(w/n2),

where a+ is the lattice parameter on the side with n + 1
rows and a− that with n rows. This difference is indicated
in fig. 3(a), agreeing with the simulations.

The “geometrically necessary strain” caused by the lat-
tice parameters of the pinned region and the channel lat-
tice becoming increasingly mismatched as x increases is
concentrated in “misfit”, or geometrically necessary dis-
locations (GNDs) at the interface (fig. 4). The “charge”
density of GNDs, ρg, reflecting the lack of registry due to
the variation in ap(x), is

ρg =
1
a0

(
1 − a0

ap(x)

)
. (1)
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Fig. 2: Overall flow, yield and acceleration along channel.
(a) shows the variation of the vortices’ average velocity, v(ΔB),
with field difference. There is a critical field difference for the
solid to yield at sufficiently low temperatures, which disappears
above the melting temperature (similar to the velocity/Lorentz
relation from the Leiden group [2,5]). (b) shows the velocity
profile, vx(x), in the channel and sleeve (cylindrical) geome-
tries, with ΔB = 0.46. To provide bounds on the velocity pro-
files, we also show continuum calculations for v(x) and a cutoff
nearest-neighbour only discrete lattice sum. As the channel
width grows v(x) approaches the cylindrical result (which is
closer to the continuum model), showing the diminishing effect
of edge shear.

Figure 3(b) shows the agreement between this expres-
sion and the density of GNDs found in the simulation.

The dynamic behaviour (see Supplementary Video
S1.mp4) of the plastic flow reflects the interacting popu-
lations of GND and “bulk” dislocations. The GNDs glide
parallel to the channel edges, lubricating the vortex lat-
tice motion along the channel. The bulk dislocations glide
on symmetry-related glide-planes across the channel. The
video appears to show that bulk dislocations are reflected
at the channel edge onto to the other glide-plane not paral-
lel to the channel edge, and repeat this zig-zagging motion
between the channel edges. We have followed this periodic
motion for more than 100 periods.

However, it cannot be a reflection, as the conserved [16]
Burgers vector changes when gliding on different planes.
The resolution is that a “reaction” occurs, visible in Sup-
plementary Video S1.mp4: a bulk dislocation upon reach-
ing a channel edge combines with a GND producing a bulk
dislocation on the third glide-plane (i.e., the three possible
Burgers vectors add to zero).

Fig. 3: The discontinuous evolution of the lattice along the
channel. (a) shows the variation in the vortex spacing (found
using Delaunay triangulation) parallel to the channel bound-
ary, a(x), with vertical arrows indicating jumps mentioned in
the text. The component of the separation perpendicular to
the channel edges, b(x), is also plotted. The system contains
three zones of nr = 8, 7 and 6 rows of vortices. (b) shows the
density of GNDs. The solid line is calculated using an interpo-
lated ap(x) from the simulation and eq. (1). The dashed line is
a continuum prediction. The red line is from the simulations.

The steady state of plastic flow is constituted by the re-
gions of constant row number, delimited, in the laboratory
frame, by the average x-coordinates of the zig-zagging bulk
dislocations. The gliding GND dislocations ensure this.

Building a global picture of the flow down the chan-
nel from these local descriptions of dislocation motion is
aided by fig. 2(a). Note the near identity of flow rates in
liquid and plastic phases —despite the considerable dif-
ference in structure. The underlying cause is that vor-
tex matter is soft but incompressible [17]: the ratio of
the bulk, κ, to shear, μ, moduli is κ/μ = 16π(λ/ξ)2 �
1, for strongly type-II superconductor, where ξ is the
coherence length and λ is the penetration depth of the
superconductor. Thus the macroscopic flow rate, reflect-
ing density gradients, is insensitive to crystalline order
and the steady-state profile for v(x) and ρ(x) along the
channel may be derived using the continuity equation for
the vortices and the force equation on each vortex (see
appendix),

v(x) = − Φ2
0

ηπμ0

dρ

dx
.
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Fig. 4: The double-dislocation network in the channel. A snapshot of the vortex positions in a channel, of width w = 8b0, is
shown. There are three “bulk” edge dislocations. The Burgers circuit construction [16] for the second dislocation is indicated.
Pinned vortices in the channel edges are marked with ×. � and � mark vortices with 5 and 7 neighbours, respectively. All
other vortices have 6 neighbours. Top: a bulk dislocation approaching the lower channel edge. Bottom: the same dislocation
after the interaction with a GND with b = −ŷ.

They yield

ρ(x) = ρ(0)
√

1 − x

L0
, v(x) =

Q

ρ(x)
,

where x = 0 has been chosen to be the start of the
channel, Q = ρ(x)v(x) is conserved in steady state and
L0 = Φ2

0ρ(0)2/(πηQμ0) � L in our simulations (i.e., the
number of rows does not drop to zero). The resulting
velocity field is shown in fig. 2(b).

The microscopic dislocation motion is slaved to this
density-gradient–dominated continuum description (i.e.,
determined kinematically) as the Peierls-Nabarro stress
for glide is determined [16] by the small shear modu-
lus. The GNDs ensure the average motion of the channel
lattice occurs with the velocity v(x): each GND trans-
lates the lattice by a0 as it passes, so their velocity,
vg(x) = v(x)/(a0ρg(x)).

The zig-zagging dislocations ensure that the density
profile is stationary in the laboratory frame. They move
backwards, see fig. 5, at an average velocity vzig = −2v(x),
where the factor of two comes from the angle of the glide
plane. Channel-edge friction can be removed by consider-
ing a “sleeve”, with a periodic boundary condition in the
y-direction (see Supplementary Video S2.mp4). On the
sleeve there are still preferred row separations due to com-
mensurability with the circumference of the cylinder. Fig-
ure 2(b) shows indeed that the sleeve-system is closer than
the channel to the continuum model. This is then reminis-
cent to the description [18,19] of bacterial cell wall growth
and provides a physical mechanism for the observations in
colloidal dynamics as seen in Deutschländer et al. [20].

In summary, the first study of plastic deformation un-
der significant density gradients has demonstrated the ex-
istence of a new steady-state with a strongly interacting

Fig. 5: Motion of the “bulk” dislocations, kinematic and dy-
namic. Dislocation paths are shown for both the channel and
the sleeve, in a reference frame moving with the channel/sleeve
lattice. In the case of the channel, non-kinematic influences im-
ply an additional velocity modulation: moving faster as they
leave a channel edge and slowing as they approach an edge.
This is due to image forces being repulsive due to the rigid
pinned lattice, although this is partly cancelled by the lubrica-
tion of the GNDs allowing slip along the surface [21]. There is
no correlation between the different zig-zagging dislocations
—presumably because their velocities are different (as v(x)
varies) and interactions are suppressed by exponential screen-
ing due to the image arrays.

set of dislocations on all of the glide planes of the vor-
tex crystal. Whilst the vortex crystal has no cohesive
energy, one would expect similar behaviour for any two-
dimensional matter compressed sufficiently from its equi-
librium density. The generalization to three dimensions
—either for flux lines or particles —is an open question, as
is the potential of the latter for high-/low-compressibility
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(cf. pinned/channel) heterogeneous mixtures in geophysi-
cal flows.
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Appendix: methods. –

Simulation techniques. The motion of the N
two-dimensional vortices is represented via molecular
dynamics, describing the vortices as particles with repul-
sive interactions and following the diffusion dynamics of
Jensen et al. [22,23]:

ηvi = Fvv
i + FT

i .

vi is the velocity of the i-th vortex with η an effective
viscosity due to the normal fluid. Temperature is in-
cluded via FT

i , a thermostat [22,24] with 〈FT
i 〉 = 0 and

〈FT
i (t)FT

j (t′)〉 = 2kBηTδijδ(t − t′). Finally, the vortices
interact via the standard [25] repulsive force:

fvv(r) = −f0K1(r/λ)r̂; Fvv
i =

N∑
j=1 �=i

fvv(ri − rj),

where f0 = Φ2/2πμ0λ
3, λ is the penetration depth, Φ is

the flux quantum, K1 is a modified Bessel function and
Fvv

i is the total force on the ith vortex due to the others.
Reasonable values of the pinned vortices lattice parameter
are chosen based on experiment [26]. We use the lattice
parameter, a0 = 100 nm, of the pinned lattice as the unit
of length, fixing the penetration depth λ = 1.11a0 follow-
ing the values used by Besseling et al. ensures a sepa-
ration of bulk and shear moduli; C11 � C66. Magnetic
fields are described in units of the pinned vortices field
which we take to be B0 = 0.24T. For simulation purposes
we use a force cutoff range [27] set at rcut = 6λ. We let
kB = η = f0 = 1. (This choice of units gives a fundamen-
tal mass of M = ηa0/f0 = 1 and time T = η2a0/f0 = 1.)
The magnetic fields at the ends of the channel are main-
tained via (large) vortex reservoirs, fig. 1, which are held at
the required fields by the addition or removal of vortices.

Following the method of Spencer et al. [27], density of
defects and the rotational order parameter were used to
determine a melting temperature for the bulk system as
Tm = 0.014.

Our simulations are almost all deep in the solid phase,
well below Tm except when we make comparison with the
liquid phase and show the absence of a yield stress for

T > Tm. We confirm the solid nature by structure factor
measurements [27]. The lattice parameter of the pinned
vortices at the channel edge (CE) was a0 corresponding
to B = 1 and row spacing b0 =

√
3/2. The majority of

runs fixed BL = 1.05 such that the lattice parameters of
the CE and flowing vortices coincide at x = 6.17 along
the channel. The channel length for all simulations was
set at 60.

The time step for the simulations was chosen [25] to be
δt = 0.01 to ensure the maximum vortex displacement in
one iteration was � a0/50. Results are taken after at least
100000 time steps, at which time the vortices had reached
a non-equilibrium steady state.

Definition of geometrically necessary dislocation den-
sity. Note that this continuum relation

ρg =
1
a0

(
1 − a0

ap(x)

)
breaks down when ρg(x) → 0, as, in the context of this
article, it happens over a finite region, whereas the con-
tinuum description is appropriate on scales, λ, which are
large compared to the (divergent, as ρg(x) → 0) inter-
dislocation separation —which is a contradiction.

Continuum analysis. Modelling the system using the
continuum approximations allows for the spatial variation
of ρ(x) and v(x) to be determined. The starting point is
to ignore edge effects, working more than a penetration
depth into the channel, so inter-vortex interactions have
decayed to zero. Then the equation of motion becomes a
force balance between the viscous drag term and the sum
over repulsive vortex-vortex interactions, roughly over a
penetration depth area. Replacing the discrete sum over
vortices with an integral over density gives an equation of
the form

ηv(r) =
∫

dr′fvv(r − r′)ρ(r′) ̂(r − r′). (A.1)

The viscous term on the left-hand side is due to the
“normal fluid” of excited quasiparticles scattering from
the vortex, or trapped in its core. We now use the small
value for the change in vortex density over a distance of the
penetration depth to approximate eq. (A.1). Performing a
change of basis r′ → r + ζ and Taylor-expanding ρ(r + ζ)
to first order in ζ gives the transformed equation

ηv(r) �
∫

dζfvv(ζ) [ρ(r) + ζ · ∇ρ(r)] ζ̂. (A.2)

Since ζ = (ζ cos φ, ζ sinφ), ζ̂ = (cos φ, sin φ) and ∇ρ =
(∂ρ/∂x, ∂ρ/∂y), only the term in ∂ρ/∂x survives, which
results in

v(x) = − Φ2
0

ημ0

dρ

dx
(A.3)

To determine the density profile the steady-state conti-
nuity equation is introduced, in 1D this is Q = ρ(x)v(x).
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Substituting eq. (A.3) and performing the simple integra-
tion gives the density profile

ρ(x) =

√
ρ(0)2 − ηQμ0

Φ2
0

x, (A.4)

where the boundary condition on the entrance to the chan-
nel ρ = ρ(0) was used.
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V. M., New J. Phys., 7 (2005) 71.
[26] Pruymboom A., Kes P. H., van der Drift E. and

Radelaar S., Phys. Rev. Lett., 60 (1988) 1430.
[27] Spencer S. and Jensen H. J., Phys. Rev. B, 55 (1997)

8473.

16002-p6


